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1. Introduction

In this paper we study the varieties of totally positive elements in Schubert cells
for an arbitrary semisimple complex Lie group G. These varieties were introduced
and studied by G. Lusztig in [10], [11]. Interest in them is motivated by a remark-
able parallelism between their parametrizations and combinatorial labelings of the
canonical basis for the quantum group corresponding to the maximal unipotent
subgroup N of G. In [2] these parametrizations were described quite explicitly
for the type Ar, with the help of a special combinatorial substitution that we
called the Chamber Ansatz. In the present paper, we generalize the results of [2]
to arbitrary semisimple groups. In fact, practically all the results below can be
extended in a straightforward way to arbitrary Kac–Moody algebras. For the sake
of simplicity, we will not pursue this generalization here.

Now let us give a more systematic account of our main results. Let g be a
semisimple complex Lie algebra of rank r with the Cartan decomposition g =
n− ⊕ h ⊕ n. Let ei, hi, fi (i = 1, . . . , r) be the standard generators of g, and
A = (aij) be the Cartan matrix. The well-known commutation relations between
the generators can be summarized as follows:

the Cartan subalgebra h is abelian with the basis h1, . . . , hr; (1.1)

the Lie algebra n (resp. n−) is generated by e1, . . . , er

1Partially supported by the NSF grant.



Vol. 72 (1997) Total positivity in Schubert varieties 129

(resp. by f1, . . . , fr) subject to the Serre relations (1.2)

(ad ei)1−aijej = 0 (resp. (ad fi)1−aijfj = 0) for i 6= j;

[hi, ej ] = aijej, [hi, fj ] = −aijfj, [ei, fj ] = δijhi. (1.3)

Let G be a simply connected complex Lie group with the Lie algebra g. Let N−,
H and N be closed subgroups of G with Lie algebras n−, h and n, respectively;
thus, H is a maximal torus, and N and N− are two opposite maximal unipotent
subgroups of G. Let B− = HN− and B = HN be the corresponding pair of
opposite Borel subgroups.

The Weyl group W of G is defined as W = NormG(H)/H. For w ∈ W , we
denote by w any representative of w in the normalizer NormG(H). The action of
W on H by conjugation gives rise to an action ofW on h and the dual action on h∗.
As usual, we will identifyW with the corresponding group of linear transformations
of h∗. The group W is a Coxeter group generated by simple reflections s1, . . . , sr
given by

si(γ) = γ − γ(hi)αi (γ ∈ h∗) ; (1.4)

here α1, . . . , αr ∈ h∗ are simple roots given by αj(hi) = aij . A reduced expression
for w ∈ W is a sequence of indices i = (i1, . . . , im) such that w = si1 · · · sim , and
m is the smallest length of such a factorization. We denote by R(w) the set of
reduced expressions for w. The length of any i ∈ R(w) is denoted by l(w) and
called the length of w.

For each i = 1, . . . , r, let xi(t) = exp (tei) be a one-parameter subgroup in N
generated by ei. Following G. Lusztig [10], we define the variety N≥0 of totally
non-negative elements in N as the multiplicative semigroup generated by all xi(t)
with i = 1, . . . , r and t ≥ 0. For any w ∈ W , we set Nw

>0 = N≥0 ∩ B−wB−,
the intersection of N≥0 with the Bruhat cell corresponding to w. In view of the
Bruhat decomposition G =

⋃
w∈W B−wB−, the variety N≥0 is a disjoint union of

the Nw
>0 over all w ∈ W . The varieties Nw

>0 will be the main object of study in
this paper.

We will think of N as an open chart in the flag variety B−\G of right cosets
of G modulo B− (thus, G acts on B−\G from the right). To be more precise, we
identify N with its image under the natural projection π : G → B−\G. Using
this identification, each Nw

>0 becomes a subset of the corresponding Schubert cell
Cw = B−\B−wB−.

For any sequence of indices i = (i1, . . . , im), we define the map xi : Cm → N
by

xi(t1, . . . , tm) = xi1(t1) · · ·xim (tm) . (1.5)

The following proposition is due to Lusztig [10]; it shows that every i ∈ R(w) gives
rise to a parametrization of elements of Nw

>0 by m-tuples of positive real numbers.

Proposition 1.1. Let w ∈ W , and i = (i1, . . . , im) ∈ R(w) be a reduced expres-
sion of w. Then the restriction of xi to the set Rm

>0 of m-tuples of positive real
numbers is a bijection between Rm

>0 and Nw
>0.
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Our first main result is an explicit formula for the inverse bijection x−1
i : Nw

>0 →
Rm
>0. (In fact, xi gives a birational isomorphism between Cm and the Schubert

variety Xw, the closure of Cw in B−\G; we compute the inverse isomorphism
x−1

i : Xw → Cm.)
To formulate the answer, we need two ingredients. The first is a birational

automorphism ηw : Xw → Xw defined as follows. Let x 7→ xT be an involutive Lie
algebra anti-automorphism of g given by

eTi = fi, f
T
i = ei, h

T
i = hi (i = 1, . . . , r) ; (1.6)

we will use the same notation x 7→ xT for the corresponding involutive anti-
automorphism of the group G. We set Nw = N∩B−wB−; under the identification
of N with π(N), the set Nw becomes an open subset of the Schubert cell Cw.

Theorem 1.2. For every z ∈ Nw, the intersection N ∩ B−wzT consists of a
unique element ηw(z). The correspondence z 7→ ηw(z) is a regular automorphism
of Nw. Furthermore, the restriction of ηw to Nw

>0 is a bijection of Nw
>0 with itself.

The inverse map η−1
w : Nw → Nw can be described as follows. Let x 7→ xι be

an involutive Lie algebra anti-automorphism of g given by

eιi = ei, f
ι
i = fi, h

ι
i = −hi (i = 1, . . . , r) ; (1.7)

we will use the same notation x 7→ xι for the corresponding involutive anti-
automorphism of the group G.

Proposition 1.3.
(a) For any w ∈W , the map x 7→ xι restricts to an isomorphism Nw → Nw−1

and to a bijection Nw
>0 → Nw−1

>0 .
(b) The map η−1

w : Nw → Nw is given by

η−1
w (x) = (ηw−1(xι))ι . (1.8)

Theorem 1.2 and Proposition 1.3 will be proved in Section 5. In a special case
when G = SLr+1 is of the type Ar, and w = w0 is the longest element of the
Weyl group W (which in this case is the symmetric group Sr+1), these results
were obtained in [2], Lemma 1.3 and Theorem 3.2.5.

The second ingredient in our formula for x−1
i is a family of regular functions

∆γ ∈ C[G], where γ runs over extremal weights in the fundamental representations
of G. To be more precise, we recall that the fundamental weights ω1, . . . , ωr form
a basis in h∗ dual to the basis h1, . . . , hr in h. The free abelian subgroup P ⊂ h∗

generated by the fundamental weights is the weight lattice of G. Every weight
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γ ∈ P gives rise to a multiplicative character of the maximal torus H which will
be written as d 7→ dγ (d ∈ H). We will call a weight γ of the form γ = wωi for some
w ∈W and i = 1, . . . , r a chamber weight of level i. (This terminology is motivated
by [2], where these weights in the Ar case were associated with chambers in certain
pseudo-line arrangements; in Section 7 we will extend this graphical interpretation
of chamber weights to the types Br and Cr.) To every chamber weight γ of level i
we associate a regular function ∆γ on G, which is uniqely up to a scalar multiple
determined by the condition that

∆γ(yd1gd2) = dωi1 d
γ
2∆γ(g) (y ∈ N−, g ∈ G, d1, d2 ∈ H) (1.9)

(for more details and for the choice of a normalization of ∆γ see Section 6 below).
For example, if G = SLr+1 then the chamber weights are in a natural correspon-
dence with subsets J ⊂ {1, . . . , r + 1}, and the functions ∆γ just introduced are
the minors ∆J , where ∆J (g) is the minor of g with the row set {1, 2, . . . , |J |} and
the column set J .

Now we are in a position to formulate our main result.

Theorem 1.4. Suppose i = (i1, . . . , im) ∈ R(w), and x = xi(t1, . . . , tm) ∈ Nw
>0.

Then the components t1, . . . , tm are given by

tk =
1

∆wkωik (z)∆wk+1ωik (z)

∏
j 6=ik

∆wkωj (z)−aj,ik , (1.10)

where z = η−1
w (x), and

wk = wi
k = simsim−1 · · · sik (1.11)

(with the convention wm+1 = e, the identity element of W ).

This theorem will be proved in Section 6. When G = SLr+1 and w = w0, it
specializes to Theorem 1.4 in [2]. Note that a generalization of this result to an
arbitrary element w of the Weyl group (for the type Ar) obtained in [2], Theo-
rem 5.4.2, is different from the one given by Theorem 1.4 although closely related
to it. In Section 6 we will also prove a version of Theorem 1.4 that generalizes
[2], Theorem 5.4.2. An advantage of the present version is that it implies a family
of criteria for total positivity that generalize those given by [2], Theorem 3.2.1 for
G = SLr+1 and w = w0 (the possibility of extending these criteria to an arbi-
trary w ∈ W was not realized in [2]). Each of these criteria says that a point
x ∈ Nw belongs to Nw

>0 if and only if a certain system of m regular functions
(where m = l(w) = dim (Nw)) takes positive values on x. More precisely, we will
show that Theorem 1.4 implies the following.

Theorem 1.5. Suppose i = (i1, . . . , im) ∈ R(w). A point x ∈ Nw belongs to Nw
>0

if and only if ∆wkωik (x) > 0 for k = 1, . . . ,m, where wk = wi
k is given by (1.11).
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This theorem sharpens the following result by G. Lusztig: the variety N≥0
consists of elements of N that act on the canonical basis in every fundamental
representation of G by a matrix with non-negative entries, see [11].

Another application of Theorem 1.4 is an explicit formula for the transition
maps that relate parametrizations of Nw

>0 associated to different reduced expres-
sions of w. To be more precise, for every two reduced expressions i, i′ ∈ R(w) the
transition map Ri′

i : Rm
>0 → Rm

>0 is defined by

Ri′
i = x−1

i′ ◦ xi . (1.12)

An explicit formula for Ri′
i can be obtained by simply combining formula (1.5) for

xi and (1.10) for x−1
i′ .

In Section 3 we will prove that transition maps have the following positivity
property.

Theorem 1.6. The components of the vector t′ = Ri′
i (t) are subtraction-free ra-

tional expressions in the components of t.

The proof is based on the following well-known property of reduced expressions
in Coxeter groups (see [3], [6]).

Proposition 1.7. Every two reduced expressions of the same element w ∈W can
be obtained from each other by a sequence of d-moves.

Here a d-move is the following operation on reduced expressions: replacing d
consecutive entries i, j, i, j, . . . by j, i, j, i, . . . , where d is the order of sisj in W .
The value of d is determined as follows:

if aijaji = 0 (resp. 1, 2, or 3) then the order d of sisj is 2 (resp. 3, 4, or 6).
(1.13)

Proposition 1.7 reduces the proof of Theorem 1.6 to its special case when the
reduced expressions i and i′ have the form i = (i, j, i, . . . ), i′ = (j, i, j, . . . ), with
the length d of both sequences given by (1.13). For d = 2 and d = 3, the transition
map Ri′

i was computed by G. Lusztig (see [9] or [2], (1.13) and (1.14)); this proves
Theorem 1.6 in a simply-laced case. In Section 3 we compute Ri′

i in the two
remaining cases d = 4 and d = 6.

As in [2], the fact that transition maps are subtraction-free opens up an op-
portunity to define them over an arbitrary semifield K instead of R>0 (see [2],
Section 2 or Section 4 below for the precise definition of what we mean by a semi-
field). Following [2], we then introduce the Lusztig variety Lw = Lw(K). An
element t of Lw is, by definition, a tuple

t = (ti)i∈R(w)
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where each ti = (ti1, . . . , t
i
m) is a “vector” in Km, and these vectors satisfy the

relations ti
′

= Ri′
i (ti) for all i, i′ ∈ R(w). The Lusztig variety is studied in Section 4

below. We develop an “abstract version” of the Chamber Ansatz (1.10), where
the functions ∆γ(z) are replaced by variables Mγ taking values in the ground
semifield K. The formulas for the transition maps associated with d-moves then
translate into (subtraction-free) polynomial relations between the Mγ . For d = 3
these relations essentially coincide with the quadratic 3-term relations obtained
in [2], (2.5.4). In Section 4 we find these relations for d = 4 and d = 6: it turns
out that each 4-move produces two relations of degrees 3 and 4, while a 6-move
produces four relations of degrees 6, 9, 10, and 15. In view of Theorem 1.4, the
functions ∆γ satisfy all these relations in the coordinate ring C[G].

