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1. Introduction

In this paper we study the varieties of totally positive elements in Schubert cells
for an arbitrary semisimple complex Lie group G. These varieties were introduced
and studied by G. Lusztig in [10], [11]. Interest in them is motivated by a remark-
able parallelism between their parametrizations and combinatorial labelings of the
canonical basis for the quantum group corresponding to the maximal unipotent
subgroup N of G. In [2] these parametrizations were described quite explicitly
for the type A,, with the help of a special combinatorial substitution that we
called the Chamber Ansatz. In the present paper, we generalize the results of [2]
to arbitrary semisimple groups. In fact, practically all the results below can be
extended in a straightforward way to arbitrary Kac-Moody algebras. For the sake
of simplicity, we will not pursue this generalization here.

Now let us give a more systematic account of our main results. Let g be a
semisimple complex Lie algebra of rank r with the Cartan decomposition g =
n_ dhon. Lete,h;,fi (i =1,...,r) be the standard generators of g, and
A = (ai;) be the Cartan matrix. The well-known commutation relations between
the generators can be summarized as follows:

the Cartan subalgebra h is abelian with the basis hy,... , h;; (1.1)

the Lie algebra n (resp. n_) is generated by e1,... e,
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(resp. by f1,..., fr) subject to the Serre relations (1.2)
(ad ;)" %ie; = 0 (resp. (ad f;)1 7% f; = 0) for i # j;
[hi, 5] = aijej, [his ] = —ai; fj, [eq, f3] = dizhi (1.3)

Let G be a simply connected complex Lie group with the Lie algebra g. Let N_,
H and N be closed subgroups of G with Lie algebras n_, h and n, respectively;
thus, H is a maximal torus, and N and N_ are two opposite maximal unipotent
subgroups of G. Let B = HN_ and B = HN be the corresponding pair of
opposite Borel subgroups.

The Weyl group W of G is defined as W = Normg(H)/H. For w € W, we
denote by w any representative of w in the normalizer Normg (H). The action of
W on H by conjugation gives rise to an action of W on h and the dual action on h*.
As usual, we will identify W with the corresponding group of linear transformations

of h*. The group W is a Cozeter group generated by simple reflections s1,. .. , S,
given by

si(v) = v —(hi)oi (y €b7); (1.4)
here o, ..., € h™ are simple roots given by o;(h;) = ai;. A reduced expression
for w € W is a sequence of indices i = (i1,... ,%m) such that w = s;, ---s;,,, and

m is the smallest length of such a factorization. We denote by R(w) the set of
reduced expressions for w. The length of any i € R(w) is denoted by !(w) and
called the length of w.

For each i =1,...,r, let z;(t) = exp (te;) be a one-parameter subgroup in N
generated by e;. Following G. Lusztig [10], we define the variety N>¢ of totally
non-negative elements in N as the multiplicative semigroup generated by all x; ()
with i@ = 1,...,7 and ¢ > 0. For any w € W, we set Ny = N>oN B_wB_,
the intersection of N>g with the Bruhat cell corresponding to w. In view of the
Bruhat decomposition G = |J,,cyy B-wB—, the variety N> is a disjoint union of
the N, over all w € W. The varieties N¥;, will be the main object of study in
this paper.

We will think of N as an open chart in the flag variety B_\G of right cosets
of G modulo B_ (thus, G acts on B_\G from the right). To be more precise, we
identify N with its image under the natural projection 7 : G — B_\G. Using
this identification, each N¥; becomes a subset of the corresponding Schubert cell
Cy=B_\B_wB_.

For any sequence of indices i = (i1,... ,inm), we define the map z; : C™ — N
by

xi(t1, .. tm) = @iy (t1) - @iy, (B - (1.5)
The following proposition is due to Lusztig [10]; it shows that every i € R(w) gives
rise to a parametrization of elements of N by m-tuples of positive real numbers.

Proposition 1.1. Let w € W, and i = (i1,... ,im) € R(w) be a reduced expres-

sion of w. Then the restriction of i to the set Ry of m-tuples of positive real

; S m
numbers is a bijection between RTy and N¥.
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Our first main result is an explicit formula for the inverse bijection x;l : NYy —
RY,. (In fact, z; gives a birational isomorphism between C™ and the Schubert
variety X, the closure of Cy, in B_\G; we compute the inverse isomorphism
J)i_l : Xw — C™)

To formulate the answer, we need two ingredients. The first is a birational
automorphism 7,, : X, — X, defined as follows. Let x — 2T be an involutive Lie
algebra anti-automorphism of g given by

el =f, fF=e, Rl =hi (i=1,....,r); (1.6)
we will use the same notation z ~ 27 for the corresponding involutive anti-
automorphism of the group G. We set N¥ = NN B_wB_; under the identification
of N with 7(N), the set N* becomes an open subset of the Schubert cell C,,.

Theorem 1.2. For every z € NY, the intersection N N B_wz" consists of a
unique element ny,(z). The correspondence z +— ny,(2) s a reqular automorphism
of N*. Furthermore, the restriction of n, to N¥ is a bijection of Ny with itself.

The inverse map 7, : N* — N* can be described as follows. Let z +— z* be
an involutive Lie algebra anti-automorphism of g given by

6;261, fiL:fi, h;z—hi (Zzl, ,7“); (17)

we will use the same notation x +— x* for the corresponding involutive anti-
automorphism of the group G.

Proposition 1.3.
(a) For any w € W, the map x — x* restricts to an isomorphism N* — Nt
and to a bijection Ny — ;’61
(b) The map ;' : N¥ — Nv is given by

My (@) = (-1 ()" (1.8)

Theorem 1.2 and Proposition 1.3 will be proved in Section 5. In a special case
when G = SL,11 is of the type A,, and w = wyg is the longest element of the
Weyl group W (which in this case is the symmetric group S,41), these results
were obtained in [2], Lemma 1.3 and Theorem 3.2.5.

The second ingredient in our formula for a:i_l is a family of regular functions
A" € CJ|G], where « runs over extremal weights in the fundamental representations
of G. To be more precise, we recall that the fundamental weights w1, ... ,w, form
a basis in h* dual to the basis h1,...,h, in h. The free abelian subgroup P C h*
generated by the fundamental weights is the weight lattice of G. FEvery weight
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~v € P gives rise to a multiplicative character of the maximal torus H which will
be written as d — d" (d € H). We will call a weight ~ of the form v = ww; for some
we Wandi=1,...,ra chamber weight of level i. (This terminology is motivated
by [2], where these weights in the A, case were associated with chambers in certain
pseudo-line arrangements; in Section 7 we will extend this graphical interpretation
of chamber weights to the types B, and C...) To every chamber weight ~y of level
we associate a regular function A7 on GG, which is unigely up to a scalar multiple
determined by the condition that

N (ydigds) = d{dJA7(g) (y € N, g € G, dy.da € H) (L9)

(for more details and for the choice of a normalization of A7 see Section 6 below).
For example, if G = SL,1 then the chamber weights are in a natural correspon-
dence with subsets J C {1,...,r 4+ 1}, and the functions A7 just introduced are
the minors A7, where A”(g) is the minor of g with the row set {1,2,...,|J|} and
the column set J.

Now we are in a position to formulate our main result.

Theorem 1.4. Suppose i = (i1,... ,im) € R(w), and x = xi(t1,... ,tm) € NY.
Then the components ti,... ,t,, are given by
1 W W4 —Qj i
tk = Awk“’% (Z)Awk_;'_lw,',k (Z) g A k J(Z) Itk 5 (]—10)
JF %k

where z = n; (), and
(1.11)

S S
Wk = Wi, = Sip, Sy q " Sig

(with the convention w1 = e, the identity element of W ).

