Midterm 1
Math 253
February 9, 2024
Name: \qquad
Each part is worth 5 points, for a total of 60 points.
You may use a hand-written sheet of notes.
Show your work where appropriate.
No calculators or cheating.

1. Find a formula for the general term a_{n} in the following sequences. Indicate whether you're starting from $n=1$ or $n=0$; either choice is ok.
a) $5,-10,15,-20,25, \ldots$
b) $\frac{1}{4}, \frac{2}{9}, \frac{3}{16}, \frac{4}{25}, \frac{5}{36}, \ldots$
2. Suppose that $a_{1}=2$, and for $n \geq 2$ we have $a_{n}=a_{n-1}+3$.
a) Write out the first five terms of the sequence.
b) Find an explicit formula for a_{n}.
3. Evaluate the following limits:
a) $\lim _{n \rightarrow \infty} \frac{e^{n+1}}{e^{n}+1}$
b) $\lim _{n \rightarrow \infty} \frac{n^{2}}{\ln n}$.
4. Consider the series $\frac{1}{4}+\frac{2}{9}+\frac{3}{16}+\frac{4}{25}+\frac{5}{36}+\cdots$.
a) Write it in sigma notation, that is, as $\sum_{n=1}^{\infty}$ (something) or $\sum_{n=0}^{\infty}$ (something $)$.
b) Find the first three partial sums S_{1}, S_{2}, S_{3}.
5. Geometric series:
a) Fill in the blank: if $|r|<1$, then
$1+r+r^{2}+r^{3}+\cdots=$ \qquad .
b) Does the geometric series $\frac{3}{10}+\frac{3}{100}+\frac{3}{1000}+\frac{3}{10000}+\cdots$ converge or diverge? If it converges, find the limit.
6. Use the integral test to decide whether the following series converge or diverge.
a) $\sum_{n=1}^{\infty} \frac{1}{\sqrt{2 n+5}}$
b) $\sum_{n=2}^{\infty} \frac{1}{n(\ln n)^{2}}$