An especially interesting choice of the ground semifield K is K = Z, where the
usual addition plays the role of multiplication, and taking the minimum plays the
role of addition (this is the so-called tropical semifield which played an important
part in [2]). Over this semifield, the transition maps become certain piecewise-
linear transformations. When G is simply-laced, and w = w0, the Lusztig variety
Lw over the tropical semifield is naturally identified with the canonical basis for
the quantum group corresponding to N (this observation due to Lusztig was a
main motivation for our interest in total positivity). In a non-simply laced case,
or when w 6= w0, the relationship between the totally positive varieties and the
canonical basis is much less understood. However, one can show that for the type
B2, the piecewise-linear version of our formula for the transition map (see (3.4)
below) is equivalent to the formula for the canonical basis given in [8], Section 12.5
(we thank the anonymous referee for pointing this out to us).

We would like to note once again that the above results can be extended to arbi-
trary Cartan matrices and corresponding Kac–Moody algebras. It is also possible
to “quantize” the maps xi by constructing their q-deformations. Some results in
this direction were obtained in [1]; in fact, most of the results in the present paper
have their “quantum analogues”. They will be discussed in a separate publication.

The paper is organized as follows. In Section 2 we discuss the properties of
chamber weights. In Section 3, we compute the transition maps corresponding to
d-moves; as explained above, the fact that the answers are subtraction-free implies
Theorem 1.6. An “abstract” version of the Chamber Ansatz is introduced and
studied in Section 4. Theorem 1.2 and Proposition 1.3 are proved in Section 5,
while Theorems 1.4 and 1.5 are proved in Section 6. Finally, in Section 7 we give
a graphical interpretation of our general results for the types Ar, Br, and Cr.

Acknowledgments. This work was partly done during the visit of one of the
authors (A.Z.) to the University of Basel, Switzerland, in May-June 1996. He is
grateful to Hanspeter Kraft for his hospitality.
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2. Chamber weights

In this section we develop the properties of chamber weights. For the conve-
nience of the reader, we start by recalling some well known results about roots,
weights, reduced expressions, etc. We retain the notation of Section 1. Thus,
g is a semisimple complex Lie algebra of rank r with the Cartan decomposition
g = n− ⊕ h ⊕ n satisfying the properties (1.1) through (1.3). The root lattice Q
is a free abelian subgroup in h∗ generated by simple roots α1, . . . , αr. The root
decomposition of g is written as g = h⊕

⊕
α∈Φ g(α), where Φ is the root system

of g. Let Q+ be the additive semigroup in Q generated by α1, . . . , αr. Then Φ is
the disjoint union Φ+ ∪ (−Φ+), where Φ+ = Φ ∩ Q+ is the set of positive roots;
thus, n =

⊕
α∈Φ+

g(α) and n− =
⊕

α∈Φ+
g(−α).

The Cartan matrix A of g has the following well-known properties:

aii = 2 for i = 1, . . . , r, and aij ∈ {0,−1,−2,−3} for i 6= j; (2.1)

the matrix C = (cij = diaij) is symmetric
for some positive integers d1, . . . , dr.

(2.2)

We fix the matrix C as in (2.2), and define a symmetric bilinear form on h∗ by

(αi, αj) = cij = diaij . (2.3)

This form makes the real vector space h∗R generated by the simple roots into an
Euclidean space. Each simple reflection si ∈W acts on this space as an orthogonal
reflection:

si(γ) = γ − (γ, α∨i )αi , (2.4)

where α∨ = 2α/(α, α). In particular, the action of si on the simple roots αj ,
simple coroots α∨j and fundamental weights ωj is given by

si(αj) = αj − aijαi, si(α∨j ) = α∨j − ajiα∨i , si(ωj) = ωj − δijαi . (2.5)

It also follows that the scalar product is W -invariant.
For an element w ∈W we define its inversion set by

Inv (w) = Φ+ ∩w−1(−Φ+) . (2.6)

It is known that the cardinality of Inv (w) is equal to l(w). Furthermore, Inv (w)
can be recovered from any reduced expression i = (i1, . . . , im) ∈ R(w) as follows.
As in (1.11) above, we set

wi
k = simsim−1 · · · sik (2.7)

(with the convention wi
m+1 = e, the identity element of W ). We also set

αi
k = wi

k+1(αik) . (2.8)

The following proposition is well known, see [3], VI,1.6.
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Proposition 2.1. The roots αi
k for k = 1, . . . ,m are distinct, and {αi

1, α
i
2, . . . ,

αi
m} = Inv (w).

This proposition has several important corollaries. For the convenience of the
reader, we provide the proofs of those of them that seem to be less well known.

Corollary 2.2. A simple root αi belongs to Inv (w) if and only if l(wsi) = l(w)−
1; in this case we have Inv (w) = {αi} ∪ si(Inv (wsi)). Similarly, αi belongs
to Inv (w−1) if and only if l(siw) = l(w) − 1; in this case we have Inv (w) =
{−w−1(αi)} ∪ Inv (siw).

Corollary 2.3. The following two conditions on a pair of elements u,w ∈W are
equivalent:

(a) l(w) = l(u) + l(wu−1);
(b) Inv (u) ⊂ Inv (w).

Proof. The implication (a)⇒(b) follows from the second statement in Corollary 2.2.
The reverse implication (b)⇒(a) is trivial if u = e, so we can assume that u 6=
e, i.e., Inv (u) 6= ∅. Let αi ∈ Inv (u) ⊂ Inv (w). Using the first statement in
Corollary 2.2, we conclude that l(wsi) = l(w)−1, l(usi) = l(u)−1, and Inv (usi) ⊂
Inv (wsi). Using induction on l(u) we can assume that (a) is true when w and u
are replaced with wsi and usi, respectively. Clearly, this implies that (a) is also
true for w and u, and we are done.

Corollary 2.4. For i = 1, . . . , r and w ∈W , we have w(ωi) ∈ ωi−Q+. Further-
more, the stabilizer of ωi in W is the subgroup W

î
⊂W generated by {sj : j 6= i}.

Corollary 2.5. Each coset in W/W
î

has the unique representative of minimal
length. Furthermore, u ∈ W is the element of minimal length in its coset uW

î
if

and only if l(usj) = l(u) + 1 for all j 6= i; in this case l(uv) = l(u) + l(v) for all
v ∈W

î
.

Let us now apply the above results to the study of chamber weights. Recall
from the introduction that by a chamber weight of level i we mean a weight in
Wωi, the W -orbit of the i-th fundamental weight (in view of Corollary 2.4, the
orbits Wωi are disjoint, so the level is well-defined). Every such weight γ can be
uniquely written as γ = uωi, where u is of minimal length in its coset uW

î
; this

presentation will be called the minimal presentation of γ. We set

I(γ) = {α ∈ Φ+ : (γ, α∨) < 0} . (2.9)

Proposition 2.6. If γ = wωi for some w ∈ W then I(γ) ⊂ Inv (w−1), and
(γ, α∨) = 0 for all α ∈ Inv (w−1) − I(γ). A presentation γ = uωi is minimal if
and only if I(γ) = Inv (u−1).
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Proof. Let γ = wωi. If α ∈ I(γ) then 0 > (γ, α∨) = (ωi, w−1α∨), hence w−1α ∈
−Φ+, i.e., α ∈ Inv (w−1). This proves the inclusion I(γ) ⊂ Inv (w−1). Moreover,
the same equality (γ, α∨) = (ωi, w−1α∨) shows that (γ, α∨) ≤ 0 for all α ∈
Inv (w−1); therefore, (γ, α∨) = 0 for all α ∈ Inv (w−1)− I(γ).

It remains to prove the inclusion Inv (u−1) ⊂ I(γ) for the minimal presentation
γ = uωi. We proceed by induction on l(u). There is nothing to prove in the case
when l(u) = 0, so we can assume that u = sju

′ for some j, where l(u) = l(u′) + 1.
Let γ′ = sjγ; it is easy to see that γ′ has the minimal presentation γ′ = u′ωi.
By induction, we can assume that (γ′, α′∨) < 0 for all α′ ∈ Inv (u′−1). On the
other hand, we have Inv (u−1) = {αj} ∪ sj(Inv (u′−1)), in view of Corollary 2.2.
If α = sjα

′ ∈ sj(Inv (u′−1)) then (γ, α∨) = (γ′, α′∨) < 0. To complete the proof,
it remains to show that (γ, α∨j ) 6= 0, or, equivalently, that sjγ 6= γ. But the last
inequality follows from the fact that γ = uωi is the minimal presentation of γ.
This completes the proof of Proposition 2.6.

The minimal presentation of a chamber weight can be extracted from an arbi-
trary presentation as follows.

Proposition 2.7. Let γ = wωi be a chamber weight of level i, and let i =
(i1, . . . , im) ∈ R(w). The minimal presentation of γ is obtained from the expres-
sion γ = si1 · · · simωi by removing all the factors sik for which (ωi, (αi

k)∨) = 0.

Proof. Let u be the element obtained from the product w = si1 · · · sim by removing
all the factors sik for which (ωi, (αi

k)∨) = 0. Using (2.4), it is easy to show that
the equality (ωi, (αi

k)∨) = 0 is equivalent to

sik · · · simωi = sik+1 · · · simωi .

It is now obvious that uωi = wωi, so it remains to show that the presentation
γ = uωi is minimal. Rewriting the scalar product (ωi, (αi

k)∨) as (γ,w(αi
k)∨)

and using Proposition 2.6, we conclude that the equality (ωi, (αi
k)∨) = 0 is also

equivalent to the condition that −w(αi
k)∨ ∈ Inv (w−1) − I(γ). Removing the

corresponding terms sik from the reduced factorization of w, we express u as
the product of |I(γ)| simple reflections. Now the minimality of the presentation
γ = uωi follows from the last statement in Proposition 2.6, and we are done.

Let i = (i1, . . . , im) ∈ R(w) for some w ∈W . We say that a chamber weight γ
is an i-chamber weight if γ = wi

kωi for some k = 1, . . . ,m+ 1 and i = 1, . . . , r (see
(2.7)). Let Ei denote the set of all i-chamber weights, and let Ew = ∪i∈R(w)E

i.
The elements of Ew will be called w-chamber weights. The following characteri-
zation of w-chamber weights generalizes [2], Proposition 5.3.1.

Proposition 2.8. A chamber weight γ is a w-chamber weight if and only if I(γ) ⊂
Inv (w).
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Proof. Let γ = uωi be the minimal presentation of a chamber weight γ. In view
of Corollary 2.3 and Proposition 2.6, the inclusion I(γ) ⊂ Inv (w) is equivalent to
l(w) = l(u−1) + l(wu). Clearly, the last condition implies that u = wi

k for some
i ∈ R(w) and k = 1, . . . ,m+ 1, hence that γ is a w-chamber weight. Conversely,
if γ = wi

kωi is a w-chamber weight then wi
k ∈ uWî

, so Corollaries 2.3 and 2.5 and
Proposition 2.6 imply that I(γ) = Inv (u−1) ⊂ Inv ((wi

k)−1) ⊂ Inv (w), as desired.

We now turn to the study of i-chamber weights, where i = (i1, . . . , im) ∈ R(w)
is a fixed reduced expression. For k = 1, . . . ,m, we set

γ(k; i) = wi
kωik . (2.10)

Proposition 2.9. The set Ei consists of m + r elements: the γ(k; i) for k =
1, . . . ,m, and the fundamental weights ω1, . . . , ωr.

Proof. Let γ = wi
kωi ∈ Ei, where 1 ≤ k ≤ m+ 1 and 1 ≤ i ≤ r. If il 6= i for l ≥ k

(in particular, if k = m+ 1) then γ = ωi, in view of Corollary 2.4. Otherwise, let
l be the minimal index such that l ≥ k and il = i. Again using Corollary 2.4, we
see that γ = γ(l; i). The fact that the elements γ(k; i) and ωi are all distinct, is
also an easy consequence of Corollary 2.4.

In general, the presentation (2.10) of γ(k; i) is not minimal. The minimal
presentation can be extracted from it with the help of Proposition 2.7, which now
takes the following form.

Corollary 2.10. The minimal presentation of γ = γ(k; i) is obtained from the
presentation γ = sim · · · sikωik by removing all the terms sil for which (γ, (αi

l)
∨) =

0.

