First Midterm

Name: Solutions

October 9, 2013

1. Write parametric equations for the line along which the planes x+2y+3z=1 and 2x+5y-z=2 intersect.

Solution: The normal vectors to the two planes are (1,2,3) and (2,5,-1), so the direction vector of the line is

$$\langle 1, 2, 3 \rangle \times \langle 2, 5, -1 \rangle = \langle -17, 7, 17 \rangle.$$

To find a point on both planes, we set z = 0 in both equations and solve

$$x + 2y = 1 \qquad 2x + 5y = 2,$$

getting x = 1 and y = 0, so the point is (1,0,0). Thus we can parametrize the line as

$$x = 1 - 17t y = 7t z = t.$$

- 2. Consider two lines, one passing through (1,0,0) and (0,1,0) and the other passing through (0,-1,0) and (0,0,1). Find the minimum distance between them, as follows.
 - (a) Write parametric equations for both lines, using s as the parameter for the first line and t as the parameter for the second.

 Solution:

$$egin{array}{ll} x=1-s & x=0 \ y=s & y=t-1 \ z=0 & z=t \end{array}$$

(b) Write a function f(s,t) that gives the distance squared between the point on the first line at time s and the point on the second line at time t.

Solution: $f(s,t) = (1-s)^2 + (s-t+1)^2 + t^2$.

(c) Find the minimum value of f(s,t).

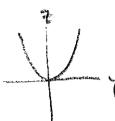
Solution: We have

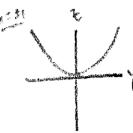
$$f_s(s,t) = -2(1-s) + 2(s-t+1) = 4s - 2t$$

$$f_t(s,t) = -2(s-t+1) + 2t = -2s + 4t - 2.$$

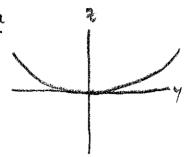
Setting $f_s = 0$, we find that t = 2s. Setting $f_t = 0$ and substituting t = 2s, we find that 6s = 2, so $s = \frac{1}{3}$, so $t = \frac{2}{3}$. Thus the minimum value is $f(\frac{1}{3}, \frac{2}{3}) = \frac{4}{3}$.

- 3. Consider the surface $z = \frac{y^2}{1 + x^2}$.
 - (a) Sketch the slices x = 0, $x = \pm 1$, and $x = \pm 2$. Solution:

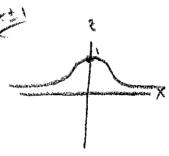


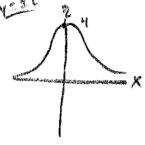


K=2f



(b) Sketch the slices y = 0, $y = \pm 1$, and $y = \pm 2$.



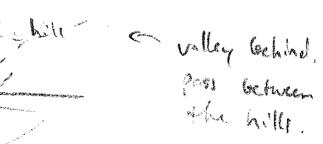


(c) Sketch the slice z = 1. Hint: multiply through by $1 + x^2$.

Solution:

(d) Sketch the surface. The slices you drew in parts (a) through (c) should appear in your sketch.

Solution:



valley

4. (a) In what direction is the function $f(x,y) = x^2 - y^2$ increasing most steeply at the point (1,2)? What is the slope in that direction? What is the slope in the direction $(\frac{1}{2}, \frac{\sqrt{3}}{2})$?

Solution: The gradient $\nabla f(x,y) = \langle 2x, -2y \rangle$, so the direction of steepest increase at the point (1,2) is $\nabla f(1,2) = \langle 2, -4 \rangle$. You can turn this into a unit vector $\langle \frac{1}{\sqrt{5}}, -\frac{2}{\sqrt{5}} \rangle$ if you like, but you don't have to. The slope in that direction is $|\langle 2, -4 \rangle| = \sqrt{20} = 2\sqrt{5}$. The slope in the direction $\langle \frac{1}{2}, \frac{\sqrt{3}}{2} \rangle$ is $\langle 2, -4 \rangle \cdot \langle \frac{1}{2}, \frac{\sqrt{3}}{2} \rangle = 1 - 2\sqrt{3}$.

(b) Write an equation for the tangent plane to the surface $y^2 + z^2 = x^3 - x$ at the point $(2, 2, \sqrt{2})$.

