Homework 8

Due Monday, November 25, 2019

Math 206

1. On Monday we discussed the fact that

$$
\begin{aligned}
1+2+3+\cdots+n & =\frac{n(n+1)}{2}=\frac{1}{2} n^{2}+\frac{1}{2} n \\
1^{2}+2^{2}+3^{2}+\cdots+n^{2} & =\frac{n(n+1)(2 n+1)}{6}=\frac{1}{3} n^{3}+\frac{1}{2} n^{2}+\frac{1}{6} n,
\end{aligned}
$$

and we messed around with the computer and figured out that

$$
1^{3}+2^{3}+3^{3}+\cdots+n^{3}=\frac{1}{4} n^{4}+\frac{1}{2} n^{3}+\frac{1}{4} n^{2} .
$$

(a) Mess around in a similar way to find a formula for

$$
1^{p}+2^{p}+3^{p}+\cdots+n^{p}
$$

with $p=4,5,6$. Make sure that your answer works for some different values of n, not just for $n=1000$ or $n=10000$. Hint: $0.416666 \ldots=5 / 12$.
(b) Describe at least three patterns that you observe.
(c) Optional: Keep going if you want.
(d) Optional: If you like proofs by induction, prove one of your formulas by induction.
2. On Wednesday we talked about how to fit a quadratic polynomial through three points: If you want $y=a x^{2}+b x+c$ to pass through three points $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$ and $\left(x_{3}, y_{3}\right)$, you should solve the matrix equation

$$
\left(\begin{array}{lll}
x_{1}^{2} & x_{1} & 1 \\
x_{2}^{2} & x_{2} & 1 \\
x_{3}^{2} & x_{3} & 1
\end{array}\right)\left(\begin{array}{l}
a \\
b \\
c
\end{array}\right)=\left(\begin{array}{l}
y_{1} \\
y_{2} \\
y_{3}
\end{array}\right) .
$$

I emphasize that the x 's and y 's are numbers that are given to us, and a, b, and c are variables that we want to solve for.
That big square matrix is called a Vandermonde matrix, and we saw that we could save ourselves a lot of trouble by using the Python routines numpy.vander and numpy.linalg.solve.
(a) Take the three points we used, make up a fourth point, and fit a cubic polynomial

$$
y=a x^{3}+b x^{2}+c x+d
$$

that passes through all four. Graph the points and the polynomial using desmos.com.
(b) Make up a fifth point, fit a quartic polynomial

$$
y=a x^{4}+b x^{3}+c x^{2}+d x+e
$$

that passes through all five, and graph the points and the curve.
(c) You could rediscover our formula for

$$
1^{3}+2^{3}+3^{3}+\cdots+n^{3},
$$

by finding the coefficients of a quartic polynomial

$$
f(n)=a n^{4}+b n^{3}+c n^{2}+d n+e
$$

that satisfies

$$
\begin{gathered}
f(0)=0 \quad f(1)=1 \quad f(2)=1^{3}+2^{3}=9 \\
f(3)=1^{3}+2^{3}+3^{3}=36 \quad f(4)=1^{3}+2^{3}+3^{3}+4^{3}=100
\end{gathered}
$$

Do you get the same coefficients that we found before?
(d) Do problem 1(a) this way. Is it easier than what you did on Monday?