We conclude this section with the following proposition that generalizes Lem-
ma 2.7.2 in [2].

Proposition 2.11. For any w-chamber weight γ, the set R(w; γ) = {i ∈ R(w) :
γ ∈ Ei} is connected with respect to d-moves.

Proof. Recall that d-moves were defined in the introduction, after Proposition 1.7
(in fact, Proposition 1.7 is a special case of Proposition 2.11). Let i ∈ R(w; γ),
i.e., γ = wi

kωi for some k = 1, . . . ,m + 1 and i = 1, . . . , r. We will write i
as a concatenation (i1, i2), where i1 = (i1, . . . , ik−1) and i2 = (ik, . . . , im). By
Corollary 2.4, the index i and the coset wi

kWî
∈ W/W

î
depend only on γ. Let

u be the minimal length representative in wi
kWî

, i.e, γ = uωi is the minimal
presentation of γ. By Corollary 2.5, l(wi

k) = l(u) + l(u−1wi
k). It easily follows

that l(w) = l(wu) + l(u−1). Let us fix some reduced expressions j1 ∈ R(wu)
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and j2 ∈ R(u−1). It is enough to show that i can be transformed to (j1, j2)
by a sequence of d-moves staying at all times in R(w; γ). This can be done in
two steps, each time using Proposition 1.7. First, we can transform i into a
reduced expression of the form (i1, i′, j2) by a sequence of d-moves applied to
i2 ∈ R((wi

k)−1). Second, we can transform (i1, i′, j2) to (j1, j2) by a sequence of d-
moves applied to (i1, i′) ∈ R(wu). Clearly, all the intermediate reduced expressions
in this process belong to R(w; γ). This completes the proof of Proposition 2.11.

3. Transition maps

In this section we study transition maps Ri′
i : Rm

>0 → Rm
>0 (recall that they are

defined by (1.12) in the introduction). We will find explicit formulas for Ri′
i , where

the reduced expressions i and i′ have the form i = (i, j, i, . . . ), i′ = (j, i, j, . . . ),
with the length d of both sequences given by (1.13). We will use the notation
Rjij...iji... (t1, . . . , td) = (p1, . . . , pd); thus, the tuples t1, . . . , td and p1, . . . , pd are
related by

xi(t1)xj(t2)xi(t3) · · · = xj(p1)xi(p2)xj(p3) · · · . (3.1)

If aij = aji = 0, and so d = 2 then xi(t) and xj(s) commute with each other
for all s and t, hence the transition map Rjiij is given by

p1 = t2, p2 = t1 . (3.2)

The remaining three cases when d = 3, 4, or 6 are treated in the following theorem.

Theorem 3.1.
(a) Let aij = aji = −1, so d = 3. The transition map Rjijiji is given by

p1 =
t2t3
t1 + t3

, p2 = t1 + t3, p3 =
t1t2
t1 + t3

. (3.3)

(b) Let aij = −2, aji = −1, so d = 4. The transition map Rjijiijij is given by

p1 =
t2t

2
3t4
π2

, p2 =
π2
π1
, p3 =

π2
1
π2
, p4 =

t1t2t3
π1

, (3.4)

where
π1 = t1t2 + (t1 + t3)t4, π2 = t21t2 + (t1 + t3)2t4 . (3.5)

(c) Let aij = −3, aji = −1, so d = 6. The transition map Rjijijiijijij is given by

p1 =
t2t

3
3t

2
4t

3
5t6

π3
, p2 =

π3
π2
, p3 =

π3
2

π3π4
, p4 =

π4
π1π2

, p5 =
π3

1
π4
, p6 =

t1t2t
2
3t4t5
π1

,

(3.6)
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where

π1 = t1t2t
2
3t4+t1t2(t3+t5)2t6+(t1+t3)t4t25t6 , (3.7)

π2 = t21t
2
2t

3
3t4+t21t

2
2(t3+t5)3t6+(t1+t3)2t24t

3
5t6+t1t2t4t25t6(3t1t3+2t23+2t3t5+2t1t5) ,

(3.8)
π3 = t31t

2
2t

3
3t4+t31t

2
2(t3+t5)3t6+(t1+t3)3t24t

3
5t6+t21t2t4t

2
5t6(3t1t3+3t23+3t3t5+2t1t5) ,

(3.9)
π4 = t21t

2
2t

3
3t4
(
t1t2t

3
3t4+2t1t2(t3+t5)3t6+(3t1t3+3t23+3t3t5+2t1t5)t4t25t6

)
+t26
(
t1t2(t3+t5)2+(t1+t3)t4t25

)3
. (3.10)

Proof. One way to prove our theorem would be to compute both sides of (3.1) in
some matrix representation of the group generated by one-parameter subgroups
xi(t) and xj(s). For this purpose, one could use standard matrix representations
of rank two semisimple groups of types A2, B2 (or C2) and G2. For the type A2,
this was done in [9]. Using a more uniform approach, we will realize the group
N as a multiplicative subgroup in the completion Û of the universal enveloping
algebra U = U(n) of n. (This realization of N makes sense for an arbitrary Kac–
Moody algebra.) To be more precise, recall that U is an associative algebra with
unit generated by e1, . . . , er subject to the Serre relations (ad ei)1−aij (ej) = 0 for
i 6= j, where adx(y) = xy − yx. The algebra U is Q+-graded via deg(ei) = αi;
the homogeneous component of degree γ ∈ Q+ in U will be denoted U(γ). The
completion Û consists of formal infinite sums

∑
γ∈Q+

uγ , where uγ ∈ U(γ). The
multiplication (∑

γ

uγ
)(∑

γ

vγ
)

=
∑
γ

(∑
γ′

uγ′vγ−γ′
)

makes Û into an associative algebra. The group N is embedded into the multi-
plicative group of Û via

xi(t) = exp(tei) =
∑
n≥0

tne
(n)
i ,

where the notation e(n) stands for the divided power en/n!.
(a) To prove (3.3), we consider the basis {ei, ej , eiej, ejei} in the subspace

U(αi) ⊕ U(αj) ⊕ U(αi + αj) of Û , and let {ci, cj , cij , cji} be the corresponding
coordinate functions. Computing these coordinates on both sides of (3.1), we
obtain:

ci = t1 + t3 = p2, cj = t2 = p1 + p3, cij = t1t2 = p2p3 ,

which implies (3.3).

(b) Consider the subspace U(αi) ⊕ U(αj) ⊕ U(αi + αj) ⊕ U(2αi + αj) of Û .
Since the Serre relations between ei and ej live in degrees 3αi + αj and αi + 2αj ,
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they do not affect this subspace, so as its basis we can take all non-commutative
monomials in ei and ej of given degrees. Let ci, cj , cij , and ciij be the coordinate

functions corresponding to the basis vectors ei, ej , eiej , and e
(2)
i ej respectively.

Computing these coordinates on both sides of (3.1), we obtain:

ci = t1 + t3 = p2 + p4, cj = t2 + t4 = p1 + p3 ,

cij = t1t2 + (t1 + t3)t4 = p2p3 , ciij = t21t2 + (t1 + t3)2t4 = p2
2p3 ,

which easily implies (3.4).
(c) The same argument as in (b) provides five relations between the pk and the

tk given by

ci = t1 + t3 + t5 = p2 + p4 + p6, cj = t2 + t4 + t6 = p1 + p3 + p5 , (3.11)

cij = t1t2 + (t1 + t3)t4 + (t1 + t3 + t5)t6 = p2p3 + (p2 + p4)p5 , (3.12)

ciij = t21t2 + (t1 + t3)2t4 + (t1 + t3 + t5)2t6 = p2
2p3 + (p2 + p4)2p5 , (3.13)

ciiij = t31t2 + (t1 + t3)3t4 + (t1 + t3 + t5)3t6 = p3
2p3 + (p2 + p4)3p5 . (3.14)

To obtain a sixth relation, consider the component U(3αi + 2αj). To analyze
this subspace we need to take into account the Serre relation (ad ej)2ei = 0, which
can also be written in the form

ejeiej = e
(2)
j ei + eie

(2)
j .

It is easy to see that dim U(3αi+2αj) = 7. In fact, there are 10 non-commutative
monomials of multi-degree (3, 2) in ei and ej but, in view of the above Serre rela-

tion, each of the 3 monomials e(2)
i ejeiej , eiejeiejei, and ejeieje

(2)
i that contain a

factor ejeiej is a linear combination of the remaining 7 monomials. To be more

precise, e(2)
i ejeiej is a linear combination of e(2)

i e
(2)
j ei and e(3)

i e
(2)
j , while eiejeiejei

is a linear combination of eie
(2)
j e

(2)
i and e

(2)
i e

(2)
j ei, and ejeieje

(2)
i is a linear com-

bination of e(2)
j e

(3)
i and eie

(2)
j e

(2)
i . Note that none of these linear combinations

involve the monomial eieje
(2)
i ej. Hence the corresponding coordinate function

cijiij can be computed as in the free algebra generated by ei and ej . Computing
this coordinate on both sides of (3.1), we obtain the desired sixth relation between
the pk and the tk:

cijiij = t1t2t
2
3t4 + t1t2(t3 + t5)2t6 + (t1 + t3)t4t25t6 = p2p3p

2
4p5 . (3.15)

The relations (3.11) through (3.15) provide a system of 6 polynomial equations
with 6 unknowns p1, . . . , p6. This system was solved using Maple, and the solution
is given by (3.6). In a more old fashioned way, the system can be solved as follows.
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First, comparing (3.7) and (3.15), we see that

π1 = cijiij = p2p3p
2
4p5 . (3.16)

Next, consider the expression δ = cijciiij − c2iij . An easy calculation using (3.12),
(3.13) and (3.14) shows that

δ = t1t2t
2
3t4(t1 + t3) + t1t2(t3 + t5)2t6(t1 + t3 + t5) + (t1 + t3)t4t25t6(t1 + t3 + t5)

= p2p3p
2
4p5(p2 + p4) . (3.17)

Now a direct check shows that

π2 = cijδ − ciijπ1 = p2
2p

2
3p

3
4p5 , (3.18)

π3 = ciijδ − ciiijπ1 = p3
2p

2
3p

3
4p5 , (3.19)

π4 = π2δ − π1π3 = p3
2p

3
3p

6
4p

2
5 , (3.20)

t1t2t
2
3t4t5 = ciπ1 − δ = p2p3p

2
4p5p6 , (3.21)

t2t
3
3t

2
4t

3
5t6 = cjπ3 − cijπ2 + π2

1 = p1p
3
2p

2
3p

3
4p5 . (3.22)

The right hand sides of (3.16) and (3.18) – (3.22) are monomials in p1, . . . , p6, and
an easy check shows that they are related to p1, . . . , p6 by an invertible monomial
transformation. Computing the inverse of this transformation yields (3.6), thus
completing the proof of Theorem 3.1.

Remark 3.2. It is easy to see that in each of the cases in Theorem 3.1, the
formulas expressing the tk through the pk (i.e., the inverse transformation Riji...jij...)
can be found by the substitution pk 7→ td+1−k, tk 7→ pd+1−k in (3.3), (3.4), or
(3.6).

Remark 3.3. Note that, in each of the cases, our formulas for the transition map
Rjij...iji... imply two “monomial” relations: for d = 2 they are given by (3.2), and in
the other cases they are as follows:

t1t2 = p2p3, t2t3 = p1p2 (d = 3) ; (3.23)

t1t2t3 = p2p3p4, t2t
2
3t4 = p1p

2
2p3 (d = 4) ; (3.24)

t1t2t
2
3t4t5 = p2p3p

2
4p5p6, t2t

3
3t

2
4t

3
5t6 = p1p

3
2p

2
3p

3
4p5 (d = 6) . (3.25)

Remark 3.4. Since all the expressions in (3.2) – (3.10) are subtraction-free, The-
orem 3.1 implies Theorem 1.6 from the introduction.
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4. Chamber Ansatz

The main result of this section is a generalization of Theorems 2.7.1 and 5.3.2
from [2]. The terminology below is suggested by the Ar case treated in [2]. In
what follows we fix an element w ∈ W of length l(w) = m. As explained in the
introduction, Theorem 1.6 allows us to associate to w the Lusztig variety Lw =
Lw(K) defined over an arbitrary semifield K. As in [2], Section 2.1, by a semifield
we mean a set K endowed with two operations, addition and multiplication, which
have the following properties:

addition in K is commutative and associative; (4.1)
multiplication makes K an abelian group; (4.2)
distributivity: (a+ b)c = ac+ bc for a, b, c ∈ K. (4.3)

Recall from the introduction that an element t of Lw is a tuple t = (ti)i∈R(w),
where each ti = (ti1, . . . , t

i
m) is a “vector” in Km, and these vectors satisfy the

relations ti
′

= Ri′
i (ti) for all i, i′ ∈ R(w). The following proposition generalizes [2],

Theorem 2.2.6 and is proved in the same way.