This theorem will be proved in Section 6. When G = SL,11 and w = wy, it
specializes to Theorem 1.4 in [2]. Note that a generalization of this result to an
arbitrary element w of the Weyl group (for the type A,) obtained in [2], Theo-
rem 5.4.2, is different from the one given by Theorem 1.4 although closely related
to it. In Section 6 we will also prove a version of Theorem 1.4 that generalizes
[2], Theorem 5.4.2. An advantage of the present version is that it implies a family
of criteria for total positivity that generalize those given by [2], Theorem 3.2.1 for
G = SL,+1 and w = wq (the possibility of extending these criteria to an arbi-
trary w € W was not realized in [2]). Each of these criteria says that a point
r € N belongs to NYj if and only if a certain system of m regular functions
(where m = l(w) = dim (N")) takes positive values on z. More precisely, we will
show that Theorem 1.4 implies the following.

Theorem 1.5. Suppose i = (i1,... ,im) € R(w). A point x € N* belongs to N¥
if and only if AV () >0 for k=1,... ,m, where wy = w‘k is given by (1.11).
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This theorem sharpens the following result by G. Lusztig: the variety N>q
consists of elements of NV that act on the canonical basis in every fundamental
representation of G by a matrix with non-negative entries, see [11].

Another application of Theorem 1.4 is an explicit formula for the transition
maps that relate parametrizations of N¥; associated to different reduced expres-
sions of w. To be more precise, for every two reduced expressions i, i’ € R(w) the
transition map R; : Ry — Ry is defined by
R = xifl oxj. (1.12)

1

An explicit formula for R;l can be obtained by simply combining formula (1.5) for
x; and (1.10) for xi_,l.

In Section 3 we will prove that transition maps have the following positivity
property.

Theorem 1.6. The components of the vector t' = R%’ (t) are subtraction-free ra-
tional expressions in the components of t.

The proof is based on the following well-known property of reduced expressions
in Coxeter groups (see [3], [6]).

Proposition 1.7. FEvery two reduced expressions of the same element w € W can
be obtained from each other by a sequence of d-mowves.

Here a d-move is the following operation on reduced expressions: replacing d
consecutive entries i, j,7,j,... by j,%,7,%,..., where d is the order of s;s; in W.
The value of d is determined as follows:

if a;;a;; = 0 (resp. 1, 2, or 3) then the order d of s;s; is 2 (resp. 3, 4, or 6).
(1.13)

Proposition 1.7 reduces the proof of Theorem 1.6 to its special case when the
reduced expressions i and i’ have the form i = (4, j,,...), i’ = (4,4,7,...), with
the length d of both sequences given by (1.13). For d = 2 and d = 3, the transition
map R;l was computed by G. Lusztig (see [9] or [2], (1.13) and (1.14)); this proves
Theorem 1.6 in a simply-laced case. In Section 3 we compute R%I in the two
remaining cases d = 4 and d = 6.

As in [2], the fact that transition maps are subtraction-free opens up an op-
portunity to define them over an arbitrary semifield K instead of R~q (see [2],
Section 2 or Section 4 below for the precise definition of what we mean by a semi-
field). Following [2], we then introduce the Lusztig variety L% = L¥(K). An
element t of LY is, by definition, a tuple

t = ())ic R (w)
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where each 1 = (til, . ,tin) is a “vector” in K™, and these vectors satisfy the
relations ¢ = R%/ (t!) for all i,i’ € R(w). The Lusztig variety is studied in Section 4
below. We develop an “abstract version” of the Chamber Ansatz (1.10), where
the functions A7(z) are replaced by variables M., taking values in the ground
semifield K. The formulas for the transition maps associated with d-moves then
translate into (subtraction-free) polynomial relations between the M.,. For d =3
these relations essentially coincide with the quadratic 3-term relations obtained
in [2], (2.5.4). In Section 4 we find these relations for d = 4 and d = 6: it turns
out that each 4-move produces two relations of degrees 3 and 4, while a 6-move
produces four relations of degrees 6, 9, 10, and 15. In view of Theorem 1.4, the
functions A7 satisfy all these relations in the coordinate ring C[G].

An especially interesting choice of the ground semifield K is K = Z, where the
usual addition plays the role of multiplication, and taking the minimum plays the
role of addition (this is the so-called tropical semifield which played an important
part in [2]). Over this semifield, the transition maps become certain piecewise-
linear transformations. When G is simply-laced, and w = wg, the Lusztig variety
LY over the tropical semifield is naturally identified with the canonical basis for
the quantum group corresponding to N (this observation due to Lusztig was a
main motivation for our interest in total positivity). In a non-simply laced case,
or when w # wq, the relationship between the totally positive varieties and the
canonical basis is much less understood. However, one can show that for the type
Bs, the piecewise-linear version of our formula for the transition map (see (3.4)
below) is equivalent to the formula for the canonical basis given in [8], Section 12.5
(we thank the anonymous referee for pointing this out to us).

We would like to note once again that the above results can be extended to arbi-
trary Cartan matrices and corresponding Kac-Moody algebras. It is also possible
to “quantize” the maps x; by constructing their g-deformations. Some results in
this direction were obtained in [1]; in fact, most of the results in the present paper
have their “quantum analogues”. They will be discussed in a separate publication.

The paper is organized as follows. In Section 2 we discuss the properties of
chamber weights. In Section 3, we compute the transition maps corresponding to
d-moves; as explained above, the fact that the answers are subtraction-free implies
Theorem 1.6. An “abstract” version of the Chamber Ansatz is introduced and
studied in Section 4. Theorem 1.2 and Proposition 1.3 are proved in Section 5,
while Theorems 1.4 and 1.5 are proved in Section 6. Finally, in Section 7 we give
a graphical interpretation of our general results for the types A,., B,., and C,.

ACKNOWLEDGMENTS. This work was partly done during the visit of one of the
authors (A.Z.) to the University of Basel, Switzerland, in May-June 1996. He is
grateful to Hanspeter Kraft for his hospitality.



134 A. Berenstein and A. Zelevinsky CMH

2. Chamber weights

In this section we develop the properties of chamber weights. For the conve-
nience of the reader, we start by recalling some well known results about roots,
weights, reduced expressions, etc. We retain the notation of Section 1. Thus,
g is a semisimple complex Lie algebra of rank r with the Cartan decomposition
g = n_ @ h @ n satisfying the properties (1.1) through (1.3). The root lattice Q
is a free abelian subgroup in h* generated by simple roots «aq,... , .. The root
decomposition of g is written as g = h ®© P, g(), where ® is the root system
of g. Let Q4+ be the additive semigroup in @ generated by aq,...,a,. Then & is
the disjoint union &4 U (—®, ), where & = & N Q4 is the set of positive roots;
thus, n = @aeh g(a) and n_ = @aeh g(—a).
The Cartan matrix A of g has the following well-known properties:

ai; =2 for i=1,...,r, and a;; € {0,—1,—-2,-3} for i# j; (2.1)

the matrix C' = (¢;; = dja,;) is symmetric
o (2.2)
for some positive integers dy, ..., d,.

We fix the matrix C' as in (2.2), and define a symmetric bilinear form on h* by

(Oéi, Oéj) =Cij = diaij . (23)

This form makes the real vector space hy generated by the simple roots into an

Euclidean space. Each simple reflection s; € W acts on this space as an orthogonal
reflection:

si(v) =7~ (v,a ), (2.4)

where o = 2a/(a, ). In particular, the action of s; on the simple roots «;,

simple coroots a]V and fundamental weights w; is given by

si(aj) = Q5 — A4, 81(043/) = Oz}/ - ajia;/, Si(w]‘) = Wwj — 5@‘0@. (25)

It also follows that the scalar product is W-invariant.
For an element w € W we define its inversion set by

Inv (w) = &4 Nw 1 (-=d,). (2.6)
It is known that the cardinality of Inv (w) is equal to [(w). Furthermore, Inv (w)
can be recovered from any reduced expression i = (i1,... ,4m,) € R(w) as follows.

As in (1.11) above, we set

W = Si Si 1 """ St (2.7)
(with the convention win 41 = e, the identity element of W). We also set
af = Wi (i) (2:8)

The following proposition is well known, see [3], VI,1.6.



