Midterm 1
Math 253
February 9, 2024
Name: \qquad
Each part is worth 5 points, for a total of 60 points.
You may use a hand-written sheet of notes.
Show your work where appropriate.
No calculators or cheating.

1. Find a formula for the general term a_{n} in the following sequences. Indicate whether you're starting from $n=1$ or $n=0$; either choice is ok.
a) $5,-10,15,-20,25, \ldots$

If you start from $n=1$, you'll get $a_{n}=(-1)^{n-1} \cdot 5 n$ or $(-1)^{n+1} \cdot 5 n$.
If you start from $n=0$, you'll get $a_{n}=(-1)^{n} \cdot 5(n+1)$ or $(-1)^{n}(5 n+5)$.
b) $\frac{1}{4}, \frac{2}{9}, \frac{3}{16}, \frac{4}{25}, \frac{5}{36}, \ldots$

If you start from $n=1$, you'll get $a_{n}=\frac{n}{(n+1)^{2}}$.
If you start from $n=0$, you'll get $a_{n}=\frac{n+1}{(n+2)^{2}}$.
You could even start from $n=2$ and get $a_{n}=\frac{n-1}{n^{2}}$.
2. Suppose that $a_{1}=2$, and for $n \geq 2$ we have $a_{n}=a_{n-1}+3$.
a) Write out the first five terms of the sequence.
$2,5,8,11,14,17$
b) Find an explicit formula for a_{n}.
$a_{n}=3 n-1$.
3. Evaluate the following limits:
a) $\lim _{n \rightarrow \infty} \frac{e^{n+1}}{e^{n}+1}$

We see that the limit is of the form $\frac{\infty}{\infty}$.
One possibility is to multiply the top and bottom by $\frac{1}{e^{n}}$, which gives
$\lim _{n \rightarrow \infty} \frac{e^{1}}{1+1 / e^{n}}=\frac{e}{1+0}=e$.
The other possibility is to use L'Hôpital's rule:
$\lim _{n \rightarrow \infty} \frac{e^{n+1}}{e^{n}+1}=\lim _{n \rightarrow \infty} \frac{e^{n+1}}{e^{n}}=\lim _{n \rightarrow \infty} e=e$.
b) $\lim _{n \rightarrow \infty} \frac{n^{2}}{\ln n}$.

We see that the limit is of the form $\frac{\infty}{\infty}$.
Applying L'Hôpital's rule (just once), we get
$\lim _{n \rightarrow \infty} \frac{n^{2}}{\ln n}=\lim _{n \rightarrow \infty} 2 \frac{n}{1 / n}=\lim _{n \rightarrow \infty} 2 n^{2}=\infty$.
4. Consider the series $\frac{1}{4}+\frac{2}{9}+\frac{3}{16}+\frac{4}{25}+\frac{5}{36}+\cdots$.
a) Write it in sigma notation, that is, as $\sum_{n=1}^{\infty}$ (something) or $\sum_{n=0}^{\infty}$ (something).

Reusing the answer to problem 1a, we get

$$
\sum_{n=1}^{\infty} \frac{n}{(n+1)^{2}} \text { or } \sum_{n=0}^{\infty} \frac{n+1}{(n+2)^{2}} \text { or even } \sum_{n=2}^{\infty} \frac{n-1}{n^{2}}
$$

b) Find the first three partial sums S_{1}, S_{2}, S_{3}.

$$
S_{1}=\frac{1}{4}, \quad S_{2}=\frac{1}{4}+\frac{2}{9}=\frac{17}{36}, \quad S_{3}=\frac{1}{4}+\frac{2}{9}+\frac{3}{16}=\frac{95}{144} .
$$

5. Geometric series:
a) Fill in the blank: if $|r|<1$, then

$$
1+r+r^{2}+r^{3}+\cdots=\frac{1}{1-r}
$$

b) Does the geometric series $\frac{3}{10}+\frac{3}{100}+\frac{3}{1000}+\frac{3}{10000}+\cdots$ converge or diverge? If it converges, find the limit.

We can write this as $\frac{3}{10}\left(1+\frac{1}{10}+\left(\frac{1}{10}\right)^{2}+\left(\frac{1}{10}\right)^{3}+\cdots\right)$. We have $r=\frac{1}{10}<1$,
so the series converges to $\frac{3}{10} \cdot \frac{1}{1-1 / 10}$, which simplifies to $\frac{3}{10} \cdot \frac{1}{9 / 10}=\frac{3}{10} \cdot \frac{10}{9}=\frac{3}{9}=\frac{1}{3}$.
This agrees with something we already knew: $0.3333 \ldots=\frac{1}{3}$.
6. Use the integral test to decide whether the following series converge or diverge.
a) $\sum_{n=1}^{\infty} \frac{1}{\sqrt{2 n+5}}$

To evaluate $\int_{1}^{\infty} \frac{1}{\sqrt{2 x+5}} d x$, which we saw on a quiz the first week, we substitute $u=2 x+5$,
so $d u=2 d x$, so $d x=\frac{1}{2} d u$, so the integral becomes
$\int_{7}^{\infty} \frac{1}{2 \sqrt{u}} d u=\int_{7}^{\infty} \frac{1}{2} u^{-1 / 2} d u=\left.u^{1 / 2}\right|_{7} ^{\infty}=\infty-\sqrt{7}=\infty$, so the sum diverges.
b) $\sum_{n=2}^{\infty} \frac{1}{n(\ln n)^{2}}$

This appeared on the homework as $\S 5.2$ \#164. To evaluate $\int_{2}^{\infty} \frac{1}{x(\ln x)^{2}} d x$, we substitute $u=\ln x$, so $d u=\frac{1}{x} d x$, so the integral becomes
$\int_{\ln 2}^{\infty} \frac{1}{u^{2}} d u=\int_{\ln 2}^{\infty} u^{-2} d u=\left.\frac{u^{-3}}{-3}\right|_{\ln 2} ^{\infty}=0-\frac{(\ln 2)^{-3}}{-3}=\frac{1}{3(\ln 2)^{3}}$.
This is finite, so the sum converges.