Proposition 4.1. For any i ∈ R(w), the projection t 7→ ti is a bijection between
the Lusztig variety Lw(K) and Km.

We will now present an alternative description of Lw that generalizes the one in
[2], Sections 2.7 and 5.3. We will use the terminology and notation from Section 2.
Let us introduce the variables Mγ (γ ∈ Ew) labeled by w-chamber weights and
taking values in K. We will express the components tik of an element of the Lusztig
variety by means of the substitution

tik =
1

Mwi

k
ωik
Mwi

k+1ωik

∏
j 6=ik

M
−aj,ik
wi

k
ωj

. (4.4)

In the case of type Ar, this substitution reduces to the Chamber Ansatz in [2],
(2.5.3). We will call (4.4) the generalized Chamber Ansatz. The following propo-
sition generalizes [2], Proposition 2.5.1.

Proposition 4.2. The point t = (tik) whose components are defined by the gen-
eralized Chamber Ansatz (4.4) belongs to the Lusztig variety Lw(K) if and only if
the Mγ satisfy the following relations (4.5)–(4.11).
Case d = 3. Suppose aij = aji = −1, and w′ ∈ W is such that l(ww′sisjsi) =
l(w)− l(w′sisjsi)= l(w)− l(w′)− 3. Then

Mw′siωiMw′sjωj = Mw′ωiMw′sisjωj +Mw′sjsiωiMw′ωj . (4.5)
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Case d = 4. Suppose aij = −2, aji = −1, and w′ ∈ W is such that
l(ww′sisjsisj) = l(w) − l(w′sisjsisj) = l(w)− l(w′)− 4. Then

Mw′siωiMw′sjsiωiMw′sjωj = M2
w′sjsiωiMw′ωj

+ (Mw′ωiMw′sjsisjωj +Mw′sisjsiωiMw′sjωj )Mw′ωi ;
(4.6)

Mw′sisjωjM
2
w′sjsiωiMw′sjωj = Mw′sjsisjωjM

2
w′sjsiωiMw′ωj

+ (Mw′ωiMw′sjsisjωj +Mw′sisjsiωiMw′sjωj )
2 ;

(4.7)

Case d = 6. Suppose aij = −3, aji = −1, and w′ ∈W is such that

l(ww′sisjsisjsisj) = l(w)− l(w′sisjsisjsisj) = l(w) − l(w′)− 6.

Then

Mw′siωiM
2
w′sjsiωiMw′sjsisjsiωiMw′sjωjMw′sjsisjωj

= M3
w′sjsiωiMw′sjsisjsiωiMw′ωjMw′sjsisjωj

+
(
Mw′ωiMw′sjsisjωj +Mw′sjsisjsiωiMw′sjωj

)2
Mw′ωiMw′sjsisjsiωi

+
(
Mw′sjsiωiMw′sjsisjsisjωj +Mw′sisjsisjsiωiMw′sjsisjωj

)
Mw′ωiM

2
w′sjsiωiMw′sjωj ;

(4.8)
Mw′sisjsiωiM

3
w′sjsiωiM

2
w′sjsisjsiωiMw′sjωjM

2
w′sjsisjωj

= M3
w′sjsiωiM

3
w′sjsisjsiωiMw′ωjM

2
w′sjsisjωj

+
(
Mw′ωiMw′sjsisjωj+Mw′sjsisjsiωiMw′sjωj

)3
M3
w′sjsisjsiωi

+
(
Mw′sjsiωiMw′sjsisjsisjωj+Mw′sisjsisjsiωiMw′sjsisjωj

)2
M4
w′sjsiωiMw′sjωj

+
(
3Mw′ωiMw′sjsiωiMw′sjsisjωjMw′sjsisjsisjωj +2Mw′ωiMw′sisjsisjsiωiM

2
w′sjsisjωj

+2Mw′sjsisjsiωiMw′sisjsisjsiωiMw′sjωjMw′sjsisjωj

+2Mw′sjsiωiMw′sjsisjsiωiMw′sjωjMw′sjsisjsisjωj

)
·M2

w′sjsiωiM
2
w′sjsisjsiωiMw′sjωj ;

(4.9)
Mw′sisjsisjωjM

3
w′sjsiωiM

3
w′sjsisjsiωiMw′sjωjM

2
w′sjsisjωj

= M3
w′sjsiωiM

3
w′sjsisjsiωiMw′ωjM

2
w′sjsisjωjMw′sjsisjsisjωj

+
(
Mw′ωiMw′sjsisjωj+Mw′sjsisjsiωiMw′sjωj

)3
M3
w′sjsisjsiωiMw′sjsisjsisjωj

+
(
Mw′sjsiωiMw′sjsisjsisjωj+Mw′sisjsisjsiωiMw′sjsisjωj

)3
M3
w′sjsiωiMw′sjωj

+
(
3Mw′ωiMw′sjsiωiMw′sjsisjωjMw′sjsisjsisjωj +3Mw′ωiMw′sisjsisjsiωiM

2
w′sjsisjωj

+3Mw′sjsisjsiωiMw′sisjsisjsiωiMw′sjωjMw′sjsisjωj

+2Mw′sjsiωiMw′sjsisjsiωiMw′sjωjMw′sjsisjsisjωj

)
·M2

w′sjsiωiM
2
w′sjsisjsiωiMw′sjωjMw′sjsisjsisjωj ;

(4.10)



144 A. Berenstein and A. Zelevinsky CMH

Mw′sisjωjM
6
w′sjsiωiM

3
w′sjsisjsiωiM

2
w′sjωjM

3
w′sjsisjωj

=
{
M3
w′sjsiωiMw′sjsisjsiωiMw′ωjM

2
w′sjsisjωj

+2
(
Mw′ωiMw′sjsisjωj +Mw′sjsisjsiωiMw′sjωj

)3
Mw′sjsisjsiωi

+
(
3Mw′ωiMw′sjsiωiMw′sjsisjωjMw′sjsisjsisjωj +3Mw′ωiMw′sisjsisjsiωiM

2
w′sjsisjωj

+3Mw′sjsisjsiωiMw′sisjsisjsiωiMw′sjωjMw′sjsisjωj

+2Mw′sjsiωiMw′sjsisjsiωiMw′sjωjMw′sjsisjsisjωj

)
M2
w′sjsiωiMw′sjωj

}
·M3

w′sjsiωiM
2
w′sjsisjsiωiMωjM

2
w′sjsisjωj

+
{(
Mw′ωiMw′sjsisjωj +Mw′sjsisjsiωiMw′sjωj

)2
Mw′sjsisjsiωi

+
(
Mw′sjsiωiMw′sjsisjsisjωj+Mw′sisjsisjsiωiMw′sjsisjωj

)
M2
w′sjsiωiMw′sjωj

}3
.

(4.11)

The proof is straightforward: we only need to substitute the expressions given
by (4.4) into the formulas (3.2), (3.3), (3.4), and (3.6), and clear the denomina-
tors. Note that the monomial relations referred to in Remark 3.3, will be fulfilled
automatically, so each of the cases d = 2, 3, 4, or 6 produces d−2 relations between
the Mγ .

Generalizing [2], Section 2.7, we define M̃w = M̃w(K) to be the set of all tuples
M = (Mγ)γ∈Ew of elements of the ground semifield K satisfying the relations
(4.5)–(4.11). According to Proposition 4.2, the generalized Chamber Ansatz (4.4)
provides a well-defined map M 7→ t(M) from M̃w(K) to Lw(K). Let Mw =
Mw(K) be the subset of M̃w formed by those tuples M = (Mγ) that, in addition
to (4.5)–(4.11), satisfy the normalization condition

Mωi = 1 , i = 1, . . . , r . (4.12)

The following theorem generalizes Theorem 2.7.1 in [2].

Theorem 4.3. The restriction to Mw of the map M 7→ t(M) is a bijection
betweenMw and the Lusztig variety Lw. The inverse bijection t = (tik) 7→M(t) =
(Mγ) from Lw to Mw is given as follows: if γ = γ(k; i) for some i ∈ R(w) and
k = 1, . . . ,m, then

Mγ = Mγ(t) =
∏
l≥k

(til)
b(k,l;i) , (4.13)

where b(k, l; i) = (γ(k; i), (αi
l)
∨).

Proof. First we will show that Mγ is well defined via (4.13), i.e., that the right hand
side of (4.13) does not depend on the choice of i and k such that γ = γ(k; i). In view
of Proposition 2.11, it is enough to show the following: if γ = γ(k; i) = γ(k′; i′),
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and i and i′ are related by a d-move, then∏
l≥k

(til)
b(k,l;i) =

∏
l≥k′

(ti
′

l )b(k
′,l;i′) .

This is checked directly using the formulas for the transition maps in Theorem 3.1;
to be more precise, we only need the “monomial” part of the transition maps given
by (3.2) and (3.23)–(3.25).

To complete the proof of Theorem 4.3, it remains to show that both compo-
sitions M 7→ M(t(M)) and t 7→ t(M(t)) are identity maps. In proving this, we
will fix a reduced expression i = (i1, . . . , im) ∈ R(w) and will use a shorthand
Mk = Mγ(k;i), tk = tik, and b(k, l) = b(k, l; i). Using this notation, the correspon-
dence t 7→M(t) given by (4.13) can be written as

Mk =
∏
l≥k

t
b(k,l)
l , (4.14)

while the Chamber Ansatz correspondence M 7→ t(M) given by (4.4) can be
written as

tk =
1

MkMν(k;ik)

∏
j 6=ik

M
−aj,ik
ν(k;j) , (4.15)

where ν(k; j) = min {l : l > k, il = j} (if il 6= j for l > k then we set ν(k; j) =
m+ 1 and Mm+1 = 1). The formulas (4.14) and (4.15) define two monomial
transformations Km → Km, and we only need to show that they are inverses of
each other. Clearly, it is enough to show that one of their compositions is the
identity map. So it suffices to prove the following identity for k = 1, . . . ,m:

Mk =
∏
l≥k

( 1
MlMν(l;il)

∏
j 6=il

M
−aj,il
ν(l;j)

)b(k,l)
. (4.16)

The exponent of Mk on the right-hand side of (4.16) is equal to

−b(k, k) = −(γ(k; i), (αi
k)∨) = (ωik , α

∨
ik) = 1 ,

as needed. It remains to show that for every k′ > k, the variableMk′ cancels out on
the right-hand side of (4.16). Let ik′ = i, and let k′′ = max {l : k ≤ l < k′, il = i}
(if il 6= i for k ≤ l < k′ then we set k′′ = k− 1 and b(k, k′′) = 0). The exponent of
Mk′ on the right-hand side of (4.16) can be written as

−
(
b(k, k′)+b(k, k′′)+

∑
l:k′′<l<k′

ai,ilb(k, l)
)
. (4.17)

Remembering the definition of b(k, l), we can rewrite (4.17) as

−
(
γ(k; i), (αi

k′)
∨+(αi

k′′)
∨+

∑
l:k′′<l<k′

ai,il(α
i
l)
∨
)
. (4.18)
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Acting on both arguments in the scalar product by sik · · · sim , we can rewrite
(4.18) as (ωik , β), where

β = sik · · · sik′−1α
∨
i + sik · · · sik′′−1α

∨
i +

∑
l:k′′<l<k′

sik · · · sil−1(ai,ilα
∨
il

) . (4.19)

In view of (2.5), we have
ai,ilα

∨
il

= α∨i − silα∨i ;

substituting this expression into (4.19), we see that the sum becomes telescoping,
and β = 0. This completes the proof of (4.16) and of Theorem 4.3.

The following corollary generalizes Corollary 2.7.4 in [2].

Corollary 4.4. For every i ∈ R(w), the components Mγ(k;i) (k = 1, . . . ,m) form
a system of independent coordinates on Mw(K), that is, they can be assigned
arbitrary values in K, and the remaining components Mγ of a point M ∈Mw(K)
are expressed through them as subtraction-free rational expressions.

