PRACTICE PROBLEMS FOR FINAL EXAM

1. Solve the following recurrence relations:
(a) $a_{n}=5 a_{n-1}+6 a_{n-2}, n \geq 2, a_{0}=0, a_{1}=1$.
(b) $a_{n}=2 a_{n-1}-3 a_{n-2}, n \geq 2, a_{0}=1, a_{1}=1$.
(c) $a_{n}=-3 a_{n-1}+10 a_{n-2}, n \geq 2, a_{0}=2, a_{1}=1$.
2. Let A_{n} be the set of binary strings of length n which do not contain the string 001 . Find and solve a recurrence relation for $a_{n}=\left|A_{n}\right|$.
3. How many full binary trees are there on $2 n+1$ vertices?
4. Let G be the undirected graph given below.

(a) Find the number of simple paths from a to b.
(b) Find all cycles starting at a.
(c) Determine number of vertices, edges, and regions and show that your answers satisfy Euler's Theorem.
(d) Find a dual graph.
5. (a) How many edges does the graph K_{9} have?
(b) Find the maximum length of a cycle in K_{9}.
(c) Find the maximum length of an open simple path in K_{9}.
6. For which n does the complete graph K_{n} admit an Euler cycle?
7. For which n does the complete bipartite graph $K_{n, n}$ admit an Euler cycle?
8. Let $G=(V, E)$ be a loop-free connected graph with $V=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$, where $n \geq 2, \operatorname{deg}\left(v_{1}\right)=1$ and $\operatorname{deg}\left(v_{j}\right) \geq 2$ for all $2 \leq j \leq n$. Prove that G must have a cycle.
9. Find the number of distinct Hamilton cycles in the complete bipartite graph $K_{n, n}$, where $n \geq 2$.
10. Write the expression $(x+1)\left(x^{2}-x+1\right)-\left(x^{3}+1\right)$ in Polish notation, using a rooted tree.
11. (a) Find a rooted binary tree corresponding to the algebraic expression $\left.\left((3+1 / x) * y^{5}\right)\right) /(z / 7)$.
(b) Find the preorder traversal.
(c) Find the postorder traversal.
(d) Find the inorder traversal.
12. Let $G=(V, E)$ be a loop-free undirected graph. Prove that if G contains no cycle of odd length, then G is bipartite.
13. Find all loop-free undirected connected graphs with five vertices up to a graph isomorphism. How many of these have no pendant vertices?
14. Let G_{n} be a graph which is obtained from the complete graph K_{n} by deleting one edge. Determine the chromatic and the chromatic number $\chi_{G_{n}}$.
15. Determine whether the check digit of the ISBN-10 for the eighth edition of Discrete Mathematics and Its Applications was computed correctly by the publisher.
16. Find the smallest relation containing the relation $\{(1,2),(1,4),(3,3),(4,1)\}$ that is
(a) reflexive and transitive.
(b) symmetric and transitive.
(c) reflexive, symmetric, and transitive.