Vol. 72 (1997) Total positivity in Schubert varieties 135

Proposition 2.1. The roots a}c for k =1,...,m are distinct, and {ail,aiQ, cee
o, } = Inv (w).
This proposition has several important corollaries. For the convenience of the

reader, we provide the proofs of those of them that seem to be less well known.

Corollary 2.2. A simple root c; belongs to Inv (w) if and only if l(ws;) = l(w) —
1; in this case we have Inv(w) = {a;} U s;(Inv (ws;)). Similarly, o; belongs
to Inv (w=1) if and only if l(s;w) = l(w) — 1; in this case we have Inv (w) =
{—w ()} UInv (s;w).

Corollary 2.3. The following two conditions on a pair of elementsu,w € W are
equivalent:

(a) 1) = I(u) + lwu);

(b) Inv (u) C Inv (w).

Proof. The implication (a)=-(b) follows from the second statement in Corollary 2.2.
The reverse implication (b)=-(a) is trivial if u = e, so we can assume that u #
e, i.e, Inv(u) # 0. Let oy € Inv(u) C Inv(w). Using the first statement in
Corollary 2.2, we conclude that [(ws;) = l(w)—1, l(us;) = l(u)—1, and Inv (us;) C
Inv (ws;). Using induction on [(u) we can assume that (a) is true when w and u
are replaced with ws; and wus;, respectively. Clearly, this implies that (a) is also
true for w and u, and we are done.

Corollary 2.4. Fori=1,...,r and w € W, we have w(w;) € w; — Q4. Further-
more, the stabilizer of w; in W is the subgroup W» C W generated by {s;:j #1i}.

Corollary 2.5. Fach coset in W/W? has the unique representative of minimal
length. Furthermore, u € W is the element of minimal length in its coset uW? if
and only if l(us;) = l(u) + 1 for all j # i; in this case l(uwv) = l(u) + [(v) for all
v € W

Let us now apply the above results to the study of chamber weights. Recall
from the introduction that by a chamber weight of level i we mean a weight in
Ww;, the W-orbit of the i-th fundamental weight (in view of Corollary 2.4, the
orbits Ww; are disjoint, so the level is well-defined). Every such weight v can be
uniquely written as v = uw;, where u is of minimal length in its coset ul¥%; this
presentation will be called the minimal presentation of v. We set

I(y)={a € ®; : (y,a") <0}. (2.9)

Proposition 2.6. If v = ww; for some w € W then I(y) C Inv(w™'), and
(v,a¥) = 0 for all o € Tnv (w™') — I(y). A presentation v = uw; is minimal if
and only if I(v) = Inv (u™1).
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Proof. Let v = ww;. If a € I(7) then 0 > (y,a") = (wi,w™'aV), hence wla €
—®4, e, a € Inv(w™ ). This proves the inclusion I(y) C Inv (w™!). Moreover,
the same equality (v,a") = (w;,w 'a) shows that (y,a") < 0 for all a €
Inv (w™1); therefore, (v,a") =0 for all @ € Inv (w™=1) — I ().

It remains to prove the inclusion Inv (u=') C I(v) for the minimal presentation
v = uw;. We proceed by induction on I(u). There is nothing to prove in the case
when [(u) = 0, so we can assume that u = s;u’ for some j, where [(u) = [(u’) + 1.
Let 4" = s;7; it is easy to see that 4’ has the minimal presentation v = v/w;.
By induction, we can assume that (7/,a/V) < 0 for all o/ € Inv(u'~!). On the
other hand, we have Inv (u™!) = {a;} U s;(Inv (u/71)), in view of Corollary 2.2.
If « = s;0' € s;(Inv (v'~1)) then (v,a") = (v/,a’V) < 0. To complete the proof,
it remains to show that (v, a}/) # 0, or, equivalently, that s;v # v. But the last
inequality follows from the fact that v = ww; is the minimal presentation of ~.
This completes the proof of Proposition 2.6.

The minimal presentation of a chamber weight can be extracted from an arbi-
trary presentation as follows.

Proposition 2.7. Let v = ww; be a chamber weight of level i, and let i =
(i1,--- »im) € R(w). The minimal presentation of v is obtained from the expres-
sion y = 8;, - 8i,,w; by removing all the factors s;, for which (w;, (a},)") = 0.

Proof. Let u be the element obtained from the product w = s;, - - - s;,, by removing
all the factors s;, for which (w;, (a].)¥) = 0. Using (2.4), it is easy to show that
the equality (w;, (a},)¥) = 0 is equivalent to

Sip *t Sim Wi = Sip g 1t Si, Wi

It is now obvious that uw; = ww;, so it remains to show that the presentation
¥ = ww; is minimal. Rewriting the scalar product (w;,(al)Y) as (v, w(ad)Y)
and using Proposition 2.6, we conclude that the equality (w;, (al)Y) = 0 is also
equivalent to the condition that —w(al)¥ € Inv(w~') — I(y). Removing the
corresponding terms s;, from the reduced factorization of w, we express u as
the product of |I(y)| simple reflections. Now the minimality of the presentation
v = uw; follows from the last statement in Proposition 2.6, and we are done.

Let i = (i1,...,im) € R(w) for some w € W. We say that a chamber weight ~y
is an i-chamber weight if v = wiwi forsomek=1,... ,m+landi=1,...,r (see
(2.7)). Let E' denote the set of all i-chamber weights, and let E* = UieR(w)Ei-
The elements of E% will be called w-chamber weights. The following characteri-
zation of w-chamber weights generalizes [2], Proposition 5.3.1.

Proposition 2.8. A chamber weight v is a w-chamber weight if and only if I(~y) C
Inv (w).
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Proof. Let v = uw; be the minimal presentation of a chamber weight ~. In view
of Corollary 2.3 and Proposition 2.6, the inclusion I(y) C Inv (w) is equivalent to
l(w) = l(u=1) + l(wu). Clearly, the last condition implies that u = wi for some
i€ R(w)and k=1,...,m+ 1, hence that 7 is a w-chamber weight. Conversely,
if v = w;lvwi is a w-chamber weight then wlk € uW?, so Corollaries 2.3 and 2.5 and

Proposition 2.6 imply that I(y) = Inv (u!) € Inv ((wl)~!) C Inv (w), as desired.

We now turn to the study of i-chamber weights, where i = (i1,... ,im,) € R(w)
is a fixed reduced expression. For k =1,...,m, we set
y(k; 1) = wiw;, . (2.10)

Proposition 2.9. The set E' consists of m + r elements: the v(k;i) for k =
1,...,m, and the fundamental weights w1, ... ,wy.

Proof. LetvzwiwiEEi, where 1 <k<m+land1<i<r. Ifi#£iforl>k
(in particular, if & = m + 1) then v = w;, in view of Corollary 2.4. Otherwise, let
[ be the minimal index such that [ > k and 4; = . Again using Corollary 2.4, we
see that v = «(l;i). The fact that the elements y(k;1i) and w; are all distinct, is
also an easy consequence of Corollary 2.4.

In general, the presentation (2.10) of ~(k;i) is not minimal. The minimal
presentation can be extracted from it with the help of Proposition 2.7, which now
takes the following form.

Corollary 2.10. The minimal presentation of v = ~y(k;i) is obtained from the
presentation y = s;,, - - - si,w;, by removing all the terms s;, for which (7y, (oq)Y) =
0.

We conclude this section with the following proposition that generalizes Lem-
ma 2.7.2 in [2].

Proposition 2.11. For any w-chamber weight -y, the set R(w;v) = {i € R(w) :
v € E'} is connected with respect to d-moves.