Proof. In the course of the proof of Theorem 4.3, we have shown that, for every
i ∈ R(w), the components tik of a point t ∈ Lw(K) and the components Mγ(k;i)
of the corresponding point M ∈ Mw(K) are related to each other by an invert-
ible monomial transformation (see (4.14) and (4.15)). To prove our corollary, it
remains to observe that by Proposition 4.1, the tik for any given i ∈ R(w) form
a system of independent coordinates on Lw(K), and the remaining components
ti
′

k are expressed through them via the transition maps Ri′
i which are given by

subtraction-free rational expressions.

5. Proofs of theorem 1.2 and proposition 1.3

As in the introduction, we consider the open subset Nw = N ∩ B−wB− of the
Schubert cell Cw. The involutive antiautomorphisms x 7→ xT and x 7→ xι of G
(see (1.6), (1.7)) preserve H and NormG(H), and so act on W . We will denote by
w a representative of w ∈W in NormG(H); a direct check shows that

wT = wι = w−1 . (5.1)

For any w ∈W , we define the subgroups N(w) and N ′(w) of N by

N(w) = N ∩ w−1N−w, N
′(w) = N ∩ w−1Nw . (5.2)

The following two facts are well-known:
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the map (x, y) 7→ xy induces a bijection N(w) ×N ′(w)→ N ; (5.3)
the map (x, y) 7→ xwyT induces a bijection B− ×N(w)→ B−wB−. (5.4)

Now we are ready to introduce the map ηw. We will do this in a slightly more
general setting than in Theorem 1.2.

Proposition 5.1. For every z ∈ Nw ·N ′(w), the intersection N∩B−wzT consists
of a unique element x = ηw(z), so the correspondence z 7→ ηw(z) is a map from
Nw ·N ′(w) to Nw. For y, z ∈ Nw·N ′(w), the condition ηw(y) = ηw(z) is equivalent
to y−1z ∈ N ′(w).

Proof. The uniqueness of x and the fact that x ∈ Nw are obvious. To prove the
existence of x, it is enough to show that wzT ∈ B−N for all z ∈ Nw · N ′(w).
Since (B−N)T = B−N and (wzT )T = zw−1 (see (5.1)), we only need to show
that Nw ·N ′(w)w−1 ⊂ B−N . Using (5.3) and (5.4), we obtain

Nw ·N ′(w)w−1 ⊂ B−wN(w)TN ′(w)w−1 ⊂ B−w · (w−1Nw)w−1 = B−N ,

as desired. Finally, the condition ηw(y) = ηw(z) can be rewritten as wyT (wzT )−1 ∈
B−, which is easily seen to be equivalent to y−1z ∈ N ′(w). This completes the
proof of Proposition 5.1.

We now turn to the proof of Proposition 1.3. The fact that the map x 7→ xι

restricts to a bijection Nw → Nw−1
follows at once from the definition (1.7) and

from (5.1). Furthermore, (1.7) readily implies that, for any i = (i1, . . . , im) ∈
R(w), we have

xi(t1, . . . , tm)ι = xi∗(tm, . . . , t1) , (5.5)

where i∗ = (im, . . . , i1) ∈ R(w−1). In view of Proposition 1.1, this shows that
x 7→ xι restricts to a bijection Nw

>0 → Nw−1

>0 , thus completing the proof of Propo-
sition 1.3 (a).

Part (b) of Proposition 1.3 can be reformulated as follows.

Proposition 5.2. If z ∈ Nw and x = ηw(z) then zι = ηw−1(xι); therefore,
ηw : Nw → Nw is a bijection.

Proof. According to (5.4), every z ∈ Nw can be uniquely expressed as

z = xTwyT (x ∈ N, y ∈ N(w)) , (5.6)

where the choice of a representative w depends on z. We claim that the component
x in (5.6) is equal to ηw(z). Indeed, (5.6) can be rewritten as wzT = wywTx; using
(5.1), we see that wywT ∈ B−, hence x = ηw(z).
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Using (5.6), one can express x as follows:

x = uT (wT )−1zT , (5.7)

where u = w(yT )−1w−1. Applying the anti-automorphism x 7→ xι on both sides
of (5.7), we obtain

xι = (zι)Tw−1(uι)T (5.8)

(we used (5.1) and the obvious fact that x 7→ xι and x 7→ xT commute with
each other). The condition that y ∈ N(w) implies easily that u ∈ N(w−1), hence
uι ∈ N(w−1). It follows that (5.8) is an expression of the same kind as (5.6), with
z, x, and w replaced by xι, zι, and w−1, respectively. Proposition 5.2 (and hence
Proposition 1.3) follows.

To complete the proof of Theorem 1.2, it remains to show that the map ηw :
Nw → Nw sends Nw

>0 to itself. In view of Proposition 1.1, this is a consequence
of the following.

Proposition 5.3. Let i = (i1, . . . , im) ∈ R(w) and t1, . . . , tm > 0. The map ηw
sends xi(t1, . . . , tm) to xi(p1, . . . , pm), where each pk is a subtraction-free rational
expression in t1, . . . , tm.

Proof. Let z = xi(t1, . . . , tm) and x = ηw(z). As shown above, x and z are related
by (5.6). To prove the equality z = xi(p1, . . . , pm), we proceed by induction on
m = l(w). If m = 1 then the decomposition (5.6) takes the form

xi(t) = xi(t−1)T sixi(t−1)T , (5.9)

which can be checked by the matrix calculation in SL2:(
1 t
0 1

)
=
(

1 0
t−1 1

)(
0 t
−t−1 0

)(
1 0
t−1 1

)
.

Thus, ηsi(xi(t)) = xi(t−1).
For the induction step, we need some notation. For i = 1, . . . , r and t > 0 we

set
yi(t) = xi(t)T = exp (tfi) , thi = exp (ln (t)hi) ; (5.10)

thus, yi(t) ∈ N− and thi ∈ H. These elements together with the xi(t) satisfy the
following commutation relations:

phixj(t) = xj(paij t)phi , phiyj(t) = yj(p−aij t)phi ; (5.11)

xi(t)yj(p) = yj(p)xi(t) (i 6= j) ; (5.12)
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xi(t)yi(p) = yi(p(1 + tp)−1)(1 + tp)hixi(t(1 + tp)−1) (5.13)

(the relations (5.11) and (5.12) follow directly from the relations (1.3) in g, and
(5.13) can be proved by another matrix calculation in SL2).

Now suppose that m ≥ 2, and let w′ = si1w, i′ = (i2, . . . , im) ∈ R(w′), z′ =
xi′(t2, . . . , tm) and x′ = ηw′(z′). By the inductive assumption, the decomposition
(5.6) for z′ has the form

z′ = yim(p′m) · · · yi2(p′2)w′y′T , (5.14)

where y′ ∈ N(w′), and each p′k is a subtraction-free rational expression in t2, . . . , tm.
Using (5.14) and the commutation relations (5.11) – (5.13), we can rewrite z =
xi1(t1)z′ as follows:

z = yim(pm) · · · yi2(p2)xi1(t)w′y′T (5.15)

(to arrive at (5.15), we use (5.12) and (5.13) to push xi1(t1) to the right through
all the terms yik(p′k) in (5.14); all the terms of the kind thi that are generated
during this process with the help of (5.13) are then also moved to the right by
applying (5.11)). Since the relations (5.11) – (5.13) only involve subtraction-free
expressions, we conclude that t and all pk in (5.15) are subtraction-free rational
expressions in t1, . . . , tm. Using (5.9), we can rewrite the “tail” in (5.15) as follows:

xi1(t)w′y′T = yi1(t−1)si1xi1(t−1)Tw′y′T = yi1(t−1)w(y′y′′)T , (5.16)

where y′′ = w′
−1
xi1(t−1)w′. Clearly, y′′ is a non-trivial element of the root sub-

group N(αi
1) ⊂ N , where αi

1 = (w′)−1(αi1) (cf. (2.8)). By Corollary 2.2, y′y′′ ∈
N(w). Combining (5.15) and (5.16), we conclude that ηw(z) = xi1(t−1)xi2(p2)
· · ·xim(pm), completing the proof of Proposition 5.3 and of Theorem 1.2.

The above proof yields the following corollary which will be used in the next
section. Note that, in view of (5.4), for every x ∈ Nw there is a unique y ∈ N(w)
such that x ∈ B−wyT , i.e., such that x = ηw(y). Note also that, in view of
Proposition 2.1, for any i = (i1, . . . , im) ∈ R(w), every element y ∈ N(w) has a
unique factorization of the form

y = y(m) · · · y(1) (y(k) ∈ N(αi
k)) . (5.17)

Proposition 5.4. Let y ∈ N(w) be such that ηw(y) = xi(t1, . . . , tm) ∈ Nw
>0 for

some i = (i1, . . . , im) ∈ R(w) and t1, . . . , tm > 0. If y is factored according to
(5.17) then, for each k = 1, . . . ,m, the element y(m) · · · y(k) belongs to N((wi

k)−1)
(see (2.7)), and η(wi

k
)−1(y(m) · · · y(k)) = xik(tk) · · ·xim(tm).

Proof. In the notation of Proposition 5.3 and its proof, the element y is expressed as
y′y′′, where y′′ ∈ N(αi

1), and y′ ∈ N(w′) is such that ηw′(y′) = xi2(t2) · · ·xim(tm).
Our statement follows by induction on m.
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6. Totally positive varieties

In this section we specialize the results of Section 4 to the case when the ground
semifiled K is R>0. In view of Proposition 1.1, the Lusztig variety Lw(R>0)
is naturally identified with the variety Nw

>0 of totally positive elements in the
Schubert cell Cw = B−\B−wB−. Theorem 4.3 gives a bijection between Nw

>0 and
the varietyMw(R>0), so each component Mγ of a point fromMw(R>0) becomes
a function on Nw

>0. Now Theorem 1.4 from the introduction can be reformulated
as follows.

Theorem 6.1. For every w-chamber weight γ the function Mγ on Nw
>0 is given

by Mγ(x) = ∆γ(z), where z = η−1
w (x) ∈ Nw

>0.

Before proving Theorem 6.1, we need to establish some results about the func-
tions ∆γ (see (1.9)). To put these functions in a proper context, we recall some
well-known facts from the representation theory ofG. Let P+ be the additive semi-
group in the weight lattice P generated by the fundamental weights ω1, . . . , ωr.
The elements of P+ are highest weights of irreducible rational representations of
G; we denote by Vλ the representation with highest weight λ. Let C[G] be the ring
of regular functions on G, and let C[N−\G] denote the subring of C[G] consisting
of the functions f such that f(xg) = f(g) for all x ∈ N− and g ∈ G. Both C[G]
and C[N−\G] are G-modules under the action of G on itself by right translations;
so the action of G on C[G] and C[N−\G] is given by

(xf)(g) = f(gx), (x, g ∈ G) . (6.1)

Each Vλ has a canonical realization as a submodule of C[N−\G]:

Vλ = {f ∈ C[N−\G] : f(dg) = dλf(g) (d ∈ H, g ∈ G)} . (6.2)

These submodules are all irreducible components of C[N−\G]:

C[N−\G] = ⊕λ∈P+Vλ . (6.3)

For any λ ∈ P+, we define a function ∆λ ∈ C[N−\G] as the highest vector
in Vλ normalized by the condition ∆λ(e) = 1. In other words, ∆λ is a regular
function on G whose restriction to the open set N−HN is given by

∆λ(pdx) = dλ (p ∈ N−, d ∈ H, x ∈ N) . (6.4)

Now let γ = uλ for some u ∈W and λ ∈ P+. Then γ is an extremal weight for
Vλ, and the corresponding weight subspace Vλ(γ) is one-dimensional. We denote
by ∆γ an element of Vλ(γ) (cf. (1.9)) normalized in the following way. Choose a
reduced expression (j1, . . . , jl) ∈ R(u−1) and for k = 1, . . . , l set

bk = (sjk−1 · · · sj1λ, α∨jk) = (λ, sj1 · · · sjk−1α
∨
jk

) . (6.5)
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It is well known that the action on Vλ of the element e(b1)
j1
· · · e(bl)

jl
∈ U(g) gives

an isomorphism Vλ(γ)→ Vλ(λ); here e(b) stands for the divided power eb/b!. We
normalize ∆γ by the condition

e
(b1)
j1
· · · e(bl)

jl
(∆γ) = ∆λ . (6.6)

It is known that this normalization does not depend on the choice of an element
u ∈ W such that γ = uλ and on the choice of a reduced expression (j1, . . . , jl) ∈
R(u−1) (see, e.g., [9], Section 28.1). The function ∆γ can also be written as

∆γ = u∆λ (6.7)

for some specific choice of a representative u. The normalization condition (6.6)
implies that the representative u in (6.7) satisfies

uT = u−1 (6.8)

(indeed, using (6.6) and the representation theory of SL2, we can write u as
sjl · · · sj1 , where each sjk satisfies sjk

T = sjk
−1).

