Practice Midterm 1
Math 253
February 6, 2024
You may use a hand-written sheet of notes.
Show your work where appropriate.
No calculators or cheating.

1. Find a formula for the general term a_{n} in the following sequences.

Indicate whether you're starting from $n=1$ or $n=0$; either choice is ok.
a) $2,5,8,11,14, \ldots$
b) $\frac{1}{2},-\frac{1}{4}, \frac{1}{8},-\frac{1}{16}, \frac{1}{32}, \ldots$
2. Suppose that $a_{1}=2$, and for $n \geq 2$ we have $a_{n}=3 a_{n-1}$.
a) Write out the first five terms of the sequence.
b) Find an explicit formula for a_{n}.
3. Evaluate the following limits:
a) $\lim _{n \rightarrow \infty} \frac{n^{2}+2 n+3}{3 n^{2}+4 n+5}$
b) $\lim _{n \rightarrow \infty} \frac{n}{(\ln n)^{2}}$.
4. Consider the series $\frac{1}{2}-\frac{1}{4}+\frac{1}{8}-\frac{1}{16}+\frac{1}{32}-\cdots$.
a) Write it in sigma notation, that is, as $\sum_{n=1}^{\infty}$ (something) or $\sum_{n=0}^{\infty}$ (something).
b) Find the first three partial sums S_{1}, S_{2}, S_{3}.
c) Does the series converge or diverge? If it converges, find the sum. Hint: It is a geometric series, although it doesn't start from 1.
5. Consider the telescoping series $\sum_{n=1}^{\infty}(\sqrt{n}-\sqrt{n-1})$.
a) Find the first three partial sums S_{1}, S_{2}, S_{3}.
b) Give a formula for the $\mathrm{n}^{\text {th }}$ partial sum S_{n}.
c) Does the series converge or diverge? If it converges, find the sum.
6. Use the integral test to decide whether the following series converge or diverge.
a) $\sum_{n=1}^{\infty} \frac{1}{(2 n+5)^{2}}$
b) $\sum_{n=1}^{\infty} \frac{(\ln n)^{2}}{n}$