Proof. Recall that d-moves were defined in the introduction, after Proposition 1.7
(in fact, Proposition 1.7 is a special case of Proposition 2.11). Let i € R(w;~),
ie, v = wiwi for some k = 1,..., m+1and i = 1,...,r. We will write i
as a concatenation (il,i2), where i! = (41,... yig—1) and iZ = (tky- -+ yim). By
Corollary 2.4, the index i and the coset w;le? e w/ W? depend only on ~. Let
u be the minimal length representative in wLW?, i.e, v = wuw; is the minimal
presentation of v. By Corollary 2.5, I(w}) = I(u) + I[(u~twl). Tt easily follows
that I(w) = l(wu) + I(u™1). Let us fix some reduced expressions j' € R(wu)
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and j> € R(u~!). Tt is enough to show that i can be transformed to (j',j?)
by a sequence of d-moves staying at all times in R(w;~y). This can be done in
two steps, each time using Proposition 1.7. First, we can transform i into a
reduced expression of the form (il,i', j2) by a sequence of d-moves applied to
i e R((wl)~1). Second, we can transform (i',i,j%) to (j*,j2) by a sequence of d-
moves applied to (il, i') € R(wu). Clearly, all the intermediate reduced expressions
in this process belong to R(w;~). This completes the proof of Proposition 2.11.

3. Transition maps

In this section we study transition maps R%’ : RTy) — Ry (recall that they are
defined by (1.12) in the introduction). We will find explicit formulas for R%/, where
the reduced expressions i and i’ have the form i = (i,4,4,...),1 = (4,%,5,-..),
with the length d of both sequences given by (1.13). We will use the notation
R (t1,... s ta) = (p1,--. ,pa); thus, the tuples t1,... ,tq and py,...,pg are
related by
wi(t1)w;(t2)i(t3) - - = j(p1)zi(p2)w; (p3) - - - - (3.1)
If a;; = aj; =0, and so d = 2 then z;(¢) and z;(s) commute with each other
for all s and t, hence the transition map Rf; is given by

p1 =12, p2 =11. (3.2)

The remaining three cases when d = 3, 4, or 6 are treated in the following theorem.

Theorem 3.1.
(a) Let ajj = aj; = —1, so d = 3. The transition map R]}] is given by
lat3 tit2
= =t +t = . 3.3
P= s =t pe = (3.3)
(b) Let a;; = —2, aj; = —1, so d = 4. The transition map Rf;f; is given by
tot3ts T2 3 titats
pL=—"—,p2=—",pP3=—, p4= : (3.4)
T ™ ™2 ™
where
m = titg + (t1 + t3)ta, mo = tity + (t1 +t3)%ts. (3.5)
(c) Let ai; = —3, aji = —1, so d = 6. The transition map Rfﬁﬂ; is given by
tot3t2t3te 3 3 o 73 titot3tts
1= 345 , P2 = —, P3 = 27p4: 7p5:_176: 3 5
T3 T T34 T T4 m

(3.6)
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where
T =t1tot3ts+t1t2(t3+15)2te + (t1 +13)tat2ts , (3.7)
To = tot3t g+t 35 (t3+t5) te+(t1+t3) 23t te+t1 totatite (3t 1tz +2t5+2t3t5+2t1t5)
(3.8)
Ty =133ty +53t3 (t3+t5) St +(t1+13) 123 t+12 bt gt te (3t 1t3+3t3+3t3ts+2t115) ,
(3.9)

Ty =t3t5t5t (t1tat3ta +2t1to(ts+15) 36+ (3t1ts + 33+ Btats +2t1t5 ) tatite)

3
HE (t1ta(ts+ts)2+ (t1+3)tat)” . (3.10)

Proof. One way to prove our theorem would be to compute both sides of (3.1) in
some matrix representation of the group generated by one-parameter subgroups
z;(t) and z;(s). For this purpose, one could use standard matrix representations
of rank two semisimple groups of types Aa, Ba (or C3) and Ga. For the type Aa,
this was done in [9]. Using a more uniform approach, we will realize the group
N as a multiplicative subgroup in the completion U of the universal enveloping
algebra U = U(n) of n. (This realization of N makes sense for an arbitrary Kac—
Moody algebra.) To be more precise, recall that I/ is an associative algebra with
unit generated by e1,... , e, subject to the Serre relations (ad e;)' =% (e;) = 0 for
i # j, where adz(y) = zy — yz. The algebra U is Q4-graded via deg(e;) = ay;
the homogeneous component of degree v € Q4+ in U will be denoted U(7y). The
completion U consists of formal infinite sums 3 7). The
multiplication

yeqy Uy, Where uy € U(

(S0)(£0) - S (S )

makes {{ into an agsociative algebra. The group N is embedded into the multi-
plicative group of U via

z;(t) = exp(te;) = Z t”egn) ,

n>0

where the notation e(™ stands for the divided power e"/nl.

(a) To prove (3.3), we consider the basis {e;,e;,e;e;,eje;} in the subspace
U(oi) & U(ay) & U(ou + ) of U, and let {¢;,¢j,c¢ij,cji} be the corresponding
coordinate functions. Computing these coordinates on both sides of (3.1), we
obtain:

¢i =t1 +1t3 =p2, ¢;j =12 =p1+p3, ¢ij = tite = pap3,
which implies (3.3).

(b) Consider the subspace U(c;) ® U(a;) & U(y + o) & U204 + ;) of u.

Since the Serre relations between e; and e; live in degrees 3a; + o and «a; + 2a,
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they do not affect this subspace, so as its basis we can take all non-commutative
monomials in e; and e; of given degrees. Let c¢;, ¢j, ¢;j, and c¢;;; be the coordinate

2)

i

functions corresponding to the basis vectors e;,e;,e;e;, and e
Computing these coordinates on both sides of (3.1), we obtain:

e; respectively.

¢ =t1+t3 =p2+p4,c; =to+1t4 =p1 +p3,

cij = titg + (t1 +t3)ts = pap3 , ciij = tita + (t1 + 13)°ta = P3p3.,
which easily implies (3.4).

(c) The same argument as in (b) provides five relations between the py and the
t given by

ci =t1+t3+t5 =p2+ps+pe, c; =1t +ts+16 =p1+p3+0ps5, (3.11)

cij = titg + (t1 +t3)ta + (t1 + t3 + t5)te = pap3 + (P2 + pa)ps , (3.12)
Ciij = 3ty + (t1 4+ 13)%tg + (t1 + t3 + t5)%te = pap3 + (p2 + pa)?ps,  (3.13)
Ciiij = tita + (t1 +t3)3ts + (1 +t3 +t5)3t6 = paps + (D2 +pa)’ps.  (3.14)

To obtain a sixth relation, consider the component U (3c; + 2¢a;). To analyze
this subspace we need to take into account the Serre relation (ad 6]‘)26i = 0, which
can also be written in the form

2 2
eje;e; = eg» )ei + eieg. ) .
It is easy to see that dim U (3c; +2a;) = 7. In fact, there are 10 non-commutative
monomials of multi-degree (3,2) in e; and e; but, in view of the above Serre rela-

. . 2 2 .
tion, each of the 3 monomials ez( )ejeiej, e;eje;e;e;, and ejeiejeg ) that contain a
factor eje;e; is a linear combination of the remaining 7 monomials. To be more
(2 ,(2) 3),(2)

i e; e;ande; "e;”, while e;ejeieje;

(2),(2) (2)
i 5j

e;, and eje;eje;

. 2 . . . .
precise, e; "’ eje;e; is a linear combination of e

2) 2

is a linear combination of ei€e; e and e

2),63) 2) 2

i€ and ee; e . Note that none of these linear combinations

K]
involve the monomial eieje§2)ej. Hence the corresponding coordinate function
cijiij can be computed as in the free algebra generated by e; and e;. Computing
this coordinate on both sides of (3.1), we obtain the desired sixth relation between
the pi and the tg:

is a linear com-

bination of e

Cijiij = titatity + tita(ts + t5)%te + (t1 + t3)tatdts = papspips . (3.15)

The relations (3.11) through (3.15) provide a system of 6 polynomial equations
with 6 unknowns p1, ... ,pg. This system was solved using Maple, and the solution
is given by (3.6). In a more old fashioned way, the system can be solved as follows.
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First, comparing (3.7) and (3.15), we see that
2

T1 = Cijiij = P2P3P4D5 - (3.16)

Next, consider the expression § = ¢;;¢;i45 — c%ij. An easy calculation using (3.12),
(3.13) and (3.14) shows that

8 = titot3ta(ty + t3) + tita(ts + t5)2te(ty 4 t3 + t5) + (t1 + t3)tatPte(ty + t3 + t5)

2

= pap3pips(p2 + pa) - (3.17)
Now a direct check shows that

To = ¢ij0 — CiijT1 = P3PAPIDS s (3.18)
T3 = Ciij0 — Ciiij T = PIPADADS » (3.19)
T4 = T — w3 = papap3pE (3.20)
titot3tyts = c;my — 8 = PapspaPsDe » (3.21)
tot3t3tdte = cjm3 — cijma + T = P1PIPADADS - (3.22)

The right hand sides of (3.16) and (3.18) — (3.22) are monomials in py,... ,pg, and
an easy check shows that they are related to pq, ... ,pg by an invertible monomial
transformation. Computing the inverse of this transformation yields (3.6), thus
completing the proof of Theorem 3.1.

