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A B S T R A C T   

Knowledge diffusion drives both technical progress and economic growth. In this study, we present a unique 
comparative case study that examines the diffusion of two comparable, foundational biotechnology inventions – 
recombinant DNA (rDNA) and polymerase chain reaction (PCR). Using a variety of metrics to trace knowledge 
diffusion, we find robust evidence that the diffusion of PCR significantly outperforms rDNA. Examining the 
historical record, we then consider how organizational origin, licensing strategy, complementary assets, industry 
stage, and early social networks play a role in shaping these processes. Ultimately, we show that reliance on a 
single diffusion metric or factor is insufficient in explaining knowledge diffusion. We argue for the exploration of 
multiple underlying factors in diffusion studies, and we highlight the utility of employing multiple comple-
mentary measures in diffusion research.   

1. Introduction 

The diffusion of scientific knowledge lies at the heart of both tech-
nical progress and economic growth. Knowledge diffusion, defined as 
“the process in which an innovation is communicated through certain 
channels over time among the members of a social system” (Rogers 
2003, p. 5), has therefore attracted considerable scholarly attention (e. 
g., Audretsch and Feldman, 1996; Bloom et al., 2013; Romer, 1994; 
Jones, 2005; Jaffe et al., 1993). 

Fundamentally, diffusion of anything requires people or organiza-
tions to have access to (or to be exposed to) the thing that is diffusing. In 
turn, several different factors may affect access to scientific knowledge. 
For example, a number of studies posit that the organizational origin of 
new knowledge matters; university research may be easier to access and 
may thus spread more broadly and quickly than research stemming from 
commercial firms (e.g., Agarwal and Ohyama, 2013; Trajtenberg et al., 
1997). Other studies point to the role of intellectual property rights 
(Williams, 2013) or licensing terms (Fosfuri, 2006), observing that more 
lenient approaches may facilitate easier access. Still others highlight the 
importance of institutions like biological resource centers (e.g., Furman 
and Stern, 2011) or the availability of complementary assets such as 
tools that automate research processes (e.g., Furman and Teodoridis, 
2020). From yet another angle, industry stage can play a role since a 

quickly growing industry, by definition, has more individuals and or-
ganizations able to serve as adopters and thus as subsequent diffusers (e. 
g., Methé, 1992; Menanteau and Lefebvre, 2000). Finally, others focus 
on social networks and/or geographic proximity (e.g., Audretsch and 
Feldman, 2004; Feldman et al., 2015; Jaffe et al., 1993; Owen-Smith and 
Powell, 2004), noting that these connections often enable access to new 
knowledge. 

Much of this work strives to isolate the effect of a particular factor on 
knowledge diffusion, typically by examining a large dataset. But in 
practice, these factors do not work in isolation but rather act in consort. 
In this study, therefore, we present a comparative case study of the 
diffusion of two key technologies, highlighting the simultaneous and 
complementary roles of organizational origin, intellectual property ap-
proaches, complementary assets, industry stage, and early social 
networks. 

Specifically, we examine the diffusion of two foundational biotech-
nology inventions. The invention of recombinant DNA (rDNA) at Stan-
ford University and the University of California at San Francisco and of 
polymerase chain reaction (PCR) at Cetus Corporation marked the 
beginning of the biotechnology industry. These two breakthroughs share 
a number of common features that make them well suited for a 
comparative case study. Both technologies are scientific techniques that 
were invented in the San Francisco Bay Area. Both technologies were 
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published and then patented and followed similar licensing approaches. 
In addition, both technologies were associated with Nobel Prizes that 
were granted within ten years of the initial invention. However, the 
technologies also differ in key ways: rDNA was invented in a university 
setting, whereas PCR was invented by a commercial firm. PCR 
benefitted from a concerted effort on the part of the inventing organi-
zation to develop complementary assets; rDNA did not. rDNA emerged 
in 1973 at the inception of the industry and prior to major shifts in 
university licensing, including the Bayh-Dole Act; PCR emerged 12 years 
later. And the first major conference focused on PCR attracted more than 
twice as many participants as the first conference on rDNA. 

Using a wide variety of comprehensive metrics to trace knowledge 
diffusion, we compare and contrast rDNA and PCR along several 
different dimensions with the goal of understanding both the com-
monalities among and differences between their diffusion patterns and 
processes. Specifically, we find that PCR outperforms rDNA in terms of 
patent and publication output, in terms of the number of scientists and 
types of organizations involved in follow-on activity, and in terms of the 
geographic spread of knowledge. Furthermore, the follow-on publica-
tion activity that builds on PCR encompasses a broader knowledge space 
than that of rDNA, suggesting wider application. We next explore evi-
dence on a plurality of diffusion factors including organizational origin, 
the technologies’ licensing strategies and complementary assets, the 
stage of the industry, and social networks around the original inventors. 
We find that the confluence of these factors usefully explains the 
diverging diffusion patterns we observe. 

Our results provide broader implications for diffusion studies. In 
documenting and examining diffusion patterns, we argue that it is 
critical to account for the multiple factors that influence access to the 
original technologies. Narrow assessments of individual factors may be 
insufficient – and, potentially, misleading – towards understanding and 
explaining knowledge diffusion. For example, had we only examined the 
role of organizational origin, we would have drawn insufficient (and 
perhaps misleading) conclusions. In addition, we document how a firm 
invention can diffuse to universities, thus reversing the oft-studied 
process by which university inventions diffuse to firms. Finally, our 
work highlights the value of employing multiple diffusion measures, 
thus moving beyond patent citations alone to consider complementary 
lenses on diffusion processes. Collectively, these contributions offer 
important insights for policymakers and managers alike as they work to 
identify how strategic choices may inhibit or enhance diffusion. 

2. Literature review 

Scholars and policymakers have directed considerable attention to 
the diffusion of scientific knowledge. From a policy perspective, diffu-
sion is important because it underlies both innovation and economic 
growth. For example, the US government has spent around two percent 
of GDP annually on research and development (R&D) since Vannevar 
Bush’s report, “Science, the Endless Frontier” (Bush, 1945), posited that 
public investments in science diffuse to firms and, ultimately, generate 
economic impact.Elsewhere, the EU’s Europe 2020 Strategy called for 
three percent of GDP to be invested in R&D, with one percent coming 
from public funds. Although scholars have since refined Bush’s linear 
model by showing how public investments, private investments, and 
economic impact are shaped by a variety of influences, the fundamental 
insight that knowledge diffusion is key to innovation has remained a 
pillar of both economic policy and associated academic research (Feld-
man & Kelley, 2006; Stephan, 2012; Mazzucato, 2011). 

Prior work has investigated a wide array of factors that influence 
knowledge diffusion, ranging from narrow features tied to the inventing 
organization to broader characteristics that define the larger environ-
mental landscape. These factors include organizational origin, licensing 
strategy, complementary assets, industry stage, and early social net-
works. Although prior scholarship tends to focus on these factors in 
isolation, we argue that diffusion is best explained by considering them 

in tandem. Here, we review each factor in turn to provide a conceptual 
baseline and comprehensive framework. 

First, a great deal of work has focused on whether the knowledge at 
risk of diffusion stems from a university or a firm (e.g., Breznitz and 
Feldman, 2012; Fini et al., 2011; Goldfarb and Henrekson, 2003; Siegel 
et al., 2003; Wright et al., 2006). The special attention offered to uni-
versities is based on the observation that universities and firms differ in 
fundamental ways. Specifically, many scholars claim that universities 
and firms subscribe to different “institutional logics” or underlying 
principles, incentives, norms, and goals (Thornton et al., 2015). Thus, 
university-based researchers may be motivated primarily by a desire for 
community recognition and prestige. This desire can lead them to 
openly share research with the scientific community, since that is how 
their peers come to learn of their work and contributions. By contrast, 
firm-based researchers may be motivated by the (potential) commercial 
fruits of their research. To protect these fruits, they may keep research 
results from the broad community, since sharing could enable others to 
copy or otherwise build on the research (Dasgupta and David, 1987, 
1994; Fini and Lacetera, 2010; Nelson, 2016a; Sauermann and Stephan, 
2013). These observations, in turn, may underpin an expectation that 
university-generated knowledge might diffuse more quickly, across a 
wider geography, to more organizations and, therefore, to a wider range 
of applications. In contrast, firm-generated knowledge might diffuse less 
quickly, within a more constrained geography, to fewer organizations 
and, therefore, to a narrower range of applications. 

Other work on diffusion and access to scientific knowledge focuses 
on organizational policies, such as intellectual property rights and 
related licensing approaches (e.g., Fore et al., 2006; Goldfarb and 
Henrekson, 2003; Kenney and Patton, 2009; Siegel et al., 2003). For 
example, Williams (2013) documents how Celera’s intellectual property 
tied to the human genome has shaped subsequent innovation in the 
space. She finds that IP depressed subsequent scientific research and 
product development by 20 to 30 percent. Examining the case of uni-
versities, specifically, Kenney and Patton (2009) argue that 
university-owned IP can have similar effects, while also pointing to the 
importance of the specific licensing terms that a university offers to 
potential users (see also Arora et al., 2004; Fosfuri, 2006). 

