
MATH 253 FINAL EXAM STUDY GUIDE SOLUTIONS

3. Recall that ln(1 + x) = x − x2

2 + x3

3 − · · · for |x| < 1. Use Taylor’s Inequality to determine

what degree Taylor polynomial should we use in order to guarantee that we are approximating ln(43)

to within 1
100?

Solution: We use use Taylor’s Inequality (the remainder estimate). For this, we need the derivatives:

f(x) = ln(1 + x)

f ′(x) = (1 + x)−1

f ′′(x) = −(1 + x)−2

f ′′′(x) = 2(1 + x)−3

f (4)(x) = −3 · 2(1 + x)−4,

etc., and

f (n)(x) = (−1)n−1(n− 1)!(1 + x)−n

for n = 1, 2, 3, 4, . . .. We need a bound Mn, such that for all x in
[
0, 13

]
we have |f (n+1)(x)| ≤ Mn. For

n = 0, 1, 2, 3, . . ., |f (n+1)(x)| is decreasing on
[
0, 13

]
, so we can take

Mn = |f (n+1)(0)| = n!.

Therefore the error when using the degree n Taylor polynomial is at most∣∣Rf,0,n

(
1
3

)∣∣ ≤ Mn

∣∣1
3

∣∣n+1

n!
=

x!

3n+1(n+ 1)!!
=

1

3n+1(n+ 1)
.

So we want
1

3n+1(n+ 1)
<

1

100
,

that is, 3n+1(n+1) > 100. If n = 2 then 3n+1 · (n+1) = 81, which is not good enough. If n = 3 then
3n+1 · (n+ 1) = 81 · 4 > 100, so we take n = 3.

For reference, here is an easier solution using the Alternating Series Test.
The series for ln

(
1 + 1

3

)
is

ln
(
1 + 1

3

)
=

1

3
−
(
1

2

)(
1

32

)
+

(
1

3

)(
1

33

)
−
(
1

4

)(
1

34

)
+ · · · ,

with general term
(−1)n−1

n · 3n
for n = 1, 2, 3, 4, . . .. These terms alternate in sign, are clearly decreasing

in absolute value, and clearly approach 0 as n → ∞. So we can use the error estimate from the
Alternating Series Test: the absolute value of the error is less than the absolute value of the first term
not used. The degree 3 term has absolute value

(
1
3

) (
1
33

)
= 1

81 , which is not good enough. So n = 2

is not not good enough. The degree 4 term has absolute value
(
1
4

) (
1
34

)
= 1

81·4 < 1
100 , so we can take

n = 3.

It is just a coincidence that both methods gave the same error estimate.
4. Find a number n such that the approximation of f(x) = ex by its Taylor polynomial of degree n

centered at 1
2 gives an error of less than 1

100 on the interval [0, 1].
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Solution: No matter what choice of n we use, f (n+1)(x) will be ex. Since x 7→ ex is increasing on

[0, 1], for any n, for all x in [0, 1] we have |f (n+1)(x)| ≤ e. Now, by Taylor’s Inequality (the remainder
estimate), using e for the number M there, and using

∣∣x− 1
2

∣∣ ≤ 1
2 at the second step,

|Rf,1/2,n(x)| ≤
e
∣∣x− 1

2

∣∣n+1

(n+ 1)!
≤ e

2n+1 · (n+ 1)!
.

So we want
e

2n+1 · (n+ 1)!
≤ 1

100
.

Now e < 3, so taking n = 3 works:

|Rf,1/2,3(x)| ≤
e

24 · 4!
<

3

16 · 24
=

1

16 · 8
=

1

128
<

1

100
.

Alternate solution: As in the first solution, start with

|Rf,1/2,n(x)| ≤
e

2n+1 · (n+ 1)!
.

Since e < 4 and (n+ 1)! > 1, it is enough to choose n so that 2n+1 ≥ 400. Thus, taking n = 8 works:

|Rf,1/2,8(x)| ≤
e

29 · 9!
<

4

29 · 24
<

4

29
=

1

27
=

1

128
<

1

100
.

Second alternate solution: As in the first solution, start with

|Rf,1/2,n(x)| ≤
e

2n+1 · (n+ 1)!
.

We will require n ≥ 1, so that e/2n+1 < 4/4 = 1. So we need only choose n ≥ 1 and so large that
(n+ 1)! > 100. So taking n = 4 works:

|Rf,1/2,4(x)| ≤
e

25 · 5!
<

4

25 · 5!
<

1

5!
=

1

120
<

1

100
.

5. Find the radius of convergence of the power series
∞∑
n=1

(−1)nn!xn

(3n)!
.

Solution: We use the Ratio Test. For x ̸= 0, we have

lim
n→∞

∣∣∣ (−1)n+1(n+1)!xn+1

[3(n+1)]!

∣∣∣∣∣∣ (−1)nn!xn

(3n)!

∣∣∣ = lim
n→∞

(n+ 1)!xn+1(3n)!

n!xn(3n+ 3)!
= lim

n→∞

(n+ 1)|x|
(3n+ 1)(3n+ 2)(3n+ 3)

= |x| lim
n→∞

1

3(3n+ 1)(3n+ 2)
= |x| · 0 = 0.

Since this limit is less than 1, the series converges for every x ̸= 0 by the Ratio Test, and of course it
also converges when x = 0. So the radius of convergence is ∞.