Remark 3.2. It is easy to see that in each of the cases in Theorem 3.1, the
formulas expressing the t; through the py, (i.e., the inverse transformation R%")
can be found by the substitution py — t441_k, tk — Pat+1—k in (3.3), (3.4), or
(3.6).

Remark 3.3. Note that, in each of the cases, our formulas for the transition map
Rf;z imply two “monomial” relations: for d = 2 they are given by (3.2), and in
the other cases they are as follows:

tita = paps3, tatz =pip2 (d=3); (3.23)
titots = popspa, tatits = pip3ps (d=4); (3.24)
titot3tats = papspipspe, tatititste = pip3papips (d =6). (3.25)

Remark 3.4. Since all the expressions in (3.2) - (3.10) are subtraction-free, The-
orem 3.1 implies Theorem 1.6 from the introduction.
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4. Chamber Ansatz

The main result of this section is a generalization of Theorems 2.7.1 and 5.3.2
from [2]. The terminology below is suggested by the A, case treated in [2]. In
what follows we fix an element w € W of length [(w) = m. As explained in the
introduction, Theorem 1.6 allows us to associate to w the Lusztig variety LY =
LY (K) defined over an arbitrary semifield K. As in [2], Section 2.1, by a semifield
we mean a set K endowed with two operations, addition and multiplication, which
have the following properties:

addition in K is commutative and associative; (4.1)
multiplication makes K an abelian group; 4.2
distributivity: (a + b)c = ac + be for a,b,c € K. (4.3)

Recall from the introduction that an element t of LY is a tuple t = (ti)ie R(w)
where each t1 = ( il, .., tl ) is a “vector” in K™, and these vectors satisfy the
relations " = R}l (t!) for all i,i’ € R(w). The following proposition generalizes [2],
Theorem 2.2.6 and is proved in the same way.

Proposition 4.1. For any i € R(w), the projection t — t' is a bijection between
the Lusztig variety L (K) and K™.

We will now present an alternative description of £L* that generalizes the one in
[2], Sections 2.7 and 5.3. We will use the terminology and notation from Section 2.
Let us introduce the variables M., (y € E"™) labeled by w-chamber weights and
taking values in K. We will express the components t}C of an element of the Lusztig
variety by means of the substitution

; 1 —a;.;
i ||Mk 4.4
tk M wi w; ( )

i, M )
WyWip =Wy 41 Wik jA£dy,

In the case of type A,, this substitution reduces to the Chamber Ansatz in [2],
(2.5.3). We will call (4.4) the generalized Chamber Ansatz. The following propo-
sition generalizes [2], Proposition 2.5.1.

Proposition 4.2. The point t = (t}c) whose components are defined by the gen-
eralized Chamber Ansatz (4.4) belongs to the Lusztig variety L (K) if and only if
the M, satisfy the following relations (4.5)-(4.11).

Case d =3. Suppose a;; =aj; =—1, and w' € W is such that l(ww's;s;s;) =
l(w) —l(w's;s;si) =l(w) — l(w') — 3. Then

Mw’s,;w,zMw’Sjwj = Mw’w,;Mw’s,;Sjwj + Mw’Sjsiw,;Mw’wj . (45)
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Case d = 4. Suppose a;; = —2,a;; = —1, and w' € W is such that
lww's;sjsis;) = l(w) — l(w's;s58:85) = l(w) — l(w') — 4. Then
Mw/siwiMw’sj-siwiMw/s]'wj - M2 Mw’w-

w’s;jsiw; j (46)
+ (Mw'WiMw/SjSiSjo + MwlsisjsiwiMwlstj)Mw/Wi )
Mw’siSjijE)’sjsiwi
+ (Mw/wiMw/SjSiSjo + MwlsisjsiwiMwlstj)Q )
Case d = 6. Suppose a;; = —3, aj; = —1, and w' € W is such that

_ 2
Moy, = Murs,sisy0, M,

J w'SJ' SiWi

Mw’wj

l(ww'sis;sisjsisi) = l(w) — l(w's;sjsis58:85) = l(w) — l(w') — 6.
Then
2
Mw’siwiMwlsjsiwiMw/sj-sisJ-siwiMw’s]wj Mw’SjsiSij

_ 3
- Mw/sjsiwiMw’sJ‘sisJ‘siw,zMw’wj Mw’Sjs,:Sjwj

+ (Mw’wiMw/s]'sistj +Mw/s]'si5jsiwiMw/5jwj)2Mw’wiMw/5jsi5jsiwi

=+ (MUJ'SJ‘ Siw; Mw/Sij,SjS,‘,Sjw_j +Mw’s,¢Sj $iS;Siw; Mw’SjsiSjwj)Mw’wiME/Sjsiwi Mw’Sjwj ;
(4.8)

Mw'SiSjSiWiMS’]'SJS,;QJ,‘,MEJ’S;‘Sq‘,SjSiWiMw,sjwjMi,sjsisjwj

= MS]’SJ‘S,‘,wq‘,Mg/sjsisjsiWiMw/wjMg}/sjsisjwj

+ (Mw'wiMw/Sij,Sij‘ +MUJ/SJ‘S7;SJ‘S7;OJ1‘,MUJ/S]'WJ‘)3M7i)))/5jsi5j5iw1'

+ (Mw/SjsiwiMw’sj-sisj-sisj-wj +Mw’5i5j5i5jsiwiMw’SjsiSij)QMi/SjsiwiMw’s]wj

+ (3Mw’wiMw’Sjsiw,¢Mw’Sjs,:Sjwj Mw/Sij,SjS,‘,Sjw_j +2Mw’w,¢Mw’s,:sj's,:sj's,:w,:ME;'Sjsisjwj

+2Mw’5jsiSjsiwiMw/siSjsiSjsiwiMw’sj-wj Mw’sj-sisj-wj

+2Mw’sjs,1wiMw’sJ'sisJ‘siw,¢Mw’Sjwj Mw’Sjs,:Sjs,:Sjwj) : M?%/SjSiwiMl%'S]'SiS]‘SiwiMw/sjwj;
(4.9)

MwlsisjsisjwjMi?}'SjSiwng'SjsiSjsiwj

= M3

M3

w's;jsiw; wW'S;j5;855;W;

33
+ (Mw’wiMw’Sj 8iSjw; +Mw’3jsi8jsiw,¢ Mw’Sjwj) Mw/sj 8§85 8iw; Mw’SjsiSjsiSjwj

2
Moy sy, M

1g.g.: . .
it w!sjsisw;

2
Mw/wjMw/sjsisjwjMw/sj-sisj-sis]'wj

+ (Mw/Sjsiwi Mw’5j 5i5;8;5;W; +Mw’5i5jsi5jsiwi Mw’SjsiSij )3M3)/5j5iwi Mw’s]wj

+ (3Mw’wiMw’Sjsiw,¢ Mw’Sjs,:Sjwj Mw/Sij,SjS,‘,Sjw_j +3Mw’w,¢ MUJ’S,‘,SJ‘ 8i8;8iw; Mgﬂsjsisjwj
+3Mw’5jsiSjsiwiMw/siSjsiSjsiwi Mw’sj-wj Mw’5j 5iSjw;