Another stream of work focuses on institutions and tools that may 
directly enable or ease access to scientific knowledge. For example, 
Furman and Stern (2011) explore how biological resource centers, 
which serve as depositories for scientific models, organisms, and data, 
facilitate access and thus diffusion (see also Stern, 2004). Furman and 
Teodoridis (2020) show how the availability of tools that automate 
research processes enables broader knowledge access and use. This work 
thus builds on Teece’s (1986) seminal insight that the successful diffu-
sion and adoption of a technology depends not only on the focal tech-
nology but also on the existence of complementary assets that enable the 
further development and distribution of a technology. 

From yet another angle, many scholars acknowledge, implicitly or 
explicitly, that both industry stage and market size shape both access 
and diffusion. Specifically, when an industry is growing quickly, it has 
more individuals and organizations able to serve as adopters and thus as 
subsequent diffusers. By contrast, the earliest and later stages of an in-
dustry may see less diffusion due to a limited number of diffusers in the 
early case and due to market saturation in the later case. Methé (1992), 
for example, documents this pattern in a study of DRAM market over a 
16-year period. Complementing this work, Menanteau and Lefebvre 
(2000) note that very early-stage industries often have numerous 
adoption barriers, whereas these barriers are reduced in more mature 
industries. Similar insights underlie more general discussions of industry 
stage and technology development, such as those described by Aber-
nathy and Utterback (1978), Abernathy and Clark (1985), and Geroski 
(2000). At the same time, market size also can shape diffusion. Put 
simply, larger markets can provide more opportunities for diffusion to 
occur. 

Finally, other work explores network connections and geography. 
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Scholars have long recognized that social networks play an important 
role in diffusion. For example, in the 1950s, Coleman et al. (1957) 
demonstrated that a physician’s willingness to prescribe a new drug 
depended largely on whether that physician’s network ties had pre-
scribed the drug. More recently, scholars have examined how social 
networks serve not only to influence adoption decisions but also to 
spread knowledge that may not be readily available to those outside of a 
network. Specifically, if one is closely connected to a knowledgeable 
source, then one is more likely to access knowledge (e.g., Abrahamson 
and Rosenkopf, 1997; Ceci and Iubatti, 2012; Whittington et al., 2009). 
For example, Saxenian (1996) observes how engineers at competing 
Silicon Valley firms often shared proprietary knowledge with one 
another. Owen-Smith and Powell (2004) show how Boston universities 
and biotechnology firms collaborated around knowledge sharing, 
highlighting how network connections can undergird a localized system 
of scientific knowledge sharing. Indeed, several studies find that 
knowledge diffuses more readily to organizations that are geographi-
cally proximate (e.g., Audretsch and Feldman, 2004; Belenzon and 
Schankerman 2013; Jaffe et al., 1993). These geographic effects can be 
particularly strong for scientific knowledge that informs subsequent 
innovations. For example, Gittelman (2007) finds that research collab-
orations among geographically-clustered firms are more likely to result 
in papers that are later cited in these firms’ patents (see also Audretsch 
and Feldman, 1996; Feldman and Desrochers, 2003). 

Collectively, these and other studies provide convincing evidence of 
the myriad factors that shape access to new knowledge and subsequent 
diffusion. Many of the studies cited above strive to isolate the effect of a 
particular factor on knowledge access and diffusion. Yet in practice, 
diffusion is shaped by several factors simultaneously; moreover, the 
factors cited above may, in fact, work in consort. Thus, whether and how 
a researcher accesses particular scientific knowledge is likely to depend 
on the organizational origin of that knowledge, the associated IP ap-
proaches, the availability of complementary assets, the stage of industry 
development, and the researcher’s position in a network – simulta-
neously. In turn, understanding how these factors work together re-
quires detailed case-based analyses that can trace diffusion over time. 
This stands in contrast to the prior scholarship that typically uses large 
datasets. In this paper, we present just such an analysis with the aim of 
understanding how two seemingly comparable technologies may 
nonetheless exhibit rather different diffusion patterns. 

3. Research design 

Fundamentally, we aim to examine a series of factors that affect the 
rate of knowledge diffusion. As previously reviewed, this includes the 
role of the organizational origin, licensing strategies, complementary 
assets, industry stage, and early-stage professional networks. For the 
research design, we set up a comparative case study that relies on two 
technologies that are similar on key dimensions but also, importantly, 
differ in systematic ways. Thus, our empirical approach deviates from 
prior work that often employs a ceteris paribus framework by examining 
one key explanatory factor while holding everything else constant. Here, 
we aim to examine a multitude of factors that we posit affect the scale 
and scope of diffusion. The technologies’ common features allow for 
comparability, while critical assessment of their differences helps 
explain any observed divergences in the diffusion trends between the 
two cases. We carefully track both to inform our conclusions. 

In this section of the research design, we provide background on each 
case and illustrate their features. Next, we document the sample, data 
construction, and variables for the empirical analysis tracking diffusion 
trends. In the results section, we present two parts. First, as a baseline, 
we document the scale and scope of diffusion for both technologies 
drawing upon a range of metrics. Second, we examine the systematic 
differences between these two cases with a mixed-methods approach. 
Taken together, these analyses are more inductive by first documenting 
the trends of diffusion followed by a critical assessment to identify the 

range of factors that account for observed divergences. This unique 
approach provides a more comprehensive analysis of the confluence of 
factors that drive knowledge diffusion. 

3.1. Two cases 

We focus on two key techniques in biotechnology: recombinant DNA 
(rDNA) and polymerase chain reaction (PCR). Recombinant DNA en-
ables the transfer of fragments of foreign DNA into other organisms. 
Essentially, it is a process for combining genetic material from different 
sources. The technique involves cutting a loop of bacterial DNA, called a 
plasmid, and then attaching another plasmid with a complementary 
attachment but different DNA. Then, an enzyme called a DNA ligase is 
used to firmly paste the two plasmids together. Finally, the recombinant 
DNA is transferred into a bacterial cell, which quickly replicates and 
thus manufactures copies of the inserted gene. Stanley Cohen and Herb 
Boyer, professors at Stanford University and the University of California 
San Francisco (UCSF) respectively, co-developed this technique in 1973. 
Today, rDNA-based products are widespread in medicine, agriculture, 
and bioengineering and include synthetic insulin, human growth hor-
mone, and insect- and herbicide-resistant crops (Betlach, 2002; Hughes, 
2001). 

Kary Mullis developed the polymerase chain reaction technique in 
1985 while working at Cetus Corporation, an early biotechnology 
company in Emeryville, California (about 10 miles from San Francisco). 
PCR enables the rapid reproduction of precise segments of DNA at an 
exponential magnitude. It is based on the fact that a DNA molecule 
consists of four bases – adenine (A), cytosine (C), guanine (G), and 
thymine (T). These bases always match to the same partner in a double- 
helix structure, such that A and T always pair and C and G always pair. 
The PCR technique involves heating a sample, thus causing the double- 
stranded DNA to separate into single strands. When the sample is cooled, 
short DNA sequences bind to complementary matches on each single 
strand, and, raising the temperature slightly, an enzyme synthesizes new 
DNA strands – with a T to match each A, a G to match each C, and so on. 
Then, the process starts over again. Each cycle doubles the amount of 
target DNA, such that repeated cycles of heating and cooling yield an 
exponential increase in genetic material. The PCR technique is widely 
used in medical, forensic, and applied sciences, with applications 
ranging from gene cloning to diagnostic tests (including those for Covid- 
19) (Rabinow, 1997). 

rDNA and PCR are alike in many respects. Both were developed in 
the San Francisco Bay Area. They are both techniques, rather than 
products per se. Moreover, these two techniques are the bedrock tech-
niques of the entire biotechnology field. Accordingly, they both emerged 
in the earliest years of this industry; most observers characterize the 
1980s as the “birth” of the industry, with rapid growth in the 1990s and 
maturity in the 2000s (Evens and Kaitin, 2015). However, rDNA pre-
ceded PCR by 12 years. Underscoring their importance, each technique 
led to a Nobel Prize less than ten years after the initial invention – in 
1980 for rDNA and in 1993 for PCR. Each technique also was both 
published and patented. Finally, in both cases, the inventing organiza-
tions issued non-exclusive licenses to any organization that wished to 
use the technology. In the case of rDNA, Stanford (which managed the 
license on behalf of itself and UCSF) offered different licensing agree-
ments to different organization types. For-profit licensees paid a small 
up-front fee and a graduated royalty schedule; nonprofit licensees paid 
no royalties (Feldman et al., 2007; Hughes, 2001). In the case of PCR, 
Cetus initially required licensing agreements with an up-front payment 
as well as royalties from both private and public or nonprofit organi-
zations (Feeney et al., 2018). However, in December 1991 Roche ac-
quired ownership of the PCR intellectual property and established a new 
licensing system that more closely matched the Stanford approach. 
Thus, they eliminated up-front fees for academics and nonprofits, and 
reduced the royalty rate to encourage greater use of the technology 
(Fore et al., 2006; Cook-Deegan and Heaney, 2010). 
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While no two technologies are a perfect match on every dimension, 
rDNA and PCR are closely matched technologies along key dimensions – 
and, in fact, prior qualitative work has matched these same two tech-
nologies (Nelson, 2016a). However, rDNA and PCR also have important 
differences. As mentioned previously, rDNA was invented in a university 
setting, whereas PCR was invented in a private startup firm. And while a 
cursory glance at the 12-year difference in timing in inventions may 
appear inconsequential, a more nuanced view is that the industry may 
be at different stages, with more organizations for PCR to diffuse to more 
quickly in the 1980s. Finally, PCR has proven over time to have more 
technological applications than rDNA. These differences have implica-
tions for diffusion that will be explored in the analysis. Table 1 provides 
an overview of the features for these two cases. 

