Math 253
Homework 9
Due Friday, March 15, 2024

1. The function $\operatorname{Si}(x)=\int_{0}^{x} \frac{\sin t}{t} d t$, called the sine integral, has applications to signal processing.
a) Try to evaluate this integral in the usual way, by making a u-substitution, integrating by parts, or whatever you can think of. Explain what you tried and where you got stuck. If you think you've succeeded, double-check by taking the derivative of your answer.
b) We have seen that the Taylor series for $\sin (t)$ is

$$
t-\frac{t^{3}}{3!}+\frac{t^{5}}{5!}-\frac{t^{7}}{7!}+\cdots
$$

Divide by t and integrate from 0 to x to get the Taylor series for $\mathrm{Si}(x)$.
c) Use this to get an approximate value for $\operatorname{Si}(1)$. The true value is $0.946083070367183 \ldots$
2. Approximating π. In lecture we took the geometric series $\frac{1}{1-r}=1+r+r^{2}+r^{3}+\cdots$,
substitued $r=-x^{2}$ to get $\frac{1}{1+x^{2}}=1-x^{2}+x^{4}-x^{6}+\cdots$,
and integrated to get the Taylor series for arctangent:
$\arctan x=x-\frac{x^{3}}{3}+\frac{x^{5}}{5}-\frac{x^{7}}{7}+\cdots$.
Then we noticed that $\tan \frac{\pi}{4}=1$, so we plugged in $\mathrm{x}=1$ and multiplied by 4 to get an approximation to π. But the series converged very slowly: after 100 terms we only had π to one decimal place.

We also noticed that $\tan \frac{\pi}{6}=\frac{1}{\sqrt{3}}$ and wondered if this would yield a better approximation to π. Use a calculator to to plug $x=\frac{1}{\sqrt{3}}$ into the Taylor series for arctangent above, carry it out to 4 terms and then 5 terms, and multiply by 6 . How good an approximation do you get to $\pi=3.14159265358989323846 \ldots$?
(Continued on the next page.)
3. This problem asks you to solve the differential equation $y^{\prime}=-2 t y$ using power series.
a) Suppose that $y=c_{0}+c_{1} t+c_{2} t^{2}+c_{3} t^{3}+c_{4} t^{4}+c_{5} t^{5}+c_{6} t^{6}+\cdots$

Find y^{\prime} and $-2 t y$.
b) By equating the constant terms, then the coefficients of t , then the coefficients of t^{2} and so on, solve for c_{1}, c_{2}, c_{3} and so on in terms of c_{0}.
c) Take what you found in part (b) and write out the power series for y that solves the differential equation.
d) By know you know the Taylor series for e^{x} :

$$
e^{x}=1+x+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\frac{x^{4}}{4!}+\cdots
$$

Substitute $x=-t^{2}$ and notice that your answer to part (c) is $c_{0} e^{-t^{2}}$. Check that this satisfies $y^{\prime}=-2 t y$.
4. "Bessel functions" appear often in applied mathematics and physics, especially in analyzing the vibration of bells, cymbals, and drums. The Bessel function of order 0 is a solution to the differential equation $t y^{\prime \prime}+y^{\prime}+t y=0$.
a) Suppose that $y=c_{0}+c_{1} t+c_{2} t^{2}+c_{3} t^{3}+c_{4} t^{4}+c_{5} t^{5}+c_{6} t^{6}+\cdots$ Find $t y, y^{\prime}$, and $t y^{\prime}{ }^{\prime}$.
b) Add them up to get $t y^{\prime}{ }^{\prime}+y^{\prime}+t y$, grouping together the constant terms, the terms involving t, the terms involving t^{2}, and so on; stop at t^{5}.
c) Setting your answer to part (b) equal to zero determines the coefficients c_{1}, c_{2}, c_{3} and so on in terms of c_{0}. Set the constant term equal to zero and solve for c_{1}. Set the the coefficient of t equal to zero and solve for c_{2} in terms of c_{0}. Keep going up to t^{5}, which determines c_{6}.
d) Suppose that $y(t)$ satisfies the differential equation $t y^{\prime \prime}+y^{\prime}+t y=0$ and the initial condition $y(0)=1$ (which determines c_{0}). Write out the sixth Taylor polynomial of $y(t)$. Give an approximation to $y(1)$.