Solution: This is a level surface of the function $f(x,y,z) = y^2 + z^2 - x^3 + x$, whose gradient $\nabla f(x,y,z) = \langle -3x^2 + 1, 2y, 2z \rangle$. The tangent plane to the surface at the point $(2,2,\sqrt{2})$ is perpendicular to $\nabla f(2,2,\sqrt{2}) = \langle -11,4,2\sqrt{2} \rangle$, so the equation of the plane is

$$-11x + 4y + 2\sqrt{2}z = -10.$$

- 5. Consider the curve $\vec{r}(t) = \langle t^2 2t + 1, t^2, 2t^2 2t \rangle$.
 - (a) Find \vec{v} , \vec{T} , a_T , \vec{a}_{\parallel} , \vec{a}_{\perp} , and a_N at time t=1. Circle your answers. As a sanity check, make sure that \vec{a}_{\perp} is perpendicular to v.

Solution: We have $\vec{v}(t) = \langle 2t - 2, 2t, 4t - 2 \rangle$ and $\vec{a}(t) = \langle 2, 2, 4 \rangle$. Thus at time t = 1 we have

$$\vec{v} = \langle 0, 2, 2 \rangle$$

$$\vec{T} = \frac{\vec{v}}{|\vec{v}|} = \langle 0, \frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}} \rangle$$

$$a_T = \frac{\vec{a} \cdot \vec{v}}{|\vec{v}|} = 3\sqrt{2}$$

$$\vec{a}_{\parallel} = a_T \vec{T} = \frac{\vec{a} \cdot \vec{v}}{\vec{v} \cdot \vec{v}} \vec{v} = \langle 0, 3, 3 \rangle$$

$$\vec{a}_{\perp} = \vec{a} - \vec{a}_{\parallel} = \langle 2, -1, 1 \rangle$$

$$a_N = |\vec{a}_{\perp}| = \sqrt{6}.$$

For the sanity check, we indeed have $\vec{a}_{\perp} \cdot v = 0$, and also $a_T^2 + a_N^2 = 24 = |\vec{a}|^2$.

(b) The curve meets the plane x + y + 2z = 1 at two points. One is (1,0,0); what is the other?

Solution: We substitute $x = t^2 - 2t + 1$, $y = t^2$, and $z = 2t^2 - 2t$ into the equation of the plane x + y + 2z = 1 to get $4t^2 - 4t + 1 = 1$, so t = 0 or t = 1. In the first case we get $\bar{r}(0) = \langle 1, 0, 0 \rangle$; in the second case we get $\bar{r}(1) = \langle 0, 1, 0 \rangle$.

(c) Find the angle between the curve and the plane at those two points. Hint: First find the angle between the velocity vector to the curve and the normal vector to the plane: then think about what this has to do with the angle between the curve and the plane. Further hint: You can do this without a calculator, so the cosines in question must be among $0, \pm \frac{1}{2}, \pm \frac{\sqrt{2}}{2}, \pm \frac{\sqrt{3}}{2}$, and ± 1 . Solution: The normal vector to the plane is $\vec{n} = \langle 1, 1, 2 \rangle$. At t = 0, the angle

between \vec{n} and $\vec{v}(0) = \langle -2, 0, -2 \rangle$ is

$$\cos^{-1}\left(\frac{\vec{n}\cdot\vec{v}(0)}{|\vec{n}|\,|\vec{v}(0)|}\right) = \cos^{-1}\left(\frac{-6}{\sqrt{6}\sqrt{8}}\right) = \cos^{-1}\left(-\frac{\sqrt{3}}{2}\right) = 150^{\circ},$$

so the angle between the curve and the plane is 60°. At t=1, the angle between \vec{n} and $\vec{v}(1) = \langle 0, 2, 2 \rangle$ satisfies

$$\cos^{-1}\left(\frac{\vec{n}\cdot\vec{v}(\mathbf{A})}{|\vec{n}|\,|\vec{v}(\mathbf{A})|}\right) = \cos^{-1}\left(\frac{6}{\sqrt{6}\sqrt{8}}\right) = \cos^{-1}\left(\frac{\sqrt{3}}{2}\right) = 60^{\circ},$$

so the angle between the curve and the plane is 30°.