4. Sample 

4.1. Data construction 

We trace the diffusion of rDNA and PCR through publication cita-
tions and patent citations. Regarding the former, the inventing scientists 
published papers that described rDNA and PCR immediately after in-
vention. Thus, Cohen and Boyer first disclosed rDNA in 1973 in an 
article in the Proceedings of the National Academy of Science, and Mullis 
first disclosed PCR in 1985 in an article in Science. To gather publication 
citations, we turn to the SciSearch database, which contains all records 
published in the Science Citation Index and additional records from 
about 1000 other journals. This source covers approximately 8600 
leading journals in science and medicine. SciSearch has broader inter-
disciplinary coverage and more records than PubMed and Scopus for the 
years where our study focuses.1 We download complete information for 
every publication that referenced one of the original publications. 

Turning to patents, acting on behalf of itself and UCSF, Stanford 
University applied for three patents on rDNA. One patent (US Patent 
4,237,224) covered the technique itself, while two additional patents 
(4,468,464 and 4,740,470) covered products tied to eukaryotic and 

prokaryotic cells. Similarly, Cetus applied for three patents tied to PCR 
(4,683,195; 4,683,202; and 4,965,188). We employ a custom data- 
scraper to download from the US Patent and Trademark Office web-
site the complete information for every patent that referenced one of 
these original patents. We limit our time series to 15 years after the date 
of the initial invention, thus matching the most liberal window in similar 
studies; both Jaffe et al. (1993) and Trajtenberg et al. (1997) employ a 
14-year citation window. For rDNA, the 15-year panel spans 1973 to 
1987; and for PCR, the 15-year panel spans 1985 to 1999. Appendix 
Table A1 shows the breakdown of the original publications and patents 
for each technology. 

One concern with the use of citations to track diffusion is that, over 
time, people may no longer cite foundational work because they assume 
that everyone knows it (c.f., Lederberg, 1977; Nelson et al., 2014). 
Merton (1979) describes this tendency as “obliteration by incorpora-
tion.” The specific concern is that obliteration by incorporation may not 
show the full extent of diffusion as time passes and knowledge is 
“incorporated.” Moreover, recent work by Myers and Lanahan (2021) 
reports that citation paper trails may account for only about half of 
knowledge spillovers. 

To address these concerns of undercounting, we assemble a second 
patent database using patent filings from PatentsView (Bloom et al., 
2013). Given their significant novelty, both PCR and rDNA defined new 
US mainline sub-classes. This dataset consists of all patents that reference 
either of these two specific sub-classes. We report the results with this 
separate sample as an empirical extension. 

Next, we turn to coding both the publications and patents. We begin 
by coding each organization with a unique identifier. Often, a single 
organization would appear in multiple different formats even within a 
database. For example, Stanford University might be listed as “Stan-
ford,” “Stanford University,” “The Leland Stanford Junior University,” 
“The Board of Trustees of Stanford University,” or any number of other 
permutations. Thus, we use repeated sorting, text string searches, and 
extensive manual reviews to parse organizations and assign a unique 
identifier. We also code each organization by type – university, firm, or 
other – and geocode its location as measured in longitude and latitude. 
We repeat the process of creating unique identifiers for the individuals in 
our dataset. This process is more challenging than in the case of orga-
nizations because publications often list only first initials with a last 
name. Our challenge is disambiguating different individuals that share 
the same initials and last name. In the case of overlapping names, we 
examine organizational affiliations in that same year. If two matching 
names shared the organization in a given year, then we code them as the 
same person. 

4.2. Variables 

Using the aforementioned dataset of publication and patent cita-
tions, we examine knowledge diffusion from multiple angles to assess 
the scale and scope of diffusion and the nature of research production. 
Tracing diffusion from multiple angles allows a more comprehensive 
understanding of diffusion patterns than looking at just one measure, 
such as forward citation counts, alone. Table 2 reports the list of metrics, 
their functional form, and primary form of analysis. For all metrics, we 
estimate activity for both publication and patent application2 activity, 
respectively. 

To assess the scale of activity, first we compute the annual count of 
output. For publications, this includes predominantly peer-reviewed 
journal publications in addition to books, chapters, and conference 
proceedings; for patents, this includes patent application filings. Second, 
we report the annual count of unique organizations engaged in these two 
separate research areas. For patent activity, we draw upon the assignee 
for this organizational measure. Third, with detail on the organizational 

Table 1 
Features of the two cases.   

rDNA PCR 

Year of invention 1973 1985 
Location of 

invention 
San Francisco Bay Area San Francisco Bay Area 

Nobel Prize 1980 1993 
Invention 

disclosure 
Publish first, then patent Publish first, then patent 

Role in 
biotechnology 
industry 

Foundational technology 
for entire industry 

Foundational technology for 
entire industry 

Inventing 
organization(s) 

Universities (Stanford and 
UCSF) 

Firm (Cetus) 

Licensing strategy Non-exclusive – low 
upfront fee and percentage 
of revenues for related 
products 

Non-exclusive – shift from 
emphasis on upfront fee to 
selling complementary assets 

Complementary 
assets 

Initially limited Early development and 
emphasis 

Industry stage Emergence phase – 
invention marks the start of 
the industry 

Emergence phase – invention 
precedes industry shift to 
rapid growth 

Early professional 
networks 

Limited More expansive  

1 Since our interest lies in comparing two technologies, and since these 
technologies are in the same field, we expect alternative databases would yield 
similar results since any database omissions would apply similarly to both 
technologies. 2 Results are robust to patent grant records. 
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type — university, firms, and other — we compute the ratio of output 
produced only within universities, only within firms, and by multiple 
organizational types, respectively. Fourth, to examine the geographic 
reach of diffusion, we compute the distance in kilometers between the 
follow-on research project and original invention. For publications or 
patent records with multiple organizations, we compute the average 
distance per output. 

To assess the scope of knowledge diffusion, we rely on prominent 
classification schemes that identify the set of knowledge domains where 
each research project contributes. For publications, database indexers 
assign specific concepts to each paper, which reflect particular topics 
within wider subject areas. For example, concepts in our publication 
database include “Agronomy,” “Blood and Lymphatics,” and “Enzy-
mology.” For patents, USPTO officers assign the range of US Classes. We 
use these discretized knowledge domains first to estimate the count of 
unique domains among the corpus of follow-on research. This provides a 
metric to assess the reach of influence of the initial invention across 
knowledge space. Second, we compute the annual average count of 
domains per output to assess the breadth (or focus) of the follow-on 
study. 

Lastly, to assess the nature of research production, we rely on detail 
of the scientists. For publications, we assess authors; for patents, we 
assess inventors. First, we estimate the average size of the collaborative 
team for each output. Second, we identify output where the set of sci-
entists are new entrants to the research network. This builds upon an 
extensive literature that disambiguates the nature of connections in 
professional networks (e.g., Ahuja, 2000; Rosenkopf and Padula, 2008). 
Specifically, these scientists do not have prior collaborative ties with 
other scientists who previously published or patented in the respective 
technology field. We define this variable as New Entrants. Third, while 
we predominantly assess publication and patent activity separately, we 
identify the set of scientists that produce both publications and patents 
within each technology. In contrast to the other metrics that report at 
the output level (publications or patents), this variable reports at the 
individual level. We define these scientists as Joint Scientists. 

5. Results 

We present the results in two parts. In Part 1, we document the scale 
and scope of diffusion for both technologies, drawing upon the range of 

metrics outlined in Table 2. Importantly, this offers a baseline for un-
derstanding how the diffusion trends compare and contrast across the 
two cases. In Part 2, we examine systematic differences in these two 
cases that may account for the diverging trends of diffusion observed in 
Part 1. In doing so, we integrate a mixed-methods approach to inform 
our assessment and conclusions. 

5.1. Results Part 1: Diffusion Trends 

As a baseline, Fig. 1 reports trend lines of the total unique organi-
zations across both publication and patent activity by technology (rDNA 
and PCR). A distinct pattern emerges – the trend line for rDNA (thinner 
red) is relatively flat across the 15-year panel, while the trend line for 
PCR (thicker blue) illustrates a precipitous increase over the first five 
years of the panel. Moreover, the number of unique organizations 
engaged in the knowledge diffusion of PCR exceeds rDNA by a sub-
stantial amount over the duration of the extended panel. 

To unpack this finding further, we report a range of statistics to 
compare the diffusion of rDNA and PCR. Moreover, we split the sample 
and report diffusion trends based on publication and patent activity, 
respectively. For reference, Table 2 reports the primary form of analysis 
for each metric to assess the differential trends across the two technol-
ogies; this includes a combination of descriptive statistics, comparison of 
means, and trend lines. In line with Table 2, we assess diffusion along 
three prominent angles: (i) Scale of Activity; (ii) Scope of Knowledge 
Diffusion; and (iii) Nature of Research Production. We report each in turn. 