6. Define a function S by S(x) =


sin(2x)

x
x ̸= 0

2 x = 0.
. Find S′′(0).



Solution: We start with the Taylor series centered at 0 for sin(x):

sin(x) =

∞∑
n=0

(−1)nx2n+1

(2n+ 1)!
= x− x3

3!
+

x5

5!
− x7

7!
+ · · · ,

valid for all real numbers x. For all real numbers x, we therefore have

sin(2x) =

∞∑
n=0

(−1)n22n+1x2n+1

(2n+ 1)!
= 2x− 23x3

3!
+

25x5

5!
− 27x7

7!
+ · · · ,

so, if x ̸= 0,

S(x) =
sin(2x)

x
=

∞∑
n=0

(−1)n22n+1x2n

(2n+ 1)!
= 2− 23x2

3!
+

25x4

5!
− 27x6

7!
+ · · · .

This equation is also true for x = 0, by the definition of S. Therefore

∞∑
n=0

(−1)n22n+1x2n

(2n+ 1)!
is the Taylor

series centered at 0 for S(x). So S′′(0) is 2! times the coefficient of x2, that is,

S′′(0) = 2

(
23

3!

)
=

24

6
=

8

3
.

7. Define a function L by L(x) =


ln(x)

x− 1
x ̸= 1

1 x = 1.
, Find a power series centered at 1 which

converges to L(x) for x in (0, 2).

Solution: We start with the Taylor series centered at 0 for ln(x+ 1):

ln(x+ 1) =

∞∑
n=1

(−1)n−1xn

n
= x− x2

2
+

x3

3
− x4

4
+

x5

5
− x6

6
+ · · · ,

valid when |x| < 1 (and also for x = 1, but we don’t need this). Replacing x with x− 1, we find that
the series

∞∑
n=1

(−1)n−1(x− 1)n

n
= (x− 1)− (x− 1)2

2
+

(x− 1)3

3
− (x− 1)4

4
+

(x− 1)5

5
− (x− 1)6

6
+ · · ·

converges to ln(x) = ln
(
(x − 1) + 1

)
when |x − 1| < 1 (and also for x = 2, but we don’t need this).

For |x− 1| < 1 but x ̸= 1, we therefore have

L(x) =
ln(x)

x
=

∞∑
n=1

(−1)n−1(x− 1)n−1

n
=

∞∑
n=0

(−1)n(x− 1)n

n+ 1

= 1− x− 1

2
+

(x− 1)2

3
− (x− 1)3

4
+

(x− 1)4

5
− (x− 1)5

6
+ · · · .

This equation is also true for x = 1, by the definition of L.

8. Define f(x) = e2x
3
for all real x. Find f (12)(0).



Solution: Substitute 2x3 in the degree 4 Taylor polynomial for ex. (This degree is chosen so that

4 · 3 ≥ 12.) This gives the degree 12 Taylor polynomial for e2x
3
:

e2x
3 ≈ 1 + 2x3 +

(2x3)2

2!
+

(2x3)3

3!
+

(2x3)4

4!
= 1 + 2x3 +

22x6

2!
+

23x9

3!
+

24x12

4!
.

Select the coefficient of x12 and multiply it by 12!, getting
24 · 12!

4!
. So f (12)(0) =

24 · 12!
4!

.

9. Find the radius of convergence of the power series
∞∑
n=0

3nx2n

1 · 3 · 5 · 7 · · · (2n− 1)
.

Solution: We use the Ratio Test. For x ̸= 0, we have

lim
n→∞

∣∣∣ 3n+1x2(n+1)

1·3·5·7···(2n−1)·(2(n+1)−1)

∣∣∣∣∣∣ 3nx2n

1·3·5·7···(2n−1)

∣∣∣ = lim
n→∞

3n+1x2(n+1)
[
1 · 3 · 5 · 7 · · · (2n− 1)

]
3nx2n

[
1 · 3 · 5 · 7 · · · (2n− 1) · (2(n+ 1)− 1)

]
= lim

n→∞

3x2

2n+ 1
= 0.

Since 0 < 1, the series
∞∑
n=0

3nx2n

1 · 3 · 5 · 7 · · · (2n− 1)

is absolutely convergent, and hence convergent, for every real number x ̸= 0. This series converges for
x = 0 for trivial reasons. Therefore the radius of convergence is ∞.

10. Consider the power series
∞∑
n=1

(−1)n(x− 2)n

7n−3 3
√
n+ 1

. You are told that its radius of convergence is 7.

Given this, find its interval of convergence.

Solution: The open interval of convergence is (2− 7, 2+7) = (−5, 9). So we must test convergence
at the endpoints. For x = −5 we get the series

∞∑
n=1

(−1)n(−7)n

7n−3 · 3
√
n+ 1

= 73
∞∑
n=1

1

(n+ 1)1/3
= 73

∞∑
n=2

1

n1/3
.

This series is divergent because the exponent 1/3 is less than 1.
For x = 9 we get the series

∞∑
n=1

(−1)n7n

7n−3 3
√
n+ 1

= 73
∞∑
n=1

(−1)n

3
√
n+ 1

.

We use the Alternating Series Test. The absolute values of the summands are decreasing and have
limit zero (I must see from your solution that you know these things), and the signs alternate by
definition. So the Alternating Series Test applies, and shows that this series is convergent.

We conclude that the interval of convergence is (−5, 9].


