Midterm 2
Math 253
March 1, 2024
Name: _ Solutions
Each problem is worth 10 points, for a total of 60 points.
You may use a hand-written sheet of notes.
Show your work where appropriate.
No calculators or cheating.

1. Does $\sum_{n=2}^{\infty} \frac{1}{\sqrt{n}-1}$ converge or diverge, and why?

We can use the basic comparison test: we see that $\sqrt{n}-1<\sqrt{n}$, so $\frac{1}{\sqrt{n}-1}>\frac{1}{\sqrt{n}}$, and we know that $\sum_{n=2}^{\infty} \frac{1}{\sqrt{n}}$ diverges by the integral test (because $1 / 2 \leq 1$), so $\sum_{n=2}^{\infty} \frac{1}{\sqrt{n}-1}$ diverges as well.

Alternatively we could use the limit comparison test.
2. Does $\sum_{n=1}^{\infty} \frac{\ln n}{n^{2}}$ converge or diverge, and why?

This is similar to section 5.4 problem 207, which was the quiz on $2 / 14$, but this one is a little simpler because the log isn't squared.
We use the limit comparison test to compare it to $\sum_{n=1}^{\infty} \frac{1}{n^{3 / 2}}$. We have
$\lim _{n \rightarrow \infty} \frac{\ln n / n^{2}}{1 / n^{3 / 2}}=\lim _{n \rightarrow \infty} \frac{\ln n \cdot n^{3 / 2}}{n^{2}}=\lim _{n \rightarrow \infty} \frac{\ln n}{n^{1 / 2}}$,
which is of the form $\frac{\infty}{\infty}$, so by L'Hôpital's rule it equals
$\lim _{n \rightarrow \infty} \frac{1 / n}{\frac{1}{2} n^{-1 / 2}}=\lim _{n \rightarrow \infty} \frac{2}{n^{1 / 2}}=0$.

Thus $\frac{\ln n}{n^{2}}$ is eventually smaller than $\frac{1}{n^{3 / 2}}$. Now $\sum_{n=1}^{\infty} \frac{1}{n^{3 / 2}}$ converges by the integral test (because $3 / 2>1$), so $\sum_{n=1}^{\infty} \frac{\ln n}{n^{2}}$ converges as well.

Alternatively you could compare to $\frac{1}{n^{1.9}}$, or $\frac{1}{n^{p}}$ for any p between 1 and 2 .
3. Does $\sum_{n=1}^{\infty}(-1)^{n+1} \frac{1}{n^{3 / 2}}$ converge absolutely, conditionally, or not at all, and why?

Taking absolute values, we get $\sum_{n=1}^{\infty} \frac{1}{n^{3 / 2}}$, which converges by the integral test (because $3 / 2>1$). So it converges absolutely.
4. Does $\sum_{n=0}^{\infty} \frac{2^{n}}{n!}$ converge or diverge, and why?

We use the ratio test:
$\lim _{n \rightarrow \infty} \frac{a_{n+1}}{a_{n}}=\lim _{n \rightarrow \infty} \frac{2^{n+1} /(n+1)!}{2^{n} / n!}=\lim _{n \rightarrow \infty} \frac{2^{n+1}}{2^{n}} \cdot \frac{n!}{(n+1)!}=\lim _{n \rightarrow \infty} \frac{2}{n+1}=0$,
where toward the end we used the fact that $(n+1)!=(n+1) \cdot n!$. Because $0<1$, the series converges.
5. Find the third Taylor polynomial of the function $f(x)=\sin 2 x+\cos x$, that is, the polynomial of degree 3 whose value and first three derivatives at zero agree with those of f .

We can take three derivatives using the chain rule:
$f^{\prime}(x)=2 \cos 2 x-\sin x$,
$f^{\prime \prime}(x)=-4 \sin 2 x-\cos x$,
$f^{\prime \prime \prime}(x)=-8 \cos 2 x+\sin x$.
Plugging in $x=0$ to f and its derivatives, we get
$f(0)=1$,
$f^{\prime}(0)=2$,
$f^{\prime \prime}(0)=-1$,
$f^{\prime \prime}(0)=-8$.
Thus the third Taylor polynomial is $\frac{1}{0!}+\frac{2}{1!} x-\frac{1}{2!} x^{2}-\frac{8}{3!} x^{3}$, or if you want to clean it up, $1+2 x-\frac{1}{2} x^{2}-\frac{4}{3} x^{3}$.
6. For which values of x does the series $\sum_{n=0}^{\infty} \frac{x^{n}}{n+1}=1+\frac{x}{2}+\frac{x^{2}}{3}+\frac{x^{3}}{4}+\cdots$ converge?

This was problem 12 on homework 6.
First we take absolute values and apply the ratio test. We have
$\lim _{n \rightarrow \infty} \frac{\left|a_{n+1}\right|}{\left|a_{n}\right|}=\lim _{n \rightarrow \infty} \frac{|x|^{n+1} /(n+2)}{|x|^{n} /(n+1)}=\lim _{n \rightarrow \infty} \frac{|x|^{n+1}}{|x|^{n}} \cdot \frac{n+1}{n+2}=\lim _{n \rightarrow \infty}|x| \cdot \frac{n+1}{n+2}$.
As $n \rightarrow \infty$ we see that $\frac{n+1}{n+2} \rightarrow 1$, either using L'Hôpital's rule or by multiplying top and bottom by $1 / n$, so the whole limit is $|x|$. Thus if $|x|<1$ then the series converges absolutely, if $|x|>1$ then the terms don't go to zero and the series diverges, and if $|x|=1$ then the ratio test is inconclusive.

Looking closer at the last case, if $x=1$ then we're talking about the harmonic series $1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\cdots$ which we know diverges, and if $x=-1$ then we're talking about the alternating series $1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\cdots$ which converges because the absolute values of the terms decrease to zero.