5.1.1. Scale of Activity 
Table 3 provides baseline descriptive statistics in Panel A. The first 

follow-on publication for rDNA and PCR occurred the same year as the 
initial invention (1973 and 1985, respectively).3 However, the first 
follow-on patent application filing lagged five years for rDNA and two 
years for PCR.4 

Panels B and C provide additional statistics and the comparison of 
means for metrics of scale based on activity up to 10 years following the 
initial invention. Panel B reports for publication activity; Panel C reports 
for patent application activity. In terms of output, PCR reports sub-
stantially higher levels of activity in terms of output, scientists, and 
organizations, exceeding the level of diffusion for rDNA by over ten 
times along most metrics. In terms of organizational type, we find evi-
dence that rDNA-based collaborations producing follow-on publication 
output are most likely only from universities (65 percent), which aligns 
with the original source of invention. This ratio exceeds the comparable 
metric for PCR- based collaborations (41 percent); this difference is 
statistically significant. As an aside, however, it is worth noting that the 
PCR statistic also reveals a prominent trend of diffusing to university 
settings (even though it is a firm invention). This stands in contrast to 
prior expectations that knowledge generally flows from university to 
firm settings (Lööf and Brostrom, 2008; Szücs, 2018). Moving on, the 
ratio of PCR- based collaborations comprised of co-authoring teams from 
multiple types of organizations (34 percent) exceeds the comparable 

Table 2 
Metrics of diffusion.  

Variables Functional Form Primary Form of Analysis 

Scale of Activity   
Output 

∑
Outputit  Annual trend lines 

Organization 
∑

Organizationimt  Annual trends lines 
University only ∑

Outputilt∑
Outputit  

Comparison of means Firm only 
Multiple types 

Geographic 
Distance 

km from Originit  Fitted trend lines with confidence 
intervals 

Scope of Knowledge Diffusion  
Unique Domains 

∑
Domainikt  Annual trends lines 

Breadth of Study ∑
Domainit  Fitted trend lines with confidence 

intervals 
Nature of Research Production  

Collaboration ∑
Scientistsit  

Fitted trend lines with confidence 
intervals 

New Entrant 
∑

New Entrantit  Annual trends lines 
Joint Scientist Jointjt  Comparison of means 

Notes: i denotes form of research production – publication or patent application, 
respectively; t denotes panel following initial invention (1 ≤ t ≤ 15); j denotes 
individual conducting research – author or inventor; k denotes the distinct 
concepts (publications) or US Classes (patents); l denotes organizational type – 
university, firm, and multiple, respectively; and m denotes the distinct 
organization. 

3 We acknowledge a discrepancy in the data between Table 3 and Fig. 1. 
Notably, the trend line for PCR does not capture the first follow-on publication 
in 1973. This coincidentally is due to incomplete data for this record. This first 
follow-on publication was a News Item in Science. As an extension, we examine 
the completeness of the bibliometric records for the full sample. We report the 
results in Appendix Table A2. With the exception of Publication Concepts, the 
level of missingness is minimal and thus ignorable (missing records account for 
less than 0.01 percent of sample). For Publication Concepts, we report a higher 
level of missingness; however, the proportion of missingness does not appear to 
differ systematically across the rDNA or PCR samples. We conclude the records 
are missing at random.  

4 For all trend lines, we trace activity over the first 15 years following the 
initial discovery. Given the lag for patent application activity for PCR and 
rDNA, the trend lines begin at panel five for rDNA and panel two for PCR. 
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rDNA-based metric (10 percent); this difference is statistically signifi-
cant. Interestingly, we do not report statistically significant differences 
in means along these measures for the patenting sample. Lastly, for 
publication activity, we find that rDNA-based authors are more likely to 
publish in high-ranked scholarly journals (13 percent) compared to 
PCR-based authors (two percent). This initial set of results suggests that 
PCR diffused at a greater pace than rDNA. 

Fig. 2 reports an additional set of trend lines to illustrate differences 
in the scale of diffusion between the two technologies. For all primary 
figures, the 15-year trend lines for rDNA (PCR) diffusion are reported by 

the thinner red (thicker blue) lines; moreover, the left column reports 
publication-based activity, while the right column reports patent 
application-based activity. Panels A and B in Fig. 2 report the trend lines 
of annual activity as measured by total output and unique organiza-
tions.5 In alignment with Fig. 1, these trends illustrate that the scale of 
PCR follow-on activity exceeds rDNA follow-on activity for both modes 
of production (publications and patents). The initial output trends re-
ported in Panel A appear to be comparable; however, PCR follow-on 
activity demonstrates a precipitous increase between five and ten 
years following the initial invention. We do not find a similar increase 
for rDNA. The rDNA trend line is relatively flat across panels. 

Panel C in Fig. 2 provides an alternative metric of scale based on the 
geographic spread of research activity. Given that we construct the mean 
distance per output, we report the fitted trend lines with confidence 
intervals to account for the annual distribution of the metric. The results 
for publication activity for both rDNA and PCR report positive slopes – 
the distances of diffusion increase over time. However, PCR follow-on 
activity takes place at greater distances from the original invention 
compared to rDNA follow-on activity. In terms of actual distance, PCR 
reports a greater international impact than rDNA, with an average dis-
tance in the latter half of the panel exceeding 6500 km. 

As for patenting activity, we report a contrasting trend to the pub-
lication trends. First, the trend lines are downward, suggesting that the 
distance among follow-on activity decreases over the panel. Second, the 
average distance is closer to the origin than the publication results (and 
appears to reflect domestic rather than international impact).6 Third, the 
differences between the two inventions are negligible. We explore these 
results further by stratifying the sample by organization type – only 
firms, only universities, and multiple types. A clear trend emerges: 
output produced only by firms drives the downward slope for the rDNA 
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Fig. 1. TOTAL UNIQUE ORGANIZATIONS Notes: In contrast to Table 1, total unique organizations is based on publication and patent activity
∑

Organizationmt , where m 
denotes the distinct organization across entire sample and t denotes panel following initial invention (1 ≤ t ≤ 15). 

Table 3 
Descriptive statistics.  

Variables rDNA PCR t-stat  

Panel A: Baseline Descriptive Statistics    

Year of initial invention 1973 1985 – – 
First follow-on publication 1973 1985 – –  

[1] [1]   
First follow-on patent application 1977 1986 – –  

[5] [2]   
Total Unique Organizations [by t = 10] 173 1778 – – 

Panel B: Publications [by t=10]    

Output 384 3889 – – 
Scientists (Authors) 732 12,012 – – 
Organizations 148 1672 – – 
University only 0.65 0.41 8.73 *** 
Firm only 0.07 0.05 1.03 n.s. 
Multiple types 0.10 0.34 − 13.55 *** 
High Quality Publication 0.13 0.02 5.90 *** 

Panel C: Patents [by t = 10]     

Output Count 67 778 – – 
Scientists (Inventors) 114 922 – – 
Organizations (Assignees) 32 198 – – 
University only 0.19 0.18 0.30 n.s. 
Firm only 0.70 0.62 1.39 n.s. 
Multiple types 0.06 0.08 − 0.73 n.s. 

Notes: Panel denoted in brackets. *** p < 0.01, ** p < 0.05, * p < 0.1. Not sta-
tistically significant (n.s.). 

5 Refer to Appendix Figure A1 Panel A for cumulative (rather than annual) 
trend lines.  

6 We assume that R&D occurs at the assignee’s location and thus document 
distance based on the assignee’s location. However, it is feasible that some 
organizations are building on their technology in different locales (or even 
countries) but only patenting in certain jurisdictions. This is a limitation of the 
data. 
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Panel C: Geography 
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Notes: Trend lines based on annual activity. Publication trends presented in left column; patent application trends presented in right column. Panel A reports count of 
publications and patent applications; Panel B reports count of unique organizations; and Panel C reports trend line with confidence intervals of mean distance (km) to 
origin of initial invention. 
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sample for both patents and publications.7 In other words, follow-on 
activity from firms building upon the rDNA invention decreases in 
geographic spread over time. This may reflect the earlier stage of the 
biotech industry when rDNA was discovered or the potentially smaller 
market size for rDNA versus PCR. We explore this result further in Part 2. 
Interestingly, the downward slope is robust for PCR patent output 
regardless of organization type. 

The variability of these findings demonstrates the importance of 
considering multiple diffusion factors and measures. For example, 
tracing patents alone would not have indicated any difference in 
geographic scale of diffusion across the two technologies (Fig. 2 Panel 
C); moreover, the share of assignee organizations are generally com-
parable (Table 3 Panel C). Multiple measures of diffusion produce a 
more complete assessment of the trends. 

5.1.2. Scope of Knowledge Diffusion 
Fig. 3 illustrates differences in the scope of knowledge diffusion. 

Panel A reports the unique count of knowledge domains among the set of 
follow-on publications and patent applications, respectively.8 For both, 
the corpus of activity that builds upon PCR encompasses a larger 
knowledge space. While rDNA demonstrates broader reach for 

publication activity over the initial four years of the panel, the differ-
ences flip and are pronounced in the extended panel. 

Panel B reports the fitted trend lines with confidence intervals for the 
breadth of study. Effectively, this variable reports how broad or narrow 
the follow-on studies are. For publication activity, both technologies 
report negative slopes, indicating that the studies become more focused 
over time. This trend likely reflects greater application and commer-
cialization of the technology. However, the slopes are statistically 
different over the entire panel. The rDNA trend reports greater breadth 
over the entire panel; in contrast, PCR studies are more focused, with 
approximately four fewer domains per study. For patenting activity, the 
differences are not as pronounced. PCR-based follow-on patents are 
slightly more focused eight to eleven years after the initial invention. 
Collectively, this set of results suggests contrasting differences between 
these two technologies. Overall, PCR diffuses to a broader knowledge 
space. However, the follow-on output is generally more focused, which 
likely reflects more directed application and subsequent commercial 
impact (Sørenson & Stuart, 2000; Sorenson et al., 2006). 

