Midterm 2 Math 253 March 1, 2024

Name: Solutions

Each problem is worth 10 points, for a total of 60 points. You may use a hand-written sheet of notes. Show your work where appropriate. No calculators or cheating.

1. Does
$$\sum_{n=2}^{\infty} \frac{1}{\sqrt{n-1}}$$
 converge or diverge, and why?

We can use the basic comparison test: we see that $\sqrt{n} - 1 < \sqrt{n}$, so $\frac{1}{\sqrt{n} - 1} > \frac{1}{\sqrt{n}}$, and we know that $\sum_{n=2}^{\infty} \frac{1}{\sqrt{n}}$ diverges by the integral test (because $1/2 \le 1$), so $\sum_{n=2}^{\infty} \frac{1}{\sqrt{n} - 1}$ diverges as well.

Alternatively we could use the limit comparison test.

2. Does
$$\sum_{n=1}^{\infty} \frac{\ln n}{n^2}$$
 converge or diverge, and why?

This is similar to section 5.4 problem 207, which was the quiz on 2/14, but this one is a little simpler because the log isn't squared.

We use the limit comparison test to compare it to $\sum_{n=1}^{\infty} \frac{1}{n^{3/2}}$. We have

$$\lim_{n \to \infty} \frac{\ln n/n^2}{1/n^{3/2}} = \lim_{n \to \infty} \frac{\ln n \cdot n^{3/2}}{n^2} = \lim_{n \to \infty} \frac{\ln n}{n^{1/2}},$$

which is of the form $\frac{\infty}{\infty}$, so by L'Hôpital's rule it equals

$$\lim_{n \to \infty} \frac{1/n}{\frac{1}{2}n^{-1/2}} = \lim_{n \to \infty} \frac{2}{n^{1/2}} = 0$$

Thus $\frac{\ln n}{n^2}$ is eventually smaller than $\frac{1}{n^{3/2}}$. Now $\sum_{n=1}^{\infty} \frac{1}{n^{3/2}}$ converges by the integral test (because 3/2 > 1), so $\sum_{n=1}^{\infty} \frac{\ln n}{n^2}$ converges as well.

Alternatively you could compare to $\frac{1}{n^{1.9}}$, or $\frac{1}{n^p}$ for any p between 1 and 2.

3. Does $\sum_{n=1}^{\infty} (-1)^{n+1} \frac{1}{n^{3/2}}$ converge absolutely, conditionally, or not at all, and why?

Taking absolute values, we get $\sum_{n=1}^{\infty} \frac{1}{n^{3/2}}$, which converges by the integral test (because 3/2>1). So it converges absolutely.

4. Does
$$\sum_{n=0}^{\infty} \frac{2^n}{n!}$$
 converge or diverge, and why?

We use the ratio test:

$$\lim_{n \to \infty} \frac{a_{n+1}}{a_n} = \lim_{n \to \infty} \frac{2^{n+1}/(n+1)!}{2^n/n!} = \lim_{n \to \infty} \frac{2^{n+1}}{2^n} \cdot \frac{n!}{(n+1)!} = \lim_{n \to \infty} \frac{2}{n+1} = 0,$$

where toward the end we used the fact that $(n+1)! = (n+1) \cdot n!$. Because 0<1, the series converges.

5. Find the third Taylor polynomial of the function $f(x) = \sin 2x + \cos x$, that is, the polynomial of degree 3 whose value and first three derivatives at zero agree with those of f.

We can take three derivatives using the chain rule:

 $f'(x) = 2\cos 2x - \sin x,$ $f''(x) = -4\sin 2x - \cos x,$ $f'''(x) = -8\cos 2x + \sin x.$

Plugging in x=0 to f and its derivatives, we get

$$f(0)=1,$$

 $f'(0)=2,$
 $f''(0)=-1,$
 $f'''(0)=-8.$

Thus the third Taylor polynomial is $\frac{1}{0!} + \frac{2}{1!}x - \frac{1}{2!}x^2 - \frac{8}{3!}x^3$,

or if you want to clean it up, $1+2x - \frac{1}{2}x^2 - \frac{4}{3}x^3$.

6. For which values of x does the series $\sum_{n=0}^{\infty} \frac{x^n}{n+1} = 1 + \frac{x}{2} + \frac{x^2}{3} + \frac{x^3}{4} + \cdots$ converge?

This was problem 12 on homework 6.

First we take absolute values and apply the ratio test. We have

$$\lim_{n \to \infty} \frac{|a_{n+1}|}{|a_n|} = \lim_{n \to \infty} \frac{|x|^{n+1}/(n+2)}{|x|^n/(n+1)} = \lim_{n \to \infty} \frac{|x|^{n+1}}{|x|^n} \cdot \frac{n+1}{n+2} = \lim_{n \to \infty} |x| \cdot \frac{n+1}{n+2}.$$

As $n \to \infty$ we see that $\frac{n+1}{n+2} \to 1$, either using L'Hôpital's rule or by multiplying top and bottom by 1/n, so the whole limit is |x|. Thus if |x|<1 then the series converges absolutely, if |x|>1 then the terms don't go to zero and the series diverges, and if |x|=1 then the ratio test is inconclusive.

Looking closer at the last case, if x=1 then we're talking about the harmonic series

 $1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \cdots$ which we know diverges, and if x = -1 then we're talking about the alternating series $1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \cdots$ which converges because the absolute values of the terms decrease to zero.