Practice Midterm 1: Solutions Math 253 February 8, 2024

- 1. Find a formula for the general term a_n in the following sequences. Indicate whether you're starting from n=1 or n=0; either choice is ok.
 - a) 2, 5, 8, 11, 14, ...

If you start from n=1, you'll get $a_n=3n-1$.

If you start from n=0, you'll get $a_n=3n+2$.

b) $\frac{1}{2}$, $-\frac{1}{4}$, $\frac{1}{8}$, $-\frac{1}{16}$, $\frac{1}{32}$, ...

There are many equivalent ways to write the answer.

If you start from n=1, you'll get $a_n = \frac{(-1)^{n-1}}{2^n}$ or something equivalent.

If you start from n=0, you'll get $a_n = \frac{(-1)^n}{2^{n+1}}$ or something equivalent .

- 2. Suppose that $a_1=2$, and for $n \ge 2$ we have $a_n=3a_{n-1}$.
 - a) Write out the first five terms of the sequence.

2, 6, 18, 54, 162.

b) Find an explicit formula for a_n .

$$a_n = 2 \cdot 3^{n-1}$$

3. Evaluate the following limits:

a)
$$\lim_{n \to \infty} \frac{n^2 + 2n + 3}{3n^2 + 4n + 5}$$

We see that the limit is of the form $\frac{\infty}{\infty}$.

One possibility is to multiply the top and bottom by $\frac{1}{n^2}$, which gives

$$\lim_{n \to \infty} \frac{1 + \frac{2}{n} + \frac{3}{n^2}}{3 + \frac{4}{n} + \frac{5}{n^2}} = \frac{1 + 0 + 0}{3 + 0 + 0} = \frac{1}{3}.$$

The other is to use L'Hôpital's rule twice:

 $\lim_{n \to \infty} \frac{n^2 + 2n + 3}{3n^2 + 4n + 5} = \lim_{n \to \infty} \frac{2n + 2}{6n + 4} = \lim_{n \to \infty} \frac{2}{6} = \frac{1}{3}$

b) $\lim_{n\to\infty}\frac{n}{(\ln n)^2}$.

Again we see that the limit is of the form $\frac{\infty}{\infty}$.

Applying L'Hôpital's rule once, we get $\lim_{n \to \infty} \frac{1}{2(\ln n) \cdot \frac{1}{n}}$.

Simplifying, this becomes $\lim_{n \to \infty} \frac{n}{2 \ln n}$, which is again of the form $\frac{\infty}{\infty}$.

Applying L'Hôpital's rule again, we get $\lim_{n \to \infty} \frac{1}{2/n} = \lim_{n \to \infty} \frac{n}{2} = \infty$.

- 4. Consider the series $\frac{1}{2} \frac{1}{4} + \frac{1}{8} \frac{1}{16} + \frac{1}{32} \cdots$.
 - a) Write it in sigma notation, that is, as $\sum_{n=1}^{\infty} (something)$ or $\sum_{n=0}^{\infty} (something)$.

Reusing the answer to problem 1a, we get

$$\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{2^n} \text{ or } \sum_{n=0}^{\infty} \frac{(-1)^n}{2^{n+1}}.$$

b) Find the first three partial sums S_1 , S_2 , S_3 .

$$S_1 = \frac{1}{2}, S_2 = \frac{1}{2} - \frac{1}{4} = \frac{1}{4}, S_3 = \frac{1}{2} - \frac{1}{4} + \frac{1}{8} = \frac{3}{8}.$$

c) Does the series converge or diverge? If it converges, find the sum. Hint: It is a geometric series, although it doesn't start from 1.

We know that if
$$|r| < 1$$
 then $1 + r + r^2 + r^3 + \dots = \frac{1}{1 - r}$.
Thus $1 - \frac{1}{2} + \frac{1}{4} - \frac{1}{8} + \frac{1}{16} - \dots = \frac{1}{1 + 1/2} = \frac{1}{3/2} = \frac{2}{3}$.

Thus the series we're considering can either be found as $\frac{1}{2} \cdot \frac{2}{3} = \frac{1}{3}$, or as $1 - \frac{2}{3} = \frac{1}{3}$.

- 5. Consider the telescoping series $\sum_{n=1}^{\infty} (\sqrt{n} \sqrt{n-1}).$
 - a) Find the first three partial sums S_1 , S_2 , S_3 .

$$S_{1} = \sqrt{1} - \sqrt{0} = 1$$

$$S_{2} = (\sqrt{1} - \sqrt{0}) + (\sqrt{2} - \sqrt{1}) = \sqrt{2}$$

$$S_{3} = (\sqrt{1} - \sqrt{0}) + (\sqrt{2} - \sqrt{1}) + (\sqrt{3} - \sqrt{2}) = \sqrt{3}$$

b) Give a formula for the nth partial sum S_n .

$$S_n = \sqrt{n}$$

c) Does the series converge or diverge? If it converges, find the sum.

The limit of the partial sums is $\lim_{n \to \infty} \sqrt{n} = \infty$, so the series diverges.

6. Use the integral test to decide whether the following series converge or diverge.

a)
$$\sum_{n=1}^{\infty} \frac{1}{(2n+5)^2}$$

To evaluate $\int_{1}^{\infty} \frac{1}{(2x+5)^2} dx$, which we saw on the very first quiz, we substitute u=2x+5, so du=2dx, so $dx=\frac{1}{2}du$, so the integral becomes

$$\int_{7}^{\infty} \frac{1}{2u^{2}} du = \int_{7}^{\infty} \frac{1}{2} u^{-2} du = \frac{1}{2} \cdot \frac{u^{-1}}{-1} \Big|_{7}^{\infty} = 0 - \left(-\frac{1}{14}\right) = \frac{1}{14}$$

This is finite, so the sum converges.

b)
$$\sum_{n=1}^{\infty} \frac{(\ln n)^2}{n}$$

To evaluate
$$\int_{1}^{\infty} \frac{(\ln x)^2}{x} dx$$
, we substitute $u = \ln x$, so $du = \frac{1}{x} dx$, so the integral becomes $\int_{0}^{\infty} u^2 du = \frac{u^3}{3} \Big|_{0}^{\infty} = \infty - 0 = \infty.$

Thus the sum diverges.