5.1.3. Nature of Research Activity 
We now turn to the nature of research production across the two 

diffusion trajectories by examining the scientists. Panel A in Fig. 4 re-
ports the average number of co-authors or co-inventors per output. We 
report divergent trends across both modes of production. Not only are 
co-authoring teams larger for PCR follow-on studies compared to rDNA 
follow-on studies, but also the size of the team increases over the panel. 
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Notes: Trend lines based on annual activity. Publication trends in left column; patent application trends in right column. Panel A reports count of unique concepts or 
US classes; Panel B reports trends with confidence intervals of mean range of concepts per publications or US classes per patent. 

7 Results available upon request.  
8 Refer to Appendix Figure A1 Panel B for cumulative (rather than annual) 

trend lines. 
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For publication activity, the PCR-based team increases from 4.5 co- 
authors to five; for patenting activity, the PCR-based team increases 
from 2.8 to 3.2 inventors. However, for rDNA follow-on studies, the 
collaboration size decreases over the panel. The difference is significantly 
different across the entire panel for publication activity and statistically 
different for the latter part of the panel for patent activity. Not only does 
Table 2 report that the entire network of scientists is larger for PCR 
(12,012 unique authors and 922 unique inventors by 10 years post- 
initial-invention) compared to rDNA (732 unique authors and 114 
unique inventors), but also production takes place with larger teams. In 
turn, this finding suggests that if larger teams are involved in follow-on 
activity, these larger teams are embedded in larger individual networks 
of scientists, which would further enhance diffusion. 

To examine this last claim more critically, we assess the scientific 
network. Specifically, we examine the extent to which the network is 
based on scientists with prior collaborative ties to those producing 
research in the respective field or rather among new entrants who have 
no prior collaborative ties to scientists in the network. The trend lines in 
Panel B of Fig. 4 illustrate similar trends to the scale metrics. The 
number of new entrants for the PCR sample substantially exceeds the 
number for the rDNA. This holds across both publication and patenting 
activity. This suggests that PCR attracted greater numbers of scientists 
without prior ties to build upon the initial invention, whereas the 
diffusion of rDNA was more reliant on activity led by scientists with 
prior collaborative ties. 

As a final assessment, we also identify the subset of scientists that 
both publish and patent within each technology (Joint Scientists). 
Twenty-seven scientists (2.7 percent) meet this specification in the rDNA 
sample, while 370 (2.1 percent) meet this specification in the PCR 
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Fig. 4. NATURE OF RESEARCH ACTIVITY 

Notes: Trend lines based on annual activity. Publication trends presented in left column; patent application trends presented in right column. Panel A reports trend 
line with confidence intervals of mean coauthors per publications or co-inventors per patent; Panel B reports count of new entrants. 

Table 4 
Comparison of means – joint scientists.   

Other Joint t-stat  

rDNA     

Publication Count 1.36 3.81 − 1.55 n.s. 
Publication Panel 7.74 6.56 1.45 n.s. 

Observations 986 27   
Patent Count 1.34 1.56 − 1.26 n.s. 
Patent Panel 10.81 9.22 2.47 ** 

Observations 209 27   

PCR     

Publication Count 1.49 3.30 − 6.05 *** 
Publication Panel 8.84 6.61 14.71 *** 

Observations 16,489 370   
Patent Count 3.23 4.46 − 3.59 *** 
Patent Panel 11.28 8.72 15.09 *** 

Observations 1814 370   

Notes: Data based on 15-year panel following initial invention. *** p < 0.01, ** p 
< 0.05, * p < 0.1. Not statistically significant (n.s.). 
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sample. Table 4 reports a series of comparison of means to assess their 
activity compared to the set of only authors or only inventors. For rDNA, 
we report one difference: Joint Scientists are more likely to produce 
patents approximately 1.6 years earlier than those that only patent. We 
find evidence of greater differences for PCR. In this set, Joint Scientists 
are not only more likely to produce work at an earlier stage after the 
initial invention, but they are also more likely to produce more in terms 
of publications and patents. 

A summary of our results appears in Table 5. As the table shows, by 
most every metric – including those tracing the Scale of Diffusion, the 
Scope of Diffusion, and the Nature of Research Activity – the diffusion of 
PCR exceeds that of rDNA. 

5.1.4. Robustness cCheck 
For the primary analysis, we track knowledge diffusion by analyzing 

the corpus of publications and patents that reference the original in-
vention (refer to Appendix Table A1). While tracing citations is a 
prominent method to examine diffusion (e.g., Jaffe et al., 1993), we also 
examine diffusion through tracing references to specific patent classes. 
As a function of the research design, each invention was so ground-
breaking and foundational that it was assigned its own patent sub-class. 
For rDNA, the Cohen- Boyer patent (patent # 4,237,224) was granted 
the United States Patent Classification (USPC) sub-class ‘435/69.1′

(Feldman and Yoon, 2012; Feldman et al., 2015). For PCR, the main 
patent (patent #4,683,202) led to the establishment of the USPC class 
‘435/91.2’ (Clayton, 2020). For this extension, we rely on the patent 
class to identify the corpus of patents within each sub-class. Of note, we 
are unable to assess this robustness measure for publication activity 
given the structure of the schematic for knowledge domains. 

We relied on patent filings from PatentsView to construct this 
additional dataset. This robustness check uses the sample of all granted 
patents with application dates through the 15-year panel with the USPC 
mainline sub-classes ‘435/69.1’ for rDNA (338 patents) and ‘435/91.2’ 
for PCR (2203 patents). This extension shows comparable trends to the 
main results for both rDNA and PCR, demonstrating the robustness of 
using patent classes as a diffusion measure (Appendix Figure A2). 

5.2. Results Part 2: Factors of Diffusion 

The results from Part 1 illustrate that the diffusion of PCR spreads 
wider, faster, and farther than rDNA by most every metric. As mentioned 
previously, these two cases share common features that allow for 

comparability. However, they also differ in important manners. Here, 
we explore these differences to help understand their divergences in 
diffusion. In this section, we explore five possible diffusion factors: (i) 
Organizational Origin; (ii) Licensing Strategy; (iii) Complementary Assets; 
(iv) Industry Stage; and, (v) Social Networks. 

5.2.1. Organizational Origin 
Despite the fact that both inventions were discovered about 10 miles 

apart, in the same industry, and accruing notable notoriety, they have 
different organizational origins. rDNA was discovered within a univer-
sity setting, whereas PCR was discovered at a firm. Given the association 
of universities with public science and of firms with private science as 
described in Section 2, we have strong theoretical grounds on which to 
expect that diffusion patterns from universities and firms will look 
different. Because universities subscribe to public science and because 
public science facilitates diffusion, university-generated knowledge 
might be expected to diffuse more quickly, across a wider geography, to 
more organizations and, therefore, to a wider range of applications. In 
contrast, because firms subscribe to private science and because private 
science inhibits diffusion, firm-generated knowledge might be expected 
to diffuse less quickly, within a more constrained geography, to fewer 
organizations, and, therefore, to a narrower range of applications. 

Yet, we find evidence to the contrary. The baseline result of the firm- 
based invention (PCR) diffusing at a significantly greater degree than the 
university-based invention (rDNA) stands in contrast to these expecta-
tions. The finding that rDNA-based authors are more likely to publish in 
high-ranked scholarly journals than PCR-based authors is in alignment 
with our initial expectations around university publishing and prestige. 
However, when considering the broader set of results, the a priori 
expectation that firm competitive dynamics will reduce diffusion as 
compared to university diffusion does not appear to hold. The compar-
isons and statistics indicate different factors are involved in rDNA and 
PCR diffusion that do not correspond to a simplistic dichotomy of public 
versus private settings, or open versus closed science. Instead, we must 
explore additional explanations. 

5.2.2. Licensing Strategy 
Another explanation for the diffusion differences ties to the early 

licensing strategy for PCR. As noted in Section 3, Cetus initially had a 
more restrictive strategy; however, six years after the invention, Cetus 
sold the rights for PCR to Hoffman-La Roche (Roche), which adopted a 
liberal strategy that was comparable to Stanford’s approach to rDNA 
(Fore et al., 2006). Specifically, Roche pursued a revenue model that was 
not dependent on licensing the PCR method per se but rather on selling 
the reagents and thermocyclers required to carry out the method 
(Cook-Deegan and Heaney, 2010). In other words, their licensing 
strategy explicitly relied on their development of complementary assets, 
and the change in licensing strategies may explain why the PCR slope 
increases in the panel when it does. 

Interestingly, this early discrepancy in licensing approaches high-
lights the comparability and subsequent validity of the research design. 
If PCR’s licensing was overly restrictive, then rDNA should outperform 
PCR during PCR’s early and more restrictive years; yet, it does not. As 
our analysis demonstrates, even in the face of a more restrictive initial 
licensing policy for PCR, PCR still outpaces the diffusion of rDNA along 
multiple diffusion metrics. In this way, our use of PCR as a comparator 
also reflects a conservative test since, if anything, rDNA should have had 
an advantage. As with the organizational origin, this factor does not 
provide a complete understanding of the divergence in diffusion. So 
again, we explore additional factors. 