+2Mw’3js,¢wiMw/Sjsi8jsiw,¢ Mw’Sjwj Mw’Sjs,:Sjs,:Sjwj)

s s;wi P w s jsisjsiw P w sjwi Y w! s sissisjwy s

(4.10)
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6 3 2 3
Mw/sisjwjMw/Sjs,;w,;Mw/Sjs,;Sjs,;w,:Mw’Sjwj Mw’Sjs,:Sjwj

_ 3 2
= (M3, e Murs 515,00 Mo, M

j w'sjs;8jw;
3
+2(Mw’wiMw/5j5i5jwj +Mw’5j5i5j5iwi Mw’sj-wj) Mw/sj-sisj-siwi
2
+ (3MW’W7:MW’SJ‘SM11 Murs;sisjor; Muwrs;sisgsisjo; +3Muwiw; Mursys;sissiws M

7 w'S]'SiS]'wJ'
+3Mw’5jsiSjsiwiMw/siSjsiSjsiwi Mw’sj-wj Mw’5j 5iSjW;
2
+2Mw’s]'siwiMw’5jsi5jsiwi Mw’Sjwj Mw’sjvsis]'sis]wj)Mw/sjsiwiMw’s]'wj }
M3 M?> M?>

w’'s;siw; U}/SjS‘,‘,SjS‘,‘,OJ‘,‘,ij w's;8i8;wWj
2
+{(Mw’wiMw’sJ'sis]wj+Mw’5jsi5jsiwiMw’s]'wj) Mw’s]'sisjvsiwi

2 3
+ (MW’S;‘ siwi Murs;sisjsisjw; T Muwrsisysisgsiws Muw's;sisjo; ) Mw’Sj siwi Muw'sjw; } :
(4.11)

The proof is straightforward: we only need to substitute the expressions given
by (4.4) into the formulas (3.2), (3.3), (3.4), and (3.6), and clear the denomina-
tors. Note that the monomial relations referred to in Remark 3.3, will be fulfilled
automatically, so each of the cases d = 2, 3,4, or 6 produces d— 2 relations between
the M,.

Generalizing [2], Section 2.7, we define M® = M"(K) to be the set of all tuples
M = (M,)yerw of elements of the ground semifield K satisfying the relations
(4.5)—(4.11). According to Proposition 4.2, the generalized Chamber Ansatz (4.4)
provides a well-defined map M — t(M) from M®(K) to LY(K). Let MY =
M¥(K) be the subset of M® formed by those tuples M = (M,) that, in addition
to (4.5)—(4.11), satisfy the normalization condition

My, =1, i=1,...,r. (4.12)
The following theorem generalizes Theorem 2.7.1 in [2].

Theorem 4.3. The restriction to M" of the map M +— t(M) is a bijection
between M™ and the Lusztig variety L. The inverse bijection t = (t}.) — M(t) =
(M) from LY to M™ is given as follows: if v = v(k;1i) for some i € R(w) and
k=1,...,m, then
M, = M, (6) = [ hr® (4.13)
1>k

where b(k,1;1) = (v(k; 1), (ad)Y).
Proof. First we will show that M., is well defined via (4.13), i.e., that the right hand

side of (4.13) does not depend on the choice of i and k such that v = y(k;i). In view
of Proposition 2.11, it is enough to show the following: if v = v(k;i) = v(k';1),
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and i and i’ are related by a d-move, then

H(t})b(k’l;i) _ H (t}')b(k',l;i') )

1>k 1>k

This is checked directly using the formulas for the transition maps in Theorem 3.1;
to be more precise, we only need the “monomial” part of the transition maps given
by (3.2) and (3.23)-(3.25).

To complete the proof of Theorem 4.3, it remains to show that both compo-
sitions M — M(t(M)) and t — t(M(t)) are identity maps. In proving this, we
will fix a reduced expression i = (i1,...,im) € R(w) and will use a shorthand
My = M), tk = t}c, and b(k,1) = b(k,[;1). Using this notation, the correspon-
dence t — M(t) given by (4.13) can be written as

My =", (4.14)
1>k

while the Chamber Ansatz correspondence M +— t(M) given by (4.4) can be
written as 1

th = [ M0, (4.15)

Mle/(k;ik) i ( 71)

where v(k;j) = min{l : I > k, iy = j} (if 4y # j for | > k then we set v(k;j) =
m+1 and M,,4+1 = 1). The formulas (4.14) and (4.15) define two monomial
transformations K™ — K™, and we only need to show that they are inverses of
each other. Clearly, it is enough to show that one of their compositions is the
identity map. So it suffices to prove the following identity for £k =1,... ,m:

1 EANC)
e E(Wym) 142,05 ) (4.16)
= M jFEG

The exponent of M}, on the right-hand side of (4.16) is equal to

_b(k7k) - _(’Y(k;i)v (O‘}c)v) = (Wikvo‘;/k) =1,

as needed. It remains to show that for every &’ > k, the variable M} cancels out on
the right-hand side of (4.16). Let ijy =4, and let ¥/ = max{l: k <l <k, i, =1i}
(if i # i for k <1 < k' then we set k" = k —1 and b(k, k") = 0). The exponent of
M on the right-hand side of (4.16) can be written as

—(b(k, K)+b(k, K+ > ai,i,b(k,Z)) . (4.17)
Lk <1<k’
Remembering the definition of b(k,[), we can rewrite (4.17) as

(1), () +0k) + YD analad)) (4.18)

LE<I<K
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Acting on both arguments in the scalar product by s;, ---s;,,, we can rewrite
(4.18) as (wj,, ), where

— . . Vv A Vv N <X} .. Vv
B =5i, - Siy,_ 0 +Si S, qf + E Sip - Sip_q (@i, ail) . (4.19)
Lk <1<k

In view of (2.5), we have
Vo_ Vv V.
Qi O = O — 84,0 5

substituting this expression into (4.19), we see that the sum becomes telescoping,
and @ = 0. This completes the proof of (4.16) and of Theorem 4.3.

The following corollary generalizes Corollary 2.7.4 in [2].

Corollary 4.4. For everyi€ R(w), the components M ez (k=1,...,m) form
a system of independent coordinates on M™(K), that is, they can be assigned
arbitrary values in K, and the remaining components M., of a point M € M™(K)
are expressed through them as subtraction-free rational expressions.

Proof. In the course of the proof of Theorem 4.3, we have shown that, for every
i € R(w), the components t} of a point t € £*(K) and the components M (i)
of the corresponding point M € M™"(K) are related to each other by an invert-
ible monomial transformation (see (4.14) and (4.15)). To prove our corollary, it
remains to observe that by Proposition 4.1, the tl for any given i € R(w) form
a system of independent coordinates on £*(K), and the remaining components
t}; are expressed through them via the transition maps R;l which are given by
subtraction-free rational expressions.

5. Proofs of theorem 1.2 and proposition 1.3

As in the introduction, we consider the open subset N* = N N B_wB_ of the
Schubert cell C,. The involutive antiautomorphisms x +— z? and x +— z* of G
(see (1.6), (1.7)) preserve H and Normeg(H), and so act on W. We will denote by
w a representative of w € W in Normg(H); a direct check shows that

W =W =w1, (5.1)
For any w € W, we define the subgroups N(w) and N’(w) of N by
N(w)=Nnw 'N_w, N'(w)=Nnw 'Nw. (5.2)

The following two facts are well-known:
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the map (z,y) — xy induces a bijection N(w) x N'(w) — N; (5.3)
the map (z,y) — 2wy’ induces a bijection B_ x N(w) — B_wB_. (5.4)

Now we are ready to introduce the map 7,,. We will do this in a slightly more
general setting than in Theorem 1.2.