We now turn to the proof of Theorem 6.1. First we will give its equivalent
reformulation. The following theorem generalizes [2], Theorem 5.4.2.

Theorem 6.2. For every w-chamber weight γ, the function Mγ on Nw
>0 is given

by Mγ(x) = ∆γ(y), where y ∈ N(w) is such that x = ηw(y).

In view of Proposition 5.2, the fact that Theorems 6.1 and 6.2 are equivalent
to each other, is a consequence of the following statement.

Lemma 6.3. If γ is a w-chamber weight then ∆γ(z) = ∆γ(zp) for all z ∈ G and
p ∈ N ′(w).

Proof. Every w-chamber weight can be written as γ = uλ, where λ is some fun-
damental weight, and u ∈ W satisfies Inv (u−1) ⊂ Inv (w) (see Corollary 2.3
and Proposition 2.10). The inclusion Inv (u−1) ⊂ Inv (w) readily implies that
N ′(w) ⊂ N ′(u−1), i.e., that u−1pu ∈ N for all p ∈ N ′(w). Using (6.7) and (6.4),
we obtain

∆γ(zp) = ∆λ(zpu) = ∆λ(zu · u−1pu) = ∆λ(zu) = ∆γ(z) ,

as desired.

Turning to the proof of Theorem 6.2, we will first establish its special case when
γ = w−1ωi for some i. Thus, we will prove the equality

Mw−1ωi(x) = ∆w−1ωi(y) , (6.9)
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where x and y are as in Theorem 6.2. Choosing i = (i1, . . . , im) ∈ R(w) and
writing x as xi(t1, . . . , tm), we see that the left-hand side of (6.9) is the monomial
in the tk given by (4.13). In our situation, this monomial takes the following form:

Mw−1ωi(x) =
( m∏
k=1

tbkk

)−1
, (6.10)

where the exponents bk are given by

bk = −(γ, (αi
k)∨) = −(sim · · · si1ωi, sim · · · sik+1α

∨
ik

) = (ωi, si1 · · · sik−1α
∨
ik

) .

In view of (6.10), we see that (6.9) becomes a consequence of the following lemma.

Lemma 6.4. Suppose γ = w−1λ for some w ∈W and λ ∈ P+.
(a) Let x ∈ Nw and y ∈ N(w) be such that x = ηw(y). Then

∆γ(y)∆γ(x) = 1 . (6.11)

(b) Let x = xi(t1, . . . , tm) for some i = (i1, . . . , im) ∈ R(w) and t1, . . . , tm ∈
C. Then

∆γ(x) =
m∏
k=1

tbkk , (6.12)

where the exponents bk are given by

bk = (λ, si1 · · · sik−1α
∨
ik

) . (6.13)

Proof. (a) Note that (6.11) generalizes [2], (5.4.6); our argument will be essentially
the same as in [2]. In view of (6.7) and (6.8), one can choose a representative w
so that w∆γ = ∆λ and wT = w−1. Thus, we have ∆γ = wT∆λ. By the definition
of the map ηw, we have wyT = pdx for some p ∈ N− and d ∈ H. Since ∆γ ∈ Vλ,
we conclude from (5.19) that

∆γ(wyT ) = dλ∆γ(x) . (6.14)

The same argument applied to ∆λ yields

∆λ(wyT ) = dλ∆λ(x) = dλ . (6.15)

Comparing (6.14) and (6.15), we see that

∆λ(wyT )∆γ(x) = ∆γ(wyT ) . (6.16)
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To deduce (6.11) from (6.16), it remains to notice that

∆λ(wyT ) = ∆λ(ywT ) = (wT∆λ)(y) = ∆γ(y)

(since, in view of (6.4), ∆λ(zT ) = ∆λ(z) for all z ∈ G), and

∆γ(wyT ) = (w∆γ)(wyTw−1) = ∆λ(wyTw−1) = 1

(since wyTw−1 ∈ N− whenever y ∈ N(w)).
(b) We will use the following general formula valid for any f ∈ C[G] and for

any sequence of indices i = (i1, . . . , im) (not necessarily a reduced expression):

f(xi(t1, . . . , tm)) =
∑

a1,...,am≥0

(e(a1)
i1
· · · e(am)

im
f)(e) · ta1

1 · · · t
am
m . (6.17)

(To prove (6.17), note that

f(gxi(t)) = (xi(t)f)(g) = (exp(tei)f)(g) =
∑
a≥0

ta(e(a)
i f)(g) (g ∈ G)

and use induction on m.) If f ∈ Vλ(λ − β) for some β ∈ Q+ then the tuples
(a1, . . . , am) that have a non-zero contribution to (6.17) must satisfy

m∑
k=1

akαik = β . (6.18)

In particular, for f = ∆γ and i ∈ R(w), the only tuples that contribute to (6.17),
must satisfy (6.18) with β = λ − γ. One of such tuples is the tuple (b1, . . . , bm)
given by (6.13). Comparing (6.13) with (6.5) and remembering the normalization
of ∆γ given by (6.6), we see that the monomial

∏m
k=1 t

bk
k appears in ∆γ with the

coefficient 1. The proof of (6.12) is completed by using the following lemma proved
in [1].

Lemma 6.5. In the situation of Lemma 6.4, if a1, . . . , am are nonnegative inte-
gers satisfying (6.18) with β = λ − γ, and such that e(a1)

i1
· · · e(am)

im
∆γ 6= 0, then

(a1, . . . , am) coincides with the tuple (b1, . . . , bm) given by (6.13).

We have completed the proof of (6.9). To complete the proof of Theorem 6.2,
it remains to show that

Mwi

k
ωi(x) = ∆wi

kωi(y) (6.19)

for any i = (i1, . . . , im) ∈ R(w) and k = 1, . . . ,m, where x and y are as in
Theorem 6.2. (Note that (6.9) is a special case of (6.19) when k = 1.) Let u =
(wi

k)−1 = sik · · · sim , and let us write x = x′′x′, where x′′ = xi1(t1) · · ·xik−1(tk−1)
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and x′ = xik(tk) · · ·xim(tm). By Proposition 5.5, the element y can be written
as y = y′y(k−1) · · · y(1), where y′ ∈ N(u), ηu(y′) = x′, and each y(l) for l < k
belongs to the root subgroup N(αi

l). Since, in view of Proposition 2.1, none of the
roots αi

1, . . . , α
i
k−1 belong to Inv (u), it follows that the element p = y(k−1) · · · y(1)

belongs to the subgroup N ′(u) (see (5.2)). By Lemma 6.3 (applied to u instead of
w),

∆wi

kωi(y) = ∆u−1ωi(y′p) = ∆u−1ωi(y′) . (6.20)

On the other hand, it is clear from (4.13) that

Mwi

k
ωi(x) = Mu−1ωi(x

′) , (6.21)

where the right hand side of (6.21) is defined via the Chamber Ansatz for u instead
of w. Combining (6.20) and (6.21), we see that (6.19) becomes a consequence of
(6.9), with w, x, and y replaced by u, x′, and y′, respectively. Theorems 6.2 and
6.1, and hence Theorem 1.4, are proved.

As a first consequence of Theorem 6.1, the relations between the Mγ found in
Section 4 (see Theorem 4.3 and Corollary 4.4) imply the corresponding relations
between the functions ∆γ ∈ C[N−\G].

Corollary 6.6. The elements Mγ = ∆γ ∈ C[N−\G] satisfy the relations (4.5)–
(4.11).

Corollary 6.7. Let i = (i1, . . . , im) ∈ R(w), and let γ be a w-chamber weight.
Then, in the field of rational functions C(N−\G), the function ∆γ can be expressed
as a subtraction-free rational expression in the ∆γ(k;i) (k = 1, . . . ,m).

Remark 6.8. It is well known that the ring C[N−\G] is generated by the basis
vectors in all fundamental representations Vωi (generalized Plücker coordinates)
subject to quadratic Plücker relations. The functions ∆γ corresponding to cham-
ber weights γ are the Plücker coordinates whose weights are vertices of weight
polytopes for all Vωi . It should be possible to deduce the relations (4.6) – (4.11)
from the Plücker relations, by eliminating all the coordinates whose weights lie
inside the weight polytopes. For the type Ar, all the fundamental weights are
minuscule (see [4], Ch. VIII, 7.3), i.e., all the weights for Vωi are extremal, so the
∆γ form a complete set of Plücker coordinates. In general, this is not so, but the
above results imply that the ∆γ generate the field of fractions of C[N−\G].

Another consequence of Theorem 6.1 is Theorem 1.5 which produces a family
of criteria for total positivity. This theorem can be restated as follows (cf. [2],
Theorem 3.2.1).

Theorem 6.9. Let x ∈ Nw = N ∩ B−wB−, and let i = (i1, . . . , im) ∈ R(w).
Then the following are equivalent:
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(1) x ∈ Nw
>0;

(2) ∆γ(x) > 0 for all w-chamber weights γ;
(3) ∆γ(k;i)(x) > 0 for k = 1, . . . ,m.

Proof. The equivalence of (2) and (3) follows from Corollary 6.7. It remains to
prove that (1)⇔ (3). The components t1, . . . , tm in the factorization x = xi(t) =
xi1(t1) · · ·xim (tm) and the functions p1, . . . , pm given by pk = ∆γ(k;i)(η−1

w (x))
form two systems of algebraic coordinates on Nw. By Proposition 1.1, the subset
Nw
>0 ⊂ Nw can be defined by the inequalities t1 > 0, . . . , tm > 0. By Theorems 6.1

and 4.3, the coordinates (t1, . . . , tm) and (p1, . . . , pm) are related to each other by
an invertible monomial transformation (see also formulas (4.14) and (4.15) in the
proof of Theorem 4.3). Thus, the positivity of all tk is equivalent to the positivity
of all pk. We conclude that x ∈ Nw belongs to Nw

>0 if and only if ∆γ(k;i)(z) > 0
for k = 1, . . . ,m, where z = η−1

w (x) ∈ Nw. On the other hand, by Theorem 1.2,
x ∈ Nw

>0 if and only if z ∈ Nw
>0, and we are done.

We conclude this section with a generalization of some results of [7], which will
allow us to produce more criteria for total positivity. Following Section 5 in [7], we
will say that a collection {γ1, . . . , γm} of w-chamber weights is a totally positive
base for Nw if for any w-chamber weight γ, the function ∆γ can be expressed in
the field of rational functions C(N−\G) as a subtraction-free rational expression
in the ∆γk (k = 1, . . . ,m). In view of Theorem 6.9, every such collection gives rise
to a criterion for total positivity on Nw: an element x ∈ Nw belongs to Nw

>0 if and
only if ∆γk(x) > 0 for k = 1, . . . ,m. For i ∈ R(w), let C(i) denote the collection
{γ(1; i), . . . , γ(m; i)}; by Corollary 6.7, each C(i) is a totally positive base for Nw.

Let i and j be two different indices, and let d be the order of sisj in W . If
d = 3, 4, or 6 then by a weak d-flip we will mean the following operation on a
collection C of chamber weights (cf [7], Section 5):

Case d = 3. Replacing the weight w′siωi ∈ C with w′sjωj , provided that
l(w′sisjsi) = l(w′) + 3, and that C ∪ {ωi, ωj} contains four weights w′ωi, w′ωj ,
w′sjsiωi, and w′sisjωj.

Case d = 4. Replacing two weights w′siωi and w′sisjωj in C with w′sjωj and
w′sjsiωi, provided that l(w′sisjsisj) = l(w′) + 4, and that C ∪ {ωi, ωj} contains
four weights w′ωi, w′ωj , w′sisjsiωi, and w′sjsisjωj .

Case d = 6. Replacing four weightsw′siωi, w′sisjωj , w′sisjsiωi, andw′sisjsisjωj
in C with w′sjωj, w′sjsiωi, w′sjsisjωj , and w′sjsisjsiωi, provided that
l(w′sisjsisjsisj) = l(w′) + 6, and that C ∪ {ωi, ωj} contains four weights w′ωi,
w′ωj , w′sisjsisjsiωi, and w′sjsisjsisjωj .