5.2.3. Complementary Assets 
Another potential explanation for PCR’s greater diffusion concerns 

the development of complementary assets around each technology. Both 
rDNA and PCR depended on complementary assets. Specifically, to 
perform rDNA, one needs an appropriate “plasmid” matched to the 

Table 5 
Summary of results.  

Metric rDNA PCR 

Scale of Activity   
Organizations  X 
Output  X 
Scientists  X 
Quality of Journals (pubs only) X  
Geographic Distance (pubs only)  X 

Scope of Knowledge Diffusion   
Knowledge Domains  X 
Breadth of Study X*  

Nature of Research Activity   
Collaborations  X 
New Entrants  X 
Joint Scientists  X 

Notes: “X” indicates which invention – rDNA or PCR – leads in diffusion rate for 
each metric as reported in the primary results. Unless otherwise stated, results 
hold for both publication and patent application trends. Scale of Activity draws 
upon results from Table. 3, Fig. 1 and Fig. 2. Scope of Knowledge Diffusion draws 
upon results from Fig. 3. *For the breadth of study metric, rDNA leads over the 
entire panel for publication activity and only for a portion of the panel for patent 
application activity. Nature of Research Activity draws upon results from Fig. 4 
and Table. 4. 
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desired experimental outcome. Mary Betlach, a technician in Boyer’s 
lab, was one of the people who created and distributed plasmids that 
enabled others to perform rDNA. She also worked with Boyer to 
distribute a two-page handwritten guide on plasmid purification, which 
proved critical towards teaching others how to perform the technique 
(Betlach, 2002). 

In the case of PCR, Mullis’s original demonstration of the technique 
was incredibly time- consuming and laborious, requiring the repeated 
manual heating and cooling of a sample for several hours. Moreover, the 
“polymerase” that Mullis used was not thermostable and was thus 
inactivated during each heating cycle. Cetus thus invested in the 
development of a new thermostable polymerase, isolated a year later, 
and they contracted with equipment manufacturer Perkin-Elmer to 
make a “thermocycler” – a machine that would automatically heat and 
cool a sample and thus automate the procedure. At the same time, 
Perkin-Elmer started an informal newsletter that shared “tips and tricks” 
on how to perform PCR (Rabinow, 1997). Such developments were 
essential towards simplifying PCR and thus enabling its broad diffusion 
(and are a likely explanation for why the diffusion of PCR accelerates a 
couple years after invention). 

The key question, in turn, is whether certain organizations are more 
likely to possess or develop complementary assets that may aid diffu-
sion. Here, the qualitative evidence suggests that firms may be more 
likely to develop such assets. For instance, Betlach, Boyer’s lab techni-
cian, reported that Boyer’s university lab “freely gave out all sorts of 
materials” to perform rDNA. But she also recalled her hesitation to 
continue revising the method: 

My feeling was once I got any given method to the point where I 
could get what I wanted out of it at a reasonable pace, I didn’t want 
to spend any more time working on the methods. I wanted to move 
on and actually do the work (Betlach, 2002). 

In other words, Betlach was primarily focused on doing her own 
research (and that of Boyer’s lab) and not on facilitating the work of 
others. Similarly, referring to the time shortly after invention, Boyer’s 
post- doc Herb Heyneker recalled, “In those days [shortly after the rDNA 
invention], you could not buy your enzymes; you had to make them 
yourself” (Heyneker, 2004). 

Conversely, when an interviewer asked Henry Erlich and Norm 
Arnheim, who played key roles in the development of PCR at Cetus, how 
an academic institution might have approached PCR, they emphasized 
Cetus’s ability and interest in further developing complementary assets: 

Erlich: I think it [PCR] certainly could have been conceived by an 
academic scientist in an academic lab, but I think that it certainly 
wouldn’t have been developed and applied in the same way … one of 
the real virtues of CETUS was the ability to work as part of a complex 
team and draw resources from many different disciplines, so that, as 
we were talking earlier, the initial group that worked on PCR had 
chemists in it and biochemists and geneticists—you know, a small 
group of people with somewhat diverse backgrounds. But clearly its 
ultimate development required access to enzymology, a biochem-
istry lab like David Gelfand’s, it required access to an engineering 
group, which most academic settings wouldn’t have had. In a 
distinction that we were talking about quite a bit earlier where ac-
ademic labs try to do everything from within, I think the kind of 
resources that were required to really develop PCR into a procedure 
that could be used broadly in molecular biology research as well as in 
diagnostics could really only have come in a corporate setting...   

Interviewer: Do you agree with a lot of this, Norm?   

Arnheim: Yes, I think just from a historical perspective, I think most 
academic scientists, or virtually any academic scientist who might 
have thought the technique up and actually have demonstrated it for 
the first time, would have applied it to his specific problem, 

published a paper, maybe thought it was important, but then go on 
and stick to the fundamental problems that scientist was interested 
in. So I think it would have taken a very unusual academic scientist to 
make the commitment, “This has potential for all sorts of things and 
I’m going to try and develop a machine that will automate it, and I’m 
going to try and develop an enzyme that can be utilized in the ma-
chine.” I think all of these things were foreign to the desires of most 
academic scientists (Smithsonian, 1993). 

Erlich and Arnheim thus contend that a firm’s ability to collaborate 
across a wide range of expertise combined with a commitment to 
develop complementary assets can propel diffusion. In other words, 
sharing in and of itself may be insufficient to spur diffusion; it is also 
important to develop and share complementary assets. In turn, because 
universities are not in the business of manufacturing and selling com-
plementary assets, their direct commercialization efforts may reach only 
so far. Of course, in some cases, firms will step into this void by devel-
oping complementary assets for and improving upon technologies 
originating from universities. 

5.2.4. Industry Timing and Market Size 
One potential concern with our research design is that the 12-year 

gap between the invention of rDNA and PCR means that they occurred 
at different points in the biotechnology industry’s life cycle. Although 
both inventions occur during the emergence period for the industry 
(Evens and Kaitin, 2015), this difference in timing may have implica-
tions for the plausible set of inventors and organizations able to build on 
each technology. Specifically, if there were fewer organizations active in 
biotechnology in the 1970s and 1980s, then rDNA may show less 
diffusion simply as a function of this smaller risk set. At the same time, 
the introduction of the Bayh-Dole Act in 1980, which streamlined the 
process of university patenting, may have enabled greater PCR diffusion 
as measured by downstream patents since rDNA initially diffused in the 
pre-Bayh-Dole era whereas PCR diffused entirely in the post-Bayh-Dole 
era. Finally, rDNA and PCR have different applications and thus they 
may address markets of different sizes. Again, these size differences 
could shape diffusion patterns. 

We examine these issues in four ways. First, we provide an assess-
ment of broader market trends for an empirical baseline understanding 
of the industry stage over the study period. Second, we offer two 
empirical extensions to the primary analysis. We re-analyze the diffusion 
trends with proportional distributions and then, separately, examine the 
diffusion trends among universities only. Third, to tackle the potential 
complication of the Bayh-Dole Act, we eliminate universities from our 
sample and examine only firm patenting. Last, we consider the potential 
applications for each product. We discuss each approach in turn. 

In Appendix Figure A3, we examine trend lines on US higher edu-
cation R&D expenditures in the life sciences (Panel A), US doctorates 
granted in the life sciences (Panel B), biotechnology startups (Panel C), 
and biotechnology patent applications (Panel D). Two vertical lines 
indicate the rDNA and PCR invention years (1973 and 1985, respec-
tively). While the four graphs indicate the most expansive period of 
growth in the biotechnology industry occurred in the 1990s, it is clear 
that there are also distinct differences in the industry from when rDNA 
was invented to when PCR was invented. There is a positive slope in all 
four figures indicating a greater amount of R&D expenditures in the life 
sciences, a greater number of life sciences doctoral recipients, a greater 
number of biotechnology startups founded annually, and a greater 
number of biotechnology patent applications. This means that PCR in-
vention had a larger market into which it could diffuse and makes 
market size itself a diffusion factor. 

Given the differences in the early-market stage, we re-analyze our 
primary results. Specifically, we adjust the functional form of the met-
rics for output, organizations, and knowledge domains to proportional 
distributions. These adjusted measures provide a relative comparison 
that controls the total diffusion of each technology and thus highlights 
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when the diffusion of each technology was most prominent. This func-
tional adjustment allows for greater comparability, given the differences 
in timing. Fig. 5 presents the results of trend lines for the proportional 
distributions over the first 10 years of the panel. Across all three panels, 
we identify a common feature – the diffusion of rDNA peaks earlier than 
the diffusion of PCR by approximately two to three years. While the 
diffusion of rDNA was more pronounced (proportionally) immediately 
after the initial invention, the diffusion of PCR took longer to gain 

traction yet sustained more demonstrably. We confirm this assessment 
with an additional analysis where we report the parametric plot with 
confidence intervals to compare cumulative publication and patent ac-
tivity between the two technologies (Appendix Figure A4). For both 
modes of production, we find evidence that the diffusion of rDNA 
accelerated faster than PCR over the first seven years of the panel. This 
qualifies our conclusions to the results reported in Part 1; yet, the main 
finding holds that PCR outpaced rDNA. 

