Practice Midterm 1: Solutions
Math 253
February 8, 2024

1. Find a formula for the general term a_{n} in the following sequences.

Indicate whether you're starting from $n=1$ or $n=0$; either choice is ok.
a) $2,5,8,11,14, \ldots$

If you start from $n=1$, you'll get $a_{n}=3 n-1$.
If you start from $n=0$, you'll get $a_{n}=3 n+2$.
b) $\frac{1}{2},-\frac{1}{4}, \frac{1}{8},-\frac{1}{16}, \frac{1}{32}, \ldots$

There are many equivalent ways to write the answer.
If you start from $n=1$, you'll get $a_{n}=\frac{(-1)^{n-1}}{2^{n}}$ or something equivalent.
If you start from $n=0$, you'll get $a_{n}=\frac{(-1)^{n}}{2^{n+1}}$ or something equivalent .
2. Suppose that $a_{1}=2$, and for $n \geq 2$ we have $a_{n}=3 a_{n-1}$.
a) Write out the first five terms of the sequence.

2, 6, 18, 54, 162.
b) Find an explicit formula for a_{n}.

$$
a_{n}=2 \cdot 3^{n-1}
$$

3. Evaluate the following limits:
a) $\lim _{n \rightarrow \infty} \frac{n^{2}+2 n+3}{3 n^{2}+4 n+5}$

We see that the limit is of the form $\frac{\infty}{\infty}$.
One possibility is to multiply the top and bottom by $\frac{1}{n^{2}}$, which gives
$\lim _{n \rightarrow \infty} \frac{1+\frac{2}{n}+\frac{3}{n^{2}}}{3+\frac{4}{n}+\frac{5}{n^{2}}}=\frac{1+0+0}{3+0+0}=\frac{1}{3}$.
The other is to use L'Hôpital's rule twice:
$\lim _{n \rightarrow \infty} \frac{n^{2}+2 n+3}{3 n^{2}+4 n+5}=\lim _{n \rightarrow \infty} \frac{2 n+2}{6 n+4}=\lim _{n \rightarrow \infty} \frac{2}{6}=\frac{1}{3}$
b) $\lim _{n \rightarrow \infty} \frac{n}{(\ln n)^{2}}$.

Again we see that the limit is of the form $\frac{\infty}{\infty}$.
Applying L'Hôpital's rule once, we get $\lim _{n \rightarrow \infty} \frac{1}{2(\ln n) \cdot \frac{1}{n}}$.
Simplifying, this becomes $\lim _{n \rightarrow \infty} \frac{n}{2 \ln n}$, which is again of the form $\frac{\infty}{\infty}$.
Applying L'Hôpital's rule again, we get $\lim _{n \rightarrow \infty} \frac{1}{2 / n}=\lim _{n \rightarrow \infty} \frac{n}{2}=\infty$.
4. Consider the series $\frac{1}{2}-\frac{1}{4}+\frac{1}{8}-\frac{1}{16}+\frac{1}{32}-\cdots$.
a) Write it in sigma notation, that is, as $\sum_{n=1}^{\infty}$ (something) or $\sum_{n=0}^{\infty}$ (something).

Reusing the answer to problem 1a, we get

$$
\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{2^{n}} \text { or } \sum_{n=0}^{\infty} \frac{(-1)^{n}}{2^{n+1}}
$$

b) Find the first three partial sums S_{1}, S_{2}, S_{3}.
$S_{1}=\frac{1}{2}, S_{2}=\frac{1}{2}-\frac{1}{4}=\frac{1}{4}, S_{3}=\frac{1}{2}-\frac{1}{4}+\frac{1}{8}=\frac{3}{8}$.
c) Does the series converge or diverge? If it converges, find the sum.

Hint: It is a geometric series, although it doesn't start from 1.
We know that if $|r|<1$ then $1+r+r^{2}+r^{3}+\cdots=\frac{1}{1-r}$.
Thus $1-\frac{1}{2}+\frac{1}{4}-\frac{1}{8}+\frac{1}{16}-\cdots=\frac{1}{1+1 / 2}=\frac{1}{3 / 2}=\frac{2}{3}$.
Thus the series we're considering can either be found as $\frac{1}{2} \cdot \frac{2}{3}=\frac{1}{3}$, or as $1-\frac{2}{3}=\frac{1}{3}$.
5. Consider the telescoping series $\sum_{n=1}^{\infty}(\sqrt{n}-\sqrt{n-1})$.
a) Find the first three partial sums S_{1}, S_{2}, S_{3}.
$S_{1}=\sqrt{1}-\sqrt{0}=1$
$S_{2}=(\sqrt{1}-\sqrt{0})+(\sqrt{2}-\sqrt{1})=\sqrt{2}$
$S_{3}=(\sqrt{1}-\sqrt{0})+(\sqrt{2}-\sqrt{1})+(\sqrt{3}-\sqrt{2})=\sqrt{3}$
b) Give a formula for the $\mathrm{n}^{\text {th }}$ partial sum S_{n}.
$S_{n}=\sqrt{n}$
c) Does the series converge or diverge? If it converges, find the sum.

The limit of the partial sums is $\lim _{n \rightarrow \infty} \sqrt{n}=\infty$, so the series diverges.
6. Use the integral test to decide whether the following series converge or diverge.
a) $\sum_{n=1}^{\infty} \frac{1}{(2 n+5)^{2}}$

To evaluate $\int_{1}^{\infty} \frac{1}{(2 x+5)^{2}} d x$, which we saw on the very first quiz, we substitute $u=2 x+5$, so $d u=2 d x$, so $d x=\frac{1}{2} d u$, so the integral becomes
$\int_{7}^{\infty} \frac{1}{2 u^{2}} d u=\int_{7}^{\infty} \frac{1}{2} u^{-2} d u=\left.\frac{1}{2} \cdot \frac{u^{-1}}{-1}\right|_{7} ^{\infty}=0-\left(-\frac{1}{14}\right)=\frac{1}{14}$.
This is finite, so the sum converges.
b) $\sum_{n=1}^{\infty} \frac{(\ln n)^{2}}{n}$

To evaluate $\int_{1}^{\infty} \frac{(\ln x)^{2}}{x} d x$, we substitute $u=\ln x$, so $d u=\frac{1}{x} d x$, so the integral becomes
$\int_{0}^{\infty} u^{2} d u=\left.\frac{u^{3}}{3}\right|_{0} ^{\infty}=\infty-0=\infty$.
Thus the sum diverges.