The following proposition is an immediate consequence of the relations (4.5)–
(4.11) (cf. [7], Proposition 5.10).
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Proposition 6.10. Weak d-flips preserve the set of all totally positive bases for
Nw.

Note that if two reduced expressions i and i′ of w are related to each other by
a d-move then the corresponding totally positive bases C(i) and C(i′) are related
to each other by a weak d-flip (if d = 2 then C(i) = C(i′)). However, even when
C = C(i), it often happens that there exist weak d-flips on C that do not correspond
to a d-move on i. Such flips transform C(i) into a totally positive base which is not
of the form C(i′) (a lot of examples of this kind for the type Ar were given in [7]).
It would be interesting to classify all totally positive bases obtained by applying
weak d-flips to the bases of the form C(i).

7. Special cases

In this section we will give a graphical interpretation of the Chamber Ansatz for
classical groups of types Ar, Br, and Cr. We start by briefly recalling the Ar case
which was treated in [2] and served as a prototype for the results in the present
paper. In this case G = SLr+1, the maximal torus H is the subgroup of diagonal
matrices in G, and N ⊂ G is the subgroup of unipotent upper-triangular matrices.
The standard generators of g are:

ei = Ei,i+1, hi = Ei,i −Ei+1,i+1, fi = Ei+1,i (i = 1, . . . , r) . (7.1)

Thus, the one-parameter subgroups xi(t) in N are given by xi(t) = 1+tEi,i+1. The
Weyl groupW is naturally identified with the symmetric group Sr+1, the simple re-
flection si being identified with the transposition (i, i+1). The anti-automorphisms
x 7→ xT and x 7→ xι of G act as follows: xT is the transpose of a matrix x, while
xι = d0x

−1d−1
0 , where d0 is a diagonal matrix diag (1,−1, . . . , (−1)r). Chamber

weights of level i are identified with the subsets of size i in [1, r+1] := {1, . . . , r+1}:
the weight γ corresponding to a subset I is the character of H given by

d = diag (d1, . . . , dr+1) 7→ dγ =
∏
i∈I

di . (7.2)

Under this identification, the function ∆γ(x) becomes the flag minor ∆I(x), that
is, the minor of x with the row set [1, i] and the column set I.

To visualize the Chamber Ansatz (see (1.10) or (4.4) above), we represent a
reduced expression i = (i1, . . . , im) ∈ R(w) by means of its wiring diagram Arr (i).
This diagram is a pseudo-line arrangement which can be drawn by combining
segments taken from r+ 1 horizontal lines on the plane with m X-shaped switches
between them, where the k-th from the left switch occurs between the ik-th and
(ik + 1)-th lines, counting from the bottom. The pseudo-lines are labeled so that
their right endpoints are numbered 1 through r + 1 bottom-up; scanning the left
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endpoints bottom-up yields the sequence w−1(1), . . . , w−1(r+ 1). See example in
Figure 1, where r = 3, and i = (1, 2, 3, 2) (cf. [2], Figure 11). The coordinates
ti1, . . . , t

i
m on the Lusztig variety Lw are associated with the crossings of pseudo-

lines in Arr (i) scanning from the left end; we denote the k-th crossing from the
left by the same symbol tik as the corresponding coordinate.

The i-chamber weights correspond to chambers of an arrangement Arr (i), that
is, to the connected components of the complement of the union of all pseudo-lines.
The chamber set associated to a chamber C is the set of labels of all horizontal
segments lying below C. The definitions readily imply that if C is the chamber
whose right end is tik, then the chamber set L(C) corresponds to the chamber
weight γ(k; i) (see (2.10)).

Using all this notation, Theorem 1.4 takes the following form: if x =
xi(t1, . . . , tm) ∈ Nw

>0, and z = η−1
w (x) then

tk =
∆L(A)(z)∆L(D)(z)
∆L(B)(z)∆L(C)(z)

, (7.3)

where A, B, C, and D are the chambers of Arr (i) surrounding the crossing tik,
with A and D lying above and below tik, and B and C being on the same horizontal
level.

Our next target is the type Cr . The group G is now the symplectic group
Sp2r. We will choose a matrix realization of G most convenient for studying total
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positivity. Let G̃ = SL2r, and consider two involutive anti-automorphisms x 7→ xι

and x 7→ xτ of G̃ given by

xι = d0x
−1d−1

0 , xτ = w0x
Tw−1

0 , (7.4)

where d0 and w0 are matrices of order n = 2r given by

(d0)ij = δij(−1)i−1 , (w0)ij = δi,n+1−j . (7.5)

The maps x 7→ xι and x 7→ xτ commute with each other, so their composition is
an involutive automorphism of G̃ given by

xιτ = J−1(xT )−1J , (7.6)

where J = d0w0 is the matrix given by

Jij = δi,n+1−j(−1)i−1 . (7.7)

We will think of G as the subgroup G̃ιτ ⊂ G̃ of fixed points of the automorphism
ιτ . In view of (7.6), an element x ∈ G̃ belongs to G if and only if xTJx = J ; since
n = 2r is even, it follows from (7.7) that JT = −J , so G is indeed the symplectic
group.

We will use our standard notation such as N,W, xi(t) etc., for the objects
related to G, and will denote by Ñ , W̃ , x̃i(t) etc. the corresponding objects
related to G̃. The antiautomorphisms x 7→ xι and x 7→ xτ of G̃ preserve Ñ and
H̃, and we have

N = Ñ ιτ = Ñ ∩G, H = H̃ιτ = H̃ ∩G . (7.8)

We set i∗ = n + 1 − i = 2r + 1 − i for i = 1, . . . , 2r. In this notation, the
standard generators of g are:

ei = ẽi + ẽi∗−1, hi = h̃i + h̃i∗−1, fi = f̃i + f̃i∗−1 (i = 1, . . . , r − 1),

er = ẽr, hr = h̃r, fr = f̃r , (7.9)

where the ẽi, h̃i, and f̃i are given by (7.1). It follows that

xi(t) = x̃i(t)x̃i∗−1(t) (i = 1, . . . , r − 1), xr(t) = x̃r(t) . (7.10)

The Weyl group W of G is naturally identified with the subgroup of W̃ = Sn =
S2r given by

W = {w ∈ Sn : w(i∗) = w(i)∗ (i = 1, . . . , r)} . (7.11)

Simple reflections in W are expressed through simple reflections in W̃ as follows:

si = s̃is̃i∗−1 (i = 1, . . . , r − 1), sr = s̃r . (7.12)
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Motivated by (7.12), we introduce the following notation: for a sequence i =
(i1, . . . , im) of indices taking values in [1, r], we denote by ĩ the sequence obtained
from i by replacing each index ik = i < r with the pair (i, i∗ − 1). For instance, if
r = 2 and i = (1, 2, 1, 2) then ĩ = (1, 3, 2, 1, 3, 2). The following proposition is an
easy consequence of (7.12) and (7.10).

Proposition 7.1.
(a) For any w ∈W and any reduced expression i = (i1, . . . , im) of w in W , the

sequence ĩ is a reduced expression of w in W̃ .
(b) In the situation of (a), for any t = (t1, . . . , tm) ∈ Cm, we have

xi(t) = x̃ĩ(t̃) , (7.13)

where t̃ is a sequence obtained from t by replacing each tk such that ik < r
with the pair (tk, tk).

For instance, if r = 2 and i = (1, 2, 1, 2) then (7.13) takes the form

x(1,2,1,2)(t1, t2, t3, t4) = x̃(1,3,2,1,3,2)(t1, t1, t2, t3, t3, t4) .

As a corollary of Proposition 7.1, we can now describe a relationship between
totally positive varieties in N and Ñ .

Corollary 7.2. For any w ∈ W , we have Nw
>0 = Ñw

>0 ∩ N . Therefore, N≥0 =
Ñ≥0 ∩N .

Proof. The inclusion Nw
>0 ⊂ Ñw

>0 ∩ N follows at once from (7.13) and Propo-
sition 1.1. To prove the reverse inclusion, we notice that the automorphism
x 7→ xιτ of G̃ sends xi(t) to xi∗−1(t), in particular, leaves xr(t) intact. Now
let i = (i1, . . . , im) be a reduced expression of w in W , and let ĩ be the corre-
sponding reduced expression of w in W̃ . Writing an element x ∈ Ñw

>0 as the
product x̃ĩ(p), where p is some tuple of positive real numbers, and applying the
automorphism x 7→ xιτ to this product, we conclude that xιτ = x if and only if
pk = pk+1 whenever ĩk+1 = ĩ∗k− 1. Using (7.13) and Proposition 1.1 again, we see
that if x ∈ Ñw

>0 is such that xιτ = x then x belongs to Nw
>0, and we are done.

We now turn to the description of the Chamber Ansatz for G. First notice
that the anti-automorphisms x 7→ xT and x 7→ xι of G are obtained by restricting
to G the corresponding anti-automorphisms of G̃. Therefore, for any w ∈ W the
map ηw for G (see Proposition 5.1) agrees with the corresponding map for G̃.
For i = 1, . . . , r, the fundamental weight ωi for G is the restriction to H of the
corresponding fundamental weight ω̃i of G̃. The function ∆ωi is the restriction to
G of ∆ω̃i , that is, ∆ωi(x) = ∆[1,i](x), the principal flag minor of x ∈ G. In view
of (7.11), the correspondence w−1ωi 7→ w−1([1, i]) identifies chamber weights of
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level i for G with isotropic subsets of size i in [1, 2r]; here a subset I ⊂ [1, 2r] is
called isotropic if I ∩ I∗ = ∅, i.e., if I contains at most one element from each pair
{i, i∗}. Under this identification, the function ∆w−1ωi(x) becomes the flag minor
∆w−1([1,i])(x).

We will now introduce a wiring diagram for representing a reduced expression
i = (i1, . . . , im) of w ∈ W (see Figure 2). Let ĩ be the corresponding reduced
expression of w in W̃ (see Proposition 7.1), and consider the pseudo-line arrange-
ment Arr (̃i) representing ĩ. Each term ik = i < r in i creates a pair of consecutive
crossings in Arr (̃i), one on the level i from the bottom and another on the level i
from the top. Since, for i < r, the simple reflections s̃i and s̃i∗−1 in W̃ commute
with each other (as well as the corresponding one-parameter subgroups x̃i(t) and
x̃i∗−1(t)), the order of these two consecutive crossings is irrelevant for applications
such as the Chamber Ansatz; this makes it natural to put these two crossings
on the same vertical line. With this convention, the arrangement Arr (̃i) has a
horizontal symmetry axis that lies in the middle between the r-th and (r + 1)-
th horizontal lines. We denote this axis by M (for “mirror”). Now we define the
wiring diagram (or arrangement) Arr (i) as the half of the arrangement Arr (̃i) that
lies below M . Thus, Arr (i) consists of r pseudo-lines whose right endpoints are
numbered 1 through r bottom-up; scanning the left endpoints bottom-up yields
the sequence w−1(1), . . . , w−1(r + 1).

The crossings of Arr (̃i) that lie in Arr (i) will be called the crossings of Arr (i).
They involve ordinary crossings, that is, the exchanges between the pairs of hori-
zontal lines, and also the reflections in the “mirror” M . Under such a reflection,
the pseudo-line changes its label from i∗ (to the left of the reflection point) to
i, for some i = 1, . . . , r. By the definition, the arrangement Arr (i) has exactly
m = l(w) crossings. As in the case of Ar, we associate these crossings with the
terms in the factorization xi(t1, . . . , tm); we will again denote a crossing by the
same symbol tk = tik as the corresponding coordinate on the Lusztig variety.
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The chambers and chamber sets for Arr (i) are defined in the same way as for
Ar. In full analogy with the Ar case, if C is the chamber whose right end is tik
then the chamber set L(C) is the isotropic subset corresponding to the chamber
weight γ(k; i) (see (2.10)).

Now everything is ready for a “concrete” formulation of Theorem 1.4 for the
type Cr. Let x = xi(t1, . . . , tm) ∈ Nw

>0, and let z = η−1
w (x). If ik < r then the

crossing tk in Arr (i) is surrounded by four chambers A, B, C, and D as in the
case Ar, and tk is given by (7.3). If ik = r, i.e., the corresponding crossing tk lies
on the mirror M then this crossing is surrounded by three chambers: the chamber
A below tk, and the chambers B and C just below the mirror on both sides of tk.
Then (1.10) takes the following form:

tk =
(∆L(A)(z))2

∆L(B)(z)∆L(C)(z)
. (7.14)

Note that (7.14) can be deduced from the Chamber Ansatz for type An−1 with
the help of the following lemma.