Panel A: Output

Panel B: Organizations

0
.
0
5

.
1

.
1
5

.
2

P
r
o

p
o

r
ti
o
n

 o
f 
P

u
b

li
c
a
t
io

n
s

1 2 3 4 5 6 7 8 9 10

Panel

PCR rDNA

Publication Trend

0
.
0
5

.
1

.
1
5

.
2

P
r
o

p
o

r
ti
o
n

 o
f 
U

n
iq

u
e

 O
r
g
a

n
iz

a
t
io

n
s

1 2 3 4 5 6 7 8 9 10

Panel

PCR rDNA

Publication Trends

0
.
1

.
2

.
3

.
4

P
r
o

p
o

r
ti
o
n

 o
f 
P

a
t
e
n

ts

1 2 3 4 5 6 7 8 9 10

Panel

PCR rDNA

Patent Application Trends

0
.
0
5

.
1

.
1
5

.
2

.
2
5

.
3

.
3
5

P
r
o

p
o

r
ti
o
n

 o
f 
U

n
iq

u
e

 A
s
s
ig

n
e
e

s

1 2 3 4 5 6 7 8 9 10

Panel

PCR rDNA

Patent Application Trends

Panel C: Knowledge Domains

0
.
0
5

.
1

.
1
5

.
2

.
2
5

P
r
o

p
o

r
ti
o
n

 o
f 
U

n
iq

u
e

 C
o
n

c
e
p

ts

1 2 3 4 5 6 7 8 9 10

Panel

PCR rDNA

Publication Trends

0
.
1

.
2

.
3

.
4

P
r
o

p
o

r
ti
o
n

 o
f 
U

n
iq

u
e

 U
S

 C
la

s
s
e
s

1 2 3 4 5 6 7 8 9 10

Panel

PCR rDNA

Patent Application Trends

Fig. 5. Proportion of Total (10-year Panel) Activity 
Notes: Proportion of total (10-year) publication activity in a given year in left column; proportion of total (10-year) patent application activity in a given year in right 
column. Panel A reports output; Panel B reports unique organizations; and Panel C reports unique knowledge domains. 
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Separately, we restrict the sample of follow-on activity to publica-
tions and patents produced only by universities. Universities, in contrast 
to firms, reflect a consistent set of organizations over the timeframe 
since almost no universities in our sample cease to exist or come into 
existence in the 1970s and 1980s; thus, by restricting the sample to 
universities, we hold the risk set of adopting organizations constant 
between the two technologies. We report the trend lines to illustrate 
differences in scale across output and organizations in Appendix Figure 
A5. The overall trends are consistent to the primary results as presented 
in Fig. 2 (Panels A and B) and provide greater assurance that the 
divergence in diffusion is not solely a function of the industry life cycle 
and timing of the initial invention. 

To address the possibility that the pre-Bayh-Dole timing of rDNA 
limited its diffusion as reflected in patent citations, we construct a 
sample that eliminates universities. (Bayh-Dole primarily affected uni-
versity patenting, not firm activity and not university publishing.) Ap-
pendix Figure A6 displays the resultant trend lines. As the figure 
illustrates, patenting differences between the technologies remain even 
when universities are eliminated from the sample. Moreover, as is 
evident from Panel A and Panel B in Fig. 2 (which includes universities), 
rDNA patenting actually dips somewhat in 1981 (panel year 9), the year 
after the Bayh-Dole Act passed. Thus, Bayh-Dole does not appear to be 
exerting a major influence on overall patenting patterns. 

Lastly, related is the question of whether PCR or rDNA inherently 
possesses greater potential applications in the market. If this is the case, 
we would expect greater diffusion of the technology with broader ap-
plications and a larger market. Considering the history of PCR and 
rDNA, it does appear that PCR has more applications in a broader array 
of fields.9 PCR is used in medical forensics, molecular biology, phar-
maceuticals, and diagnostics (Cook-Deegan and Heaney, 2010). On the 
other hand, rDNA mainly has applications in genomics and pharma-
ceuticals. In turn, these differences may partly explain why the scope of 
PCR diffusion outpaces that of rDNA. However, equating greater market 
size or market application with greater diffusion would be a simplifi-
cation of how diffusion occurs, as the previous analysis indicates. 

5.2.5. Social Networks 
Intrinsically related to the industry stage is the state of the early 

social networks around the inventors. Later-stage industries will have 
larger networks of scientists. Qualitative histories of both rDNA and PCR 
indicate that, despite initial publications, full and detailed information 
on how to perform each technique was not widely available, especially 
in the period shortly after invention. Thus, social networks may have 
been important towards facilitating diffusion (Abrahamson and Rose-
nkopf, 1997; Nelson, 2016b). Our results are consistent with a scenario 
in which the networks around PCR were more conducive to diffusion 
than those networks around rDNA, and in which networks are critical to 
diffusion. 

Of course, networks are difficult to track. Indeed, two of the most 
common approaches are to examine co-authorship and co-patenting ties, 
as we did (e.g., Ahuja, 2000; Phelps et al., 2012; Singh, 2005). Our 
findings indicate larger teams are involved in PCR follow-on activity. It 
follows that these larger teams would be part of larger individual net-
works of scientists, which would further enhance diffusion.10 But these 
measures may not fully capture social networks. For instance, in the case 
of rDNA, shortly after Herb Boyer co-invented the technique, he taught it 
to Herb Heyneker, who was a post-doc in Boyer’s lab. Heyneker then 
traveled to the Netherlands and to Switzerland, where he taught others 

how to perform the technique. As Heyneker recalled the interactions: 

Pieter Pouwels…wanted to learn the new technology, and made sure 
that he came to my lab in Leiden on a day-to-day basis for up to a 
month to really understand the ins and outs of the technology. Then 
he took it back to [his home institution]. … [Later,] I received an 
invitation from Charles Weissmann to visit his lab in Zurich with the 
goal to help to teach them some of the recombinant DNA technolo-
gies (Heyneker, 2004). 

Thus, Heyneker describes the importance of direct personal contacts in 
facilitating the diffusion of knowledge about how to perform rDNA – and 
thus facilitating the diffusion of the rDNA technique itself. Yet the 
publication records for Heyneker, Pouwels, and Weissmann only 
partially capture these relationships: Heyneker and Pouwels have co- 
authored publications on rDNA, but Heyneker and Weissmann have 
not – even though Weissmann does have numerous publications with 
other co-authors on rDNA and even though he learned the technique 
from Heyneker. Such anecdotes provide evidence that co-publishing 
(and, almost certainly, co-patenting) networks – as we used in our 
study – are insufficient towards understanding the diffusion of knowl-
edge through networks. 

Another possible approach towards unpacking the role of social 
networks is by examining the events that facilitate and reflect such 
networks, such as symposia, guest lectures, and conferences. Of course, 
complete data are difficult to obtain. But as a rough assessment, we 
examine attendee lists for the first conferences on rDNA and on PCR. The 
1973 Gordon Conference on Nucleic Acids was the first professional 
venue at which Cohen and Boyer presented their primary findings 
related to rDNA; the 1986 Cold Spring Harbor Symposium on Quanti-
tative Biology was the first professional venue at which Mullis presented 
his findings related to PCR. 

We draw upon archival records reporting the list of conference at-
tendees to assess attendance overlap with the primary sample of scien-
tists. This enables us to examine the extent to which the conference 
attendees at these pivotal meetings may have facilitated diffusion via 
subsequent publications and patenting. We report the results in Ap-
pendix Table A3 and Appendix Table A4. One-hundred and forty in-
dividuals attended the 1973 Gordon Conference (rDNA), whereas more 
than twice as many people (315) attended the Cold Spring Harbor 
Symposium (PCR). Moreover, the Cold Spring Harbor attendees were 
more likely than the Gordon Conference attendees to subsequently build 
on this work. Approximately 25 percent of Gordon attendees (33 sci-
entists) later published or patented research that built upon the initial 
rDNA invention, whereas approximately 37 percent of Cold Spring 
Harbor attendees (117 scientists) later published or patented research 
that built upon the initial PCR invention. 

Appendix Table A4 reports the results from a series of comparison of 
means between the conference attendees and the remaining larger 
sample of scientists that either published or patented within 15 years of 
the initial invention. Again, we report a stronger effect of diffusion from 
the Cold Spring Harbor Symposium (PCR) than the Gordon Conference 
(rDNA). Conference attendees of the Cold Spring Harbor Symposium 
produced more output (both publications and patents) at earlier panels. 
We also find that Gordon Conference attendees produced output at 
earlier panels; yet, their level of output did not differ from scientists that 
did not attend the conference. We recognize the very limited sample size 
for this latter set of statistics. However, taken together these results 
indicate that attendees of the Cold Spring Harbor Symposium facilitated 
greater levels of early-stage diffusion for PCR. They also provide evi-
dence on the importance of events like conferences towards facilitating 
diffusion. 

5.2.6. Synthesis of Factors 
As the foregoing analysis highlights, no factor on its own is sufficient 

to explain why PCR diffused more broadly than rDNA. Rather, a 

9 We document this empirically in Fig. 3 Panel B for publications when we 
examine the breadth of study. The results are not conclusive for patents.  
10 As an additional empirical extension for Fig. 4 Panel A, research teams with 

prior connections increase the size of their co-authoring network over time 
more than new entrants. This trend holds for publication output. Results are 
available upon request. 
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confluence of factors – including organizational origin, licensing stra-
tegies, complementary assets, industry stage, and social networks – 
shaped the diffusion of each technology. In turn, we illustrate how a 
complete understanding of the breadth and timing of diffusion must 
account for this plurality. 