Proposition 5.1. For every z € N¥-N'(w), the intersection NNB_wz" consists
of a unique element x = n,(z), so the correspondence z — n,,(2) is a map from
N".N'(w) to N“. Fory,z € N*-N'(w), the condition n,(y) = nw(2) is equivalent
toy 'tz € N'(w).

Proof. The uniqueness of z and the fact that © € N are obvious. To prove the
existence of z, it is enough to show that w27 € B_N for all z € N¥ - N'(w).

Since (B_N)T = B_N and (wzT)T = w1 (see (5.1)), we only need to show
that N* - N'(w)w ' ¢ B_N. Using (5.3) and (5.4), we obtain

NY. N'(wyw~! ¢ B_wN(w)'N'(w)yw ¢ B.w- (w !Nw)yw ! =B_N,

as desired. Finally, the condition 7,,(y) = 7. (2) can be rewritten as wy” (wz")~! €
B_, which is easily seen to be equivalent to y~ 1z € N’ (w). This completes the
proof of Proposition 5.1.

We now turn to the proof of Proposition 1.3. The fact that the map = +— z*
restricts to a bijection N* — N w™" follows at once from the definition (1.7) and
from (5.1). Furthermore, (1.7) readily implies that, for any i = (i1,... ,im) €
R(w), we have

{Ei(tl,... ,tm)LZIEi*(tm,... ,tl), (5.5)
where i* = (im,...,i1) € R(w™!). In view of Proposition 1.1, this shows that
x — ' restricts to a bijection N¥j — N;”(; , thus completing the proof of Propo-
sition 1.3 (a).

Part (b) of Proposition 1.3 can be reformulated as follows.

Proposition 5.2. If z € N¥ and x = n,(z) then z* = n,-1(x"); therefore,

Nw : N — N is a bijection.

Proof. According to (5.4), every z € N* can be uniquely expressed as
z=azTwy" (r €N, ye Nw)), (5.6)

where the choice of a representative w depends on z. We claim that the component
x in (5.6) is equal to 1, (2). Indeed, (5.6) can be rewritten as WzT = wyw’ x; using
(5.1), we see that Wyw! € B_, hence x = 1,,(2).
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Using (5.6), one can express z as follows:
r=uT (@) 1T, (5.7)

where u = wW(yT) '@ !. Applying the anti-automorphism z — z* on both sides

of (5.7), we obtain

2t = () Tw ()T (5.8)
(we used (5.1) and the obvious fact that  — z* and z +— 2T commute with
each other). The condition that y € N(w) implies easily that u € N(w~!), hence
ut € N(w™h). Tt follows that (5.8) is an expression of the same kind as (5.6), with
z,x, and w replaced by z*, z*, and w™!, respectively. Proposition 5.2 (and hence
Proposition 1.3) follows.

To complete the proof of Theorem 1.2, it remains to show that the map n,, :
N“ — N" sends N¥ to itself. In view of Proposition 1.1, this is a consequence

of the following.

Proposition 5.3. Leti= (i1,...,im) € R(w) and t1,... ,tym > 0. The map Ny,

sends xi(t1, ... ,tm) to zi(p1,... ,Pm), where each py is a subtraction-free rational
expression i ti,... ,tm-
Proof. Let z = z;(t1,... ,tm) and = 1, (2). As shown above, z and z are related

by (5.6). To prove the equality z = x;(p1,... ,Pm), we proceed by induction on
m = [(w). If m =1 then the decomposition (5.6) takes the form

i(t) = w;(t ) st T, (5.9)

which can be checked by the matrix calculation in SLo:

(0 1)= (A ) m o) (A )

Thus, 7, (:(8)) = ws(tL).
For the induction step, we need some notation. For ¢ =1,... ;r and t > 0 we
set
yi(t) = a;(t)" =exp (tfi), t" = exp (In(t)hi); (5.10)

thus, y;(t) € N_ and t" € H. These elements together with the z;(t) satisfy the
following commutation relations:

pria(t) =z (ptat)p, phiy;(t) = yi(pm Pt (5.11)

zi(t)y;(p) = yi(p)wa(t) (i #J); (5.12)
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zi()yi(p) = yi(p(1 + tp) ") (1 + tp) s (H(1 + tp) 1) (5.13)
(the relations (5.11) and (5.12) follow directly from the relations (1.3) in g, and
(5.13) can be proved by another matrix calculation in SLs).
Now suppose that m > 2, and let v’ = s;,w, i’ = (ia,... ,im) € R(w'), 2’ =
xy (t2, ... ,tm) and 2’ = ny(2'). By the inductive assumption, the decomposition
(5.6) for 2z’ has the form

2 = i () - Yia (D2) 0"y (5.14)
where y' € N(w’), and each p), is a subtraction-free rational expression in ta, . .. , ty,.

Using (5.14) and the commutation relations (5.11) — (5.13), we can rewrite z =
z;, (t1)2" as follows:

2= Yip (Pm) -+ Ui (D2) T4, (H'y'" (5.15)

(to arrive at (5.15), we use (5.12) and (5.13) to push z;, (¢1) to the right through
all the terms y;, (p},) in (5.14); all the terms of the kind t"¢ that are generated
during this process with the help of (5.13) are then also moved to the right by
applying (5.11)). Since the relations (5.11) — (5.13) only involve subtraction-free
expressions, we conclude that ¢ and all p; in (5.15) are subtraction-free rational
expressions in tq, ... ,ty,. Using (5.9), we can rewrite the “tail” in (5.15) as follows:

Tiq (t)Wle = Yiy (til)qxil (til)TUy/T = Vi, (til)w(y/y”)T ) (516)

where y” = U_lxil (t~Yw’. Clearly, 3" is a non-trivial element of the root sub-
group N(ad) € N, where od = (w')"!(ay,) (cf. (2.8)). By Corollary 2.2, y'y" €
N(w). Combining (5.15) and (5.16), we conclude that n,(z) = z;, (t71)z:, (p2)
- x; (pm), completing the proof of Proposition 5.3 and of Theorem 1.2.

The above proof yields the following corollary which will be used in the next
section. Note that, in view of (5.4), for every x € N* there is a unique y € N (w)
such that * € B_wy?, i.e., such that x = n,(y). Note also that, in view of

Proposition 2.1, for any i = (i1,... ,im) € R(w), every element y € N(w) has a
unique factorization of the form
y=ym -y y*) e N@al)). (5.17)

Proposition 5.4. Let y € N(w) be such that n,(y) = xi(t1,... ,tm) € N¥ for
some i = (i1,...,im) € R(w) and t1,... ,t,m > 0. If y is factored according to
(5.17) then, for each k =1,... ,m, the element y(m) ..y (%) belongs to N((w}c)*l)

(see (2.7)), and n(wi)q(y(m) oy = @, () - iy, ().

Proof. In the notation .of Proposition 5.3 and its proof, the element y is expressed as
y'y", where y” € N(a}), and y' € N(w') is such that 1, (y') = @i, (t2) - - @i, (tm)-
Our statement follows by induction on m.
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6. Totally positive varieties

In this section we specialize the results of Section 4 to the case when the ground
semifiled K is Ryg. In view of Proposition 1.1, the Lusztig variety £*(Rsq)
is naturally identified with the variety NY, of totally positive elements in the
Schubert cell C, = B_\B_wB_. Theorem 4.3 gives a bijection between N¥, and
the variety M"(R<0), so each component M., of a point from M™(R+q) becomes
a function on N¥;. Now Theorem 1.4 from the introduction can be reformulated
as follows.

Theorem 6.1. For every w-chamber weight v the function M. on N¥ is given
by M, (z) = AV(2), where z = 11 (z) € N¥,.

