
Practice Final Exam
Math 253
March 18, 2024

You may use any calculator that cannot access the internet.
If you don’t have such a calculator, I can lend you one.
You may use a hand-written sheet of notes.
Show your work where appropriate.
No cheating.

1. (10 points) Does ∑
n=1

∞ (n! )3

(3n ) !
 converge or diverge, and why?



2. (10 points) For what values of x does the series ∑
n=1

∞
xn

2n3  converge?



Here is the form of Taylor’s theorem that we proved and have been using. Fix some x>0, and 
suppose we find some M such that |f (d+1 ) (t )|≤M  for all t between 0 and x. Then the difference 
between f(x) and the dth Taylor polynomial

f (0 )+ f ' (0 ) x+ f ' '
(0 )

2!
x2+⋯+

f (d ) (0 )
d !

xd

is at most M x
d+1

d !
.

3. On the last midterm you computed several derivatives of f ( x )=sin (2x )+cos ( x ):
f ' ( x )=2cos (2x )−sin ( x )
f ' ' (x )=−4 sin (2x )−cos ( x )
f ' ' ' (x )=−8 cos (2 x )+sin ( x )

Then you found that the third Taylor polynomial was 1+2 x−
1
2
x2−

4
3
x3

.

a) (5 points) Use a calculator to evaluate the third Taylor polynomial at x=0.1.

b) (5 points) Because sin t  and cos t  stay between −1 and 1 for all t, we see that the first term 
of f (d+1) ( t ) stays between −2d+1 and 2d+1, and the second term stays between −1 and 1; so 
which of the following is a good choice for the M that appears in Taylor’s theorem?

 (i) 1 (ii) 2d+1 (iii) 2d+1+1 (iv) 2d+1−1 (v) 2d+1 (vi) 2 (vii) −1

c) (5 points) So Taylor’s theorem as stated above says that the number you found in part (a) is 
at most how far from the true value of f (0.1 )?

d) (5 points) Take your answer to part (a) plus your answer to part (c), and then your answer to 
part (a) minus your answer to part (c), to get upper and lower estimates for f (0.1 ).

e) (5 points) Use a calculator to get a more exact value for f (0.1 )=sin (0.2 )+cos ( 0.1 ). (Make 
sure you’re working in radians!) If this isn’t in the range that you found in part (d), go back 
and fix any mistakes.



4. The point of this problem is to approximate ∫
0

1
ex−1
x
dx , which cannot be found by the methods 

of math 252.

a) (5 points) We have seen that the Taylor series for ex is 1+x+ x
2

2 !
+ x

3

3!
+ x

4

4 !
+⋯.

Manipulate this to get the Taylor series for e
x−1
x

.

b) (5 points) Use your answer to part (a) to find ∫
0

1
ex−1
x
dx .

(Your answer will be a series of numbers, not a power series.)

c) (5 points) Use a calculator to get an approximate value for the series in part (b). The true 
value is 1.3179021514544…; if your answer is far from this, go back and fix any mistakes.



5. This problem asks you to solve the differential equation y ' '=−ty using power series.

a) (5 points) Suppose that y=c0+c1t+c2t
2+c3t

3+c4 t
4+c5t

5+c6t
6+⋯.

Find −t y, y ', and y ' '.

(Continued on the next page.)



b) (5 points) By equating the constant terms of y ' ' and −ty , then the coefficients of t, then the 
coefficients of t 2 and so on, solve for c2, c3, and so on up to c6 in terms of c0 and c1.

c) (5 points) Write out the sixth Taylor polynomial of the particular solution that salsifies the 
initial conditions y (0 )=1 and y ' (0 )=−1.
(The point is that these initial conditions determine c0 and c1, which determine the rest.)


