Math 253
Homework 6
Due Friday, February 23, 2024
For each series, decide which convergence test will be easiest to apply, then use it to decide whether the series converges or diverges. ("Easiest" is a matter of taste, so there's not necessarily a right or wrong answer to that part, but if you find yourself working very hard then consider trying another test.)

1. $\sum_{n=1}^{\infty} \frac{1}{n \ln n}$
2. $\sum_{n=1}^{\infty} \frac{1}{n^{2 / 3}}$
3. $\sum_{n=1}^{\infty} \ln n$
4. $\sum_{n=1}^{\infty} \frac{10^{n}}{n!}$
5. $\sum_{n=1}^{\infty} \frac{n}{2 n^{3}+1}$
6. $\sum_{n=1}^{\infty} \frac{2^{n}+1}{5^{n}+1}$
7. $\sum_{n=1}^{\infty} \frac{n!}{10^{n}}$
8. $\sum_{n=1}^{\infty} \frac{n}{2 n^{3}-1}$
9. $\sum_{n=1}^{\infty} \frac{\ln n}{n}$

Taylor polynomials:
10. Find the eighth Taylor polynomial for $\sin x$ : that is, find the (unique) polynomial of degree 8 whose value at zero and whose first eight derivatives at zero all agree with those of $\sin x$. If you want, put it into Desmos like we did in class; but don't turn in any graphs.
11. Find the third Taylor polynomial for $\sqrt{1+x}$. Again, put it into Desmos if you want.

Radius of convergence:
12. For which values of $x$ does the series $\sum_{n=0}^{\infty} \frac{x^{n}}{n+1}$ converge?

