Solutions to selected homework problems. Sections 4.2-4.3

4.2.44. Let \(n \) denote how many cents each child was given. Then \(n \equiv 13 \equiv 3 \pmod{5} \), \(n \equiv 3 \pmod{6} \), \(n \equiv 2 \pmod{11} \), and \(300 \leq n < 600 \). We can look for a solution in the form \(n = 5 \cdot 6 \cdot x + 5 \cdot 11 \cdot y + 6 \cdot 11 \cdot z \). Then we get \(z \equiv 3 \pmod{5} \), \(y \equiv 5 \cdot 11 \cdot y \equiv 3 \pmod{6} \), \(5 \cdot 6 \cdot x \equiv 2 \pmod{11} \), i.e., \(-3x \equiv 2 \pmod{11} \). The last congruence has a solution \(x \equiv 3 \pmod{11} \). Thus,

\[
 n \equiv 5 \cdot 6 \cdot 3 + 5 \cdot 11 \cdot 3 + 6 \cdot 11 \cdot 3 \equiv 453 \pmod{5 \cdot 6 \cdot 11}
\]

The inequalities on \(n \) imply that \(n = 453 \).

4.2.51. First, pick \(k \) distinct primes \(p_1, \ldots, p_k \). Then apply the Chinese theorem to find \(n \) such that \(n \equiv -1 \pmod{p_1^2} \), \(n \equiv -2 \pmod{p_2^2} \), \ldots, \(n \equiv -k \pmod{p_k^2} \). Then each of the numbers \(n+1, n+2, \ldots, n+k \) will not be square free (since \(n+i \) is divisible by \(p_i^2 \)).

4.3.16. Since \(\phi(25) = 20 \) we have

\[
 9^{13} \equiv 9^{3} \equiv 27^2 \equiv 2^2 \equiv 4 \pmod{25}.
\]

4.3.24. 20! is divisible by 3 and by 7, hence, it is divisible by 21, since 3 and 7 are relatively prime.

4.3.34. Let \(n \) be the order of \(a \) modulo \(b \). Then \(a^n \equiv 1 \pmod{b} \). Hence,

\[
 c^n \equiv (a^k)^n \equiv (a^n)^k \equiv 1 \pmod{b}.
\]

Hence, the order of \(c \) modulo \(b \) does not exceed \(n \).

4.3.39. For \(x = ca^{\phi(b)-1} \) we have

\[
 ax \equiv ca^{\phi(b)} \equiv c \pmod{b}
\]

by Euler’s theorem.

4.3.49. Let us denote \(d = (j, p-1) \), \(n = (p-1)/d \). We claim that for an integer \(m \) one has \((p-1)|mj \) if and only if \(n|m \). Indeed, \((p-1)|mj \) if and only if \(\frac{p-1}{d}|m\frac{j}{d} \), which is equivalent to \(\frac{p-1}{d}|m \) (since \((\frac{p-1}{d}, \frac{j}{d}) = 1 \)).

Now recall that \(a^{mj} \equiv 1 \pmod{p} \) if and only if \(mj \) is divisible by the order of \(a \) (Theorem 4.6). Thus, \(a^{mj} \equiv 1 \pmod{p} \) if and only if \((p-1)|mj \), i.e., \(n|m \). Thus, \(n \) is the smallest number such that \((a^j)^n \equiv 1 \pmod{p} \), so by definition, \(n \) is the order of \(a^j \).