Lemma 7.3. For any subset I ⊂ [1, n] = [1, 2r] and any x ∈ G, we have ∆I(x) =
∆I
∗
(x), where I is the complement of I in [1, n].

This lemma follows from the observation that ∆I(xιτ ) = ∆I
∗
(x) for any x ∈ G̃

(cf. [2], (3.4.4)).

Applying Lemma 7.3 to a subset L(A) in (7.14) (which is an isotropic subset
of size r − 1), we conclude that ∆L(A)(z) = ∆L(D)(z), where D is the chamber
above tk in Arr (̃i). Therefore, (7.14) becomes a consequence of (7.13) and (7.3),
the latter applied to the reduced expression ĩ.

We now turn to the type Br. The group G is the spin group Spin2r+1 which
is a two-sheeted covering over the special orthogonal group G0 = SO2r+1. Since
the projection G → G0 restricts to an isomorphism of the maximal unipotent
subgroup N of G with that of G0, in studying the totally positive varieties in N
we can (and will) work with G0 rather than with G. Our treatment of G0 will
be completely parallel to the above treatment of the symplectic group. We set
n = 2r + 1 and G̃ = SLn, and we think of G0 as the subgroup G̃ιτ ⊂ G̃ of fixed
points of the automorphism ιτ , where the involutive anti-automorphisms x 7→ xι

and x 7→ xτ of G̃ are given by (7.4) and (7.5). Formulas (7.6) and (7.7) remain
valid; the only difference with the symplectic case is that now the matrix J given
by (7.7) is symmetric, so G0 is indeed the special orthogonal group. With the
same notational conventions as for the symplectic group, (7.8) also remains valid
in our case.

We set i∗ = n+ 1− i = 2r + 2− i for i = 1, . . . , 2r + 1. In this notation, the
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standard generators of g are:

ei = ẽi + ẽi∗−1, hi = h̃i + h̃i∗−1, fi = f̃i + f̃i∗−1 (i = 1, . . . , r − 1),

er =
√

2(ẽr + ẽr+1), hr = 2(h̃r + h̃r+1), fr =
√

2(f̃r + f̃r+1),
(7.15)

where the ẽi, h̃i, and f̃i are given by (7.1). (The coefficients
√

2 in (7.15) are
necessary if we want the anti-automorphism x 7→ xT of G0 to be the ordinary
transpose of matrices.) The analogue of (7.10) is now

xi(t) = x̃i(t)x̃i∗−1(t) (i = 1, . . . , r − 1), xr(t) = x̃r
( t√

2

)
x̃r+1(

√
2t)x̃r

( t√
2

)
(7.16)

(the last equality in (7.16) is proved by a direct calculation in SL3).
The Weyl group W of G is naturally identified with the subgroup of W̃ = Sn =

S2r+1 given by (7.11). Since n is now odd, all permutations from W leave r + 1
fixed; restricting these permutations to [1, n]−{r+ 1} = [1, r]∪ [1, r]∗ we obtain a
natural isomorphism of W with the Weyl group for the type Cr. Simple reflections
in W are expressed through simple reflections in W̃ as follows:

si = s̃is̃i∗−1 (i = 1, . . . , r − 1), sr = s̃r s̃r+1s̃r . (7.17)

Modifying the corresponding construction for the type Cr, for a sequence i =
(i1, . . . , im) of indices taking values in [1, r], we denote by ĩ the sequence obtained
from i by replacing each index ik = i < r with the pair (i, i∗ − 1), and each index
ik = r with the triple (r, r+1, r). For instance, if r = 2 and i = (1, 2, 1, 2) then ĩ =
(1, 4, 2, 3, 2, 1, 4, 2, 3, 2). We then have the following analogue of Proposition 7.1.

Proposition 7.4.
(a) For any w ∈W and any reduced expression i = (i1, . . . , im) of w in W , the

sequence ĩ is a reduced expression of w in W̃ .
(b) In the situation of (a), for any t = (t1, . . . , tm) ∈ Cm, we have

xi(t) = x̃ĩ(t̃) , (7.18)

where t̃ is a sequence obtained from t by replacing each tk such that ik < r
with the pair (tk, tk) and each tk such that ik = r with the triple(
tk√

2
,
√

2tk, tk√2

)
.

For instance, if r = 2 and i = (1, 2) then (7.18) takes the form

x(1,2)(t1, t2) = x̃(1,4,2,3,2)

(
t1, t1,

t2√
2
,
√

2t2,
t2√

2

)
.

As in the case of Cr, we conclude that Corollary 7.2 remains valid for the type
Br. The same proof applies, with the following modification. We need to show
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that an element x = x̃r(p1)x̃r+1(p2)x̃r(p3) with p1, p2, p3 > 0 is invariant under
the automorphism x 7→ xιτ if and only if p2 = 2p1 = 2p3, i.e., (p1, p2, p3) =
( t√

2
,
√

2t, t√
2
) for some t > 0. Using the transition rule (3.3), we see that

xιτ = x̃r+1(p1)x̃r(p2)x̃r+1(p3) = x̃r
( p2p3
p1 + p3

)
x̃r+1(p1 + p3)x̃r

( p1p2
p1 + p3

)
.

Therefore, the condition that xιτ = x is equivalent to (p1, p2, p3) =
( p2p3
p1+p3

, p1 +
p3,

p1p2
p1+p3

)
which is easily seen to be equivalent to p2 = 2p1 = 2p3.

As in the case of Cr, the anti-automorphisms x 7→ xT and x 7→ xι of G0, as
well as the map ηw for any w ∈ W , agree with the corresponding maps for G̃.
For i = 1, . . . , r − 1, the descriptions of the fundamental weight ωi, the chamber
weights of level i and the corresponding functions ∆γ are the same as for the type
Cr. Thus, chamber weights of level i < r are identified with isotropic subsets of
size i in [1, r]∪ [1, r]∗ = [1, 2r+ 1]−{r+ 1}; under this identification, the function
∆w−1ωi(x) on G0 becomes the flag minor ∆w−1([1,i])(x).

The situation with level r is somewhat different. The fundamental weight ωr is
the highest weight of the spinor representation of G; thus, the restriction to H of
the fundamental weight ω̃r is the square of the character ωr (see, e.g., [5], Ch. 20).
It follows that chamber weights of level r are still identified with isotropic subsets
of size r in [1, r] ∪ [1, r]∗ = [1, 2r + 1]− {r + 1}; however, the function ∆w−1ωr (x)
is now identified with

√
∆w−1([1,r])(x), the square root of the corresponding flag

minor. Note that
√

∆w−1([1,r]) is not a well-defined function on the whole group
G0 = SO2r+1, only on its two-sheeted covering G = Spin2r+1; but its restriction
to N is a well-defined regular function, since N is identified with the maximal
unipotent subgroup of G. We only have to specify the choice of the sign of the
square root. This can be done by using the normalization condition (6.6). To be
more precise, we note that the spinor representation Vωr of G is minuscule (cf.
Remark 6.8). Thus, its set of weights is the set Wωr of chamber weights of level
r, so these weights are identified with isotropic subsets I ⊂ [1, r] ∪ [1, r]∗ of size r.
The corresponding functions

√
∆I form a basis in Vωr . The action of the raising

operators e1, . . . , er on this basis can be described as follows (cf. [2], (3.5.8)): for
i = 1, . . . , r − 1 we have

ei(
√

∆I) =
{ √

∆I∪{i,i∗−1}−{i+1,i∗} , if I ∩ {i, i+ 1, i∗ − 1, i∗} = {i+ 1, i∗};
0 , otherwise;

(7.19)
the action of er is given by

er(
√

∆I) =
{ √

∆I∪{r}−{r∗} , if I ∩ {r, r∗} = {r∗};
0 , otherwise.

(7.20)

Formulas (7.19) and (7.20) imply, in particular, that all operators e2
i acting

on Vωr are equal to 0 (this is a general property of minuscule representations).
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Combining this fact with (6.17), we can obtain an explicit combinatorial expression
for
√

∆I similar to [2], (2.4.8). To do this, consider the vector space of formal linear
combinations of isotropic subsets of size r in [1, r]∪[1, r]∗. Define the shift operators
u1, . . . , ur in this space by setting

ui(I) =
{
I ∪ {i, i∗ − 1} − {i+ 1, i∗} , if I ∩ {i, i+ 1, i∗ − 1, i∗} = {i+ 1, i∗}
0 , otherwise

(7.21)
for i < r, and

ur(I) =
{
I ∪ {r} − {r∗} , if I ∩ {r, r∗} = {r∗}
0 , otherwise.

(7.22)

As a consequence of (6.17), for any sequence i = (i1, . . . , im) of indices from [1, r],
and any complex numbers t1, . . . , tm, we have

√
∆I(xi(t1, . . . , tm)) =

∑
ta1ta2 · · · tas , (7.23)

where the sum is over all sequences 1 ≤ a1 < a2 < · · · < as ≤ m such that

uia1
uia2
· · ·uias (I) = [1, r] .

For example, if r = 2 and x = x(1,2,1,2)(t1, t2, t3, t4) then (7.23) gives

√
∆{1,2}(x) = 1,

√
∆{1,2∗}(x) = t2 + t4,√

∆{2,1∗}(x) = t2t3,
√

∆{2∗,1∗}(x) = t2t3t4 .

Returning to the Chamber Ansatz, we recall that the Weyl group W for the
type Br is canonically identified with the Weyl group for the type Cr, by means of
the order-preserving bijection [1, r]∪ [1, r]∗ = [1, 2r+ 1]−{r+ 1} → [1, 2r]. Using
this identification, for any w ∈ W and any reduced expression i ∈ R(w) in the
Br case, we define the pseudo-line arrangement Arr (i), its chambers and chamber
sets in exactly the same way as for the type Cr above (see Figure 2). So the only
difference between two cases is that whenever we see an index i∗ for some i ∈ [1, r],
either as the label of a segment of a pseudo-line, or as a member of a chamber set,
it is understood as 2r + 2− i in the Br case, and as 2r + 1− i in the Cr case.

We are now in a position to give a “concrete” formulation of Theorem 1.4 for
the type Br. Let x = xi(t1, . . . , tm) ∈ Nw

>0, and let z = η−1
w (x). If ik < r then the

crossing tk in Arr (i) is surrounded by four chambers A, B, C, and D as in the cases
Ar or Cr above, and tk is given by (7.3). If ik = r, i.e., the corresponding crossing
tk lies on the mirror M then this crossing is surrounded by three chambers: the



Vol. 72 (1997) Total positivity in Schubert varieties 165

chamber A below tk, and the chambers B and C just below the mirror on both
sides of tk. Then (1.10) takes the following form (cf. (7.14)):

tk =
∆L(A)(z)√

∆L(B)(z)
√

∆L(C)(z)
. (7.24)

Note that Lemma 7.3 and its proof remain valid for the type Br. Using this
lemma and comparing (7.24) with the expression for

√
2tk given by the Chamber

Ansatz for the type A2r applied to the right hand side of (7.18), we arrive at the
following identity.

Proposition 7.5. Let L ⊂ [1, r] ∪ [1, r]∗ be an isotropic subset of size r − 1, and
let i ∈ [1, r] be the index such that L ∩ {i, i∗} = ∅. Then

∆L∪{r+1}(x) =
√

2
√

∆L∪{i}(x)
√

∆L∪{i∗}(x) (7.25)

for any x ∈ G0 = SO2r+1.

Remark 7.6. The realization of the symplectic group Sp2r as a subgroup of SL2r
that we used above, agrees with the general strategy of Lusztig using the “descent”
realization of a non-simply-laced semisimple group as a subgroup of a simply laced
one. In particular, Corollary 7.2 for the type Cr is a special case of a general result
by Lusztig. However, the above realization of SO2r+1 as a subgroup of SL2r+1
does not follow this pattern; in Lusztig’s approach, SO2r+1 would be realized as
a subgroup of the group SO2r+2 of type Dr+1. It is possible to treat the case Dr

by using an embedding of SO2r into SL2r. However, the resulting description of
totally positive varieties is not as nice as for the types Br and Cr (in particular,
there seems to be no way to satisfy Corollary 7.2), and we do not give it here.
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preprint, Université de Caen, Caen 1996.
[8] G. Lusztig, Introduction to quantized enveloping algebras. In: J. Tirao, N. Wallach (Eds.),

Progr. in Math. 105, Birkhäuser, Boston 1992, 49-65.
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