Midterm 1 will be based on sections $8.1,8.2,10.1-10.5$, and 10.7.

PRACTICE PROBLEMS FOR MIDTERM 1

1. Solve the following recurrence relations:
(a) $a_{n}=a_{n-1}+2 a_{n-2}, n \geq 2, a_{0}=1, a_{1}=1$.
(b) $a_{n}=a_{n-1}+a_{n-2}, n \geq 2, a_{0}=0, a_{1}=1$.
(c) $a_{n}=6 a_{n-1}-9 a_{n-2}, n \geq 2, a_{0}=1, a_{1}=-3$.
(d) $a_{n}=2 a_{n-1}+2 a_{n-2}, n \geq 2, a_{0}=0, a_{1}=1$.
2. Find the number a_{n} of strings of length n over the alphabet $\mathbf{A}=\{0,01,111\}$.
3. Find a connected graph G with 10 vertices, where removing any edge of G results in a graph with an isolated vertex.
4. A graph $G=(V, E)$ with 21 edges has seven vertices of degree 1 , three of degree 2 , seven of degree 3 and the rest of degree 4 . How many vertices does it have?
5. Find all loop-free undirected graphs with four vertices up to a graph isomorphism. How many of these have no pendant vertices?
6. If $G=(V, E)$ is a connected graph with $|E|=17$ and $\operatorname{deg}(v) \geq 3$ for all $v \in V$, what is the maximum number $|V|$ of vertices? Then draw such a graph to demonstrate that it exists.
7. Let $G=(V, E)$ be a loop-free connected 4-regular planar graph. If $|E|=16$, how many regions are there in a planar depiction of G ?
8. Which, if any, of the pairs of graphs shown are isomorphic? Justify your answer by describing an isomorphism or explaining why one does not exist.