6. Discussion and Conclusion 

Scholars have devoted considerable attention to understanding the 
diffusion of scientific knowledge and have documented a wide array of 
factors that shape both access and diffusion. Our study marks an attempt 
to understand how these factors work in consort to explain how two 
comparable – and enormously important – biotechnology inventions 
nonetheless exhibit rather different diffusion patterns. Specifically, our 
study makes three key contributions. First, we underscore the impor-
tance of examining multiple factors in order to understand diffusion 
processes. Second, we address the literature on university-firm distinc-
tions, particularly by demonstrating how such organizational distinc-
tions alone may be insufficient and even misleading. Finally, we make a 
case for empirical plurality, encouraging the use of multiple measures 
and approaches in innovation studies. We elaborate on each of these 
contributions. 

6.1. Multiple Factors Underlying Diffusion 

Prior scholarship has identified numerous factors that shape the 
diffusion of knowledge, including organizational origin, licensing terms, 
complementary assets, industry stage, and social networks (e.g., Feld-
man and Kelley, 2006; Fosfuri, 2006; Perkmann et al., 2013; Siegel et al., 
2003). Although this work implicitly recognizes that these factors may 
operate in tandem, our work explicitly demonstrates the importance of 
considering multiple factors simultaneously. Indeed, had we focused on 
a single factor, we might well have reached the wrong conclusion – or, at 
least, an incomplete one – about diffusion trends. For example, had we 
followed a long line of literature in presuming that the university- versus 
firm-origin of rDNA and PCR might forecast their diffusion, we would 
have been wrong (e.g., Henderson et al., 1998; Jaffe, 1989). 

Of course, a key suggestion to emerge from our analysis is that fac-
tors not only act simultaneously, but also interact with one another. For 
example, our qualitative evidence suggests that university-based re-
searchers are not incentivized to develop complementary assets, such 
that organizational origin and the development of such assets are 
intertwined, not independent, factors. Indeed, by highlighting this 
interaction, our work adds a new consideration to studies that question 
whether university-based researchers truly are committed to open 
sharing. Specifically, some work establishes that commercial interests 
may lead to decreased sharing (e.g., Blumenthal et al., 1996), while 
other work highlights how academic interests, too, may be associated 
with secrecy rather than sharing (e.g., Murray, 2010; Nelson, 2016a). 
Our work builds on these insights by suggesting that even if 
university-based researchers openly share findings, as they did with 
rDNA, the lack of incentives to develop complementary assets may 
nonetheless limit diffusion. In other words, diffusion may depend on the 
interaction between organizational norms and complementary assets. 

Other factors that we explore, too, are almost certainly interrelated. 
For example, licensing strategy can shape the generation of comple-
mentary assets, as the experience with PCR highlights. As another 
example, the size of social networks is inherently related to the stage of 
an industry. Rapidly growing industries tend to have more players and, 
therefore, larger – but potentially more disperse – social networks. In 
other words, our study encourages future scholarship to explore both the 
multitude of factors that shape diffusion and the interactions between 
them. In this way, our work encourages researchers to move beyond the 
investigation of diffusion patterns to also explore diffusion processes. 

6.2. Contextualizing University-Firm Distinctions 

Our study holds special relevance for the literature on university 
technology transfer and university-firm distinctions. This literature has 
focused on a wide array of topics, including research spinouts (e.g., Fini 
et al., 2011; O’Shea et al., 2005; Wright et al., 2006), technology transfer 
offices and policies (e.g., Breznitz and Feldman, 2012; Goldfarb and 
Henrekson, 2003; Kenney and Patton, 2009; Siegel et al., 2003), and 
regional ecosystems (e.g., Clarysse et al., 2014; Kenney, 2000). One 
undercurrent of some of this work is the presumed openness of univer-
sities as opposed to commercial firms, which could lead to increased 
diffusion from universities; if universities are more open than firms, then 
knowledge generated in universities might spread faster and wider. Our 
study lacks the counterfactual to test this assertion directly; we cannot 
say how PCR might have diffused had it been invented in a university or 
how rDNA might have diffused had it been invented in a firm. Yet, the 
fact that we demonstrate how a firm-invented technology, PCR, spreads 
more widely than a comparable university-invented technology is 
instructive. First, it challenges the idea the firms are “closed.” Indeed, 
prior work by Hicks (1995), Nelson (2016a), Owen-Smith and Powell 
(2004), and others demonstrates that firms can, in fact, be quite open 
with their work. Even in their foundational work on public versus pri-
vate science, Dasgupta and David (1994) distinguish between the logics 
that guide an individual researcher and the organizations, like univer-
sities and firms, that have been the focus of much prior scholarship. They 
write, “the same individual, we suppose, can be either [publicly- or 
privately-oriented], or both, within the course of a day” (Dasgupta and 
David, 1994, p. 395). In other words, the proclivities of individuals in 
particular moments may be just as influential as the kind of organiza-
tions for which they work (see also Fini and Lacetera, 2010). 

Second, and building on the point above regarding plurality, diffu-
sion appears to be dependent on a wide array of factors, and the type of 
inventing organization may not be the most important among them. In 
fact, as our discussion of complementary assets highlights, firms may be 
advantaged in some ways (and, of course, disadvantaged in others). 
Collectively, these insights do not aim to minimize or even challenge the 
important work on university-firm distinctions; obviously, universities 
and firms vary along a number of dimensions. But they do suggest that 
simple university-firm dichotomies are likely to be inadequate for un-
derstanding knowledge diffusion processes. 

6.3. Measurement Plurality 

Finally, our work holds important methodological implications. In 
the interest of completeness, we trace diffusion through publication ci-
tations, patent citations, and the growth of patent classes. Our work thus 
enables us to compare across these measures and to demonstrate the 
importance of using multiple measures to paint a complete picture of 
diffusion. For instance, had we only traced publication citations and not 
patent citations, we would have concluded that diffusion trailed off for 
PCR as compared to rDNA around panel year seven (refer to Figs. 2 and 
4). In contrast, patent citations indicate continued increases in magni-
tude through year 11 for PCR. Even more notably, had we traced only 
patent citations, we would have underestimated the divergent trends in 
diffusion. Moreover, we would have concluded that the geography of 
diffusion contracts over time, when the publication data clearly show 
increased geographic spread. 

Patent and publication citations also depict different diffusion pat-
terns in terms of the types of organizations involved, breadth of study, 
and composition of inventors. For example, patent application trends 
indicate the breadth of study of follow-on PCR patents increases over the 
panel, while publications indicate that the breadth of study decreases. 
And while the composition of new rDNA entrants is again relatively flat 
over time, publication trends would lead us to believe that PCR’s new 
entrant composition declined over time, while the patent application 
trends show an increased new entrant pool. Taken together, the different 
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measures reveal that we would have dramatically understated and 
mischaracterized the differences in diffusion trends had we relied on a 
more limited set of metrics, as other studies have done. By illustrating 
how different measures can amplify or obscure different organizations 
and trends, our work thus adds to a growing chorus of work that en-
courages multiple measures of innovation and comparison across these 
measures (Feldman and Lowe, 2015; Fini et al., 2018; Nelson, 2009). 

In addition, our work highlights the potential gains from employing a 
mixed-methods approach to the study of scientific practices (Bansal and 
Corley, 2011; Koppman and Leahey, 2019). Indeed, such an approach 
may be the only way to fully uncover and examine the multitude of 
factors that shape diffusion in particular cases. At the same time, even 
our use of this approach is limited. For example, it is difficult for us to 
disentangle which of the factors that we identify are more or less 
influential – and when – in shaping diffusion patterns. Such observations 
underscore that even as our work serves as a call for plurality – of 
measures, approaches, and factors – it also unearths related challenges. 

6.4. Limitations 

Our work faces a number of limitations, which suggest possibilities 
for future research. First, and most obviously, we consider only two 
technologies. Future work might expand this by utilizing twin or 
simultaneous discoveries to track larger trends. Though scaling the 
number of technologies would likely yield a tradeoff in the granularity of 
tracing diffusion, a set of recent studies has started to employ this 
methodological approach (Bikard, 2020; Hill and Stein, 2019). Second, 
we focus only on biotechnology and, within biotechnology, only on 
techniques (as opposed to products). Biotechnology is enormously 
consequential, both economically and socially, and prior work indicates 
that it is a focal area for university knowledge transfer. Nonetheless, it is 
possible that processes look different for products and/or in different 
fields. Future research, therefore, might fruitfully compare and contrast 
across fields. Third, the techniques that we investigated are now decades 
old. This selection enabled us to trace diffusion over many years and to 
control for more recent changes in university technology-transfer ar-
rangements and policies. Yet, the point remains that the biotechnology 
industry, university commercialization, and university-firm collabora-
tion patterns have changed substantially (Bercovitz and Feldman, 2008; 
Perkmann et al., 2013). Finally, beyond the five factors that we consider, 
there may be other factors that influence diffusion – particularly if an 
analysis is focused on other industries, time periods, and/or geogra-
phies. Thus, future work may well move beyond our analysis to uncover 
and examine an even wider range of factors and relationships between 
them. 

Ultimately, our work suggests that despite much insight into 
knowledge diffusion, there remains much to discover. Given the scale 
and scope of challenges facing the world, better understanding the dy-
namics of diffusion remains an important task. 
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