Before proving Theorem 6.1, we need to establish some results about the func-
tions A7 (see (1.9)). To put these functions in a proper context, we recall some
well-known facts from the representation theory of G. Let P4 be the additive semi-
group in the weight lattice P generated by the fundamental weights wq,... ,w,.
The elements of Py are highest weights of irreducible rational representations of
G; we denote by V), the representation with highest weight A. Let C[G] be the ring
of regular functions on G, and let C[N_\G] denote the subring of C[G] consisting
of the functions f such that f(xg) = f(g) for all x € N_ and g € G. Both C[G]
and C[N_\G] are G-modules under the action of G on itself by right translations;
so the action of G on C[G] and C[N_\G] is given by

(@f)(9) = fgz), (2,9€G). (6.1)
Each V) has a canonical realization as a submodule of C[N_\G]:
Va={f € CIN\G] : f(dg) =d*f(g) (d € H, geC)}. (6.2)
These submodules are all irreducible components of C[N_\G|:
C[N-\G] = @xrep, Va. (6.3)

For any A € Py, we define a function A* € C[N_\G] as the highest vector
in V) normalized by the condition A*(e) = 1. In other words, Ay is a regular
function on G whose restriction to the open set N_HN is given by

AMpdr)=d* (pe N_,d€ H,z € N). (6.4)

Now let v = uA for some u € W and A € Py. Then v is an extremal weight for
Vi, and the corresponding weight subspace V() is one-dimensional. We denote
by A" an element of V3 (7y) (cf. (1.9)) normalized in the following way. Choose a
reduced expression (j1,...,7;) € R(u™!) and for k=1,... 1 set

by = (Sjk—l U Sjl/\v O‘gvk) = ()‘7 Sjp Sjk—la;/k) : (6'5)
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(b1)
J1
an isomorphism V(7) — V(\); here e() stands for the divided power e?/bl. We
normalize A7 by the condition

It is well known that the action on V) of the element e ~~e§fl) € Ul(g) gives

b b
el e (A7) = A, (6.6)
It is known that this normalization does not depend on the choice of an element
u € W such that v = uX and on the choice of a reduced expression (j1,...,Ji) €
R(u™1) (see, e.g., [9], Section 28.1). The function A7 can also be written as

AT =TAN (6.7)

for some specific choice of a representative . The normalization condition (6.6)
implies that the representative @ in (6.7) satisfies

al =u ! (6.8)

(indeed, using (6.6) and the representation theory of SLa, we can write U as
55, - - -55,, where each 5, satisfies 55,7 = 55, 1).
We now turn to the proof of Theorem 6.1. First we will give its equivalent

reformulation. The following theorem generalizes [2], Theorem 5.4.2.

Theorem 6.2. For every w-chamber weight v, the function M~ on N¥ is given
by M, (x) = A7 (y), where y € N(w) is such that © = 1y (y).

In view of Proposition 5.2, the fact that Theorems 6.1 and 6.2 are equivalent
to each other, is a consequence of the following statement.

Lemma 6.3. If v is a w-chamber weight then AV(z) = AY(zp) for all z € G and
p € N'(w).

Proof. Every w-chamber weight can be written as v = u), where A is some fun-
damental weight, and u € W satisfies Inv (u~!') C Inv(w) (see Corollary 2.3
and Proposition 2.10). The inclusion Inv (u~1) C Inv(w) readily implies that
N'(w) € N'(u™1), ie., that @ 'pu € N for all p € N'(w). Using (6.7) and (6.4),
we obtain

AV(zp) = AMNzpu) = AMzu - 1w Lpu) = AMNzu) = AV(2),
as desired.

Turning to the proof of Theorem 6.2, we will first establish its special case when
v = wlw; for some i. Thus, we will prove the equality

Mw—lw,; (‘/I") =AY @ (y)7 (69)



152 A. Berenstein and A. Zelevinsky CMH
where  and y are as in Theorem 6.2. Choosing i = (i1,... ,%m) € R(w) and

writing x as xi(t1, ... ,tm), we see that the left-hand side of (6.9) is the monomial
in the tj given by (4.13). In our situation, this monomial takes the following form:

m 1

My, () = (H tZ")i : (6.10)
k=1

where the exponents by are given by
b = — (7, (a})") = —(8i,,, =~ - 85, Wis iy, =+ Sy 1 Q) = (Wiy 8y -+ 831 ) ) -
In view of (6.10), we see that (6.9) becomes a consequence of the following lemma.

Lemma 6.4. Suppose v = w '\ for some w € W and X € Py.
(a) Let x € N* and y € N(w) be such that x = n,(y). Then

AV (y)AV(z) = 1. (6.11)

(b) Let x = zi(t1,... ,tm) for somei= (i1,...,im) € R(w) and t1,... ,ty, €
C. Then

m

AV () =]t (6.12)
k=1
where the exponents by, are given by
b = (A, 84, - 'sik71a¥) . (6.13)
Proof. (a) Note that (6.11) generalizes [2], (5.4.6); our argument will be essentially
the same as in [2]. In view of (6.7) and (6.8), one can choose a representative w
so that WAY = A* and @7 = w—!. Thus, we have A7 = w! A*. By the definition
of the map 1, we have Wy? = pdx for some p € N_ and d € H. Since AY € Vj,
we conclude from (5.19) that
A (@wyT) = d AV (z). (6.14)
The same argument applied to A* yields
ANay") = dPANz) = d* . (6.15)
Comparing (6.14) and (6.15), we see that

AN@yT)A (z) = A (@yT) . (6.16)
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To deduce (6.11) from (6.16), it remains to notice that
AM(@y") = Myw") = (@ AY)(y) = A7(y)
(since, in view of (6.4), A*(2T) = A*(2) for all z € G), and
A (@y") = @A) (wy"w ') = ANwy"w ) =1

(since Wy w ! € N_ whenever y € N(w)).
(b) We will use the following general formula valid for any f € C[G] and for
any sequence of indices i = (i1,... ,4m) (not necessarily a reduced expression):

fattn, ) = 3 (@) el ) g (6.17)

tm

ay,...,am>0

(To prove (6.17), note that

Flgzi(t)) = (w:(8))(g) = (exp(te) )g) = St P)lg) (g€ C)

a>0

and use induction on m.) If f € Vy(A — ) for some 8 € Q4 then the tuples

(a1,...,am,) that have a non-zero contribution to (6.17) must satisfy
m
Z aroy, = . (6.18)
k=1

In particular, for f = A7 and i € R(w), the only tuples that contribute to (6.17),
must satisfy (6.18) with 8 = XA — . One of such tuples is the tuple (by,... ,bn)
given by (6.13). Comparing (6.13) with (6.5) and remembering the normalization
of A7 given by (6.6), we see that the monomial [} t% appears in A7 with the
coefficient 1. The proof of (6.12) is completed by using the following lemma proved
in [1].

Lemma 6.5. In the situation of Lemma 6.4, if ay,... ,a, are nonnegative inte-
gers satisfying (6.18) with 8 = XA — vy, and such that egal) o ~egi’"')A7 % 0, then

1

(a1,... ,am) coincides with the tuple (by, ..., by) given by (6.13).

We have completed the proof of (6.9). To complete the proof of Theorem 6.2,
it remains to show that )
My, (@) = AW (y) (6.19)

for any i = (i1,...,4m) € R(w) and k = 1,...,m, where z and y are as in
Theorem 6.2. (Note that (6.9) is a special case of (6.19) when k = 1.) Let u =
(wh)=! =s;, - s;,, and let us write x = 2”2', where 2" = x;, (t1) -~ 25, (tp_1)
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and ' = z;, () - 24, (tm). By Proposition 5.5, the element y can be written
as y = y'y*=1 ...y where y' € N(u), nu(y’) = @', and each yD for | < k
belongs to the root subgroup N(qa;). Since, in view of Proposition 2.1, none of the
roots ail, e va}@—l belong to Inv (u), it follows that the element p = y(k_l) e y(l)
belongs to the subgroup N'(u) (see (5.2)). By Lemma 6.3 (applied to u instead of
w)’

g u L w; ulw;
AT (y) = A" 9 (y'p) = AY (). (6.20)
On the other hand, it is clear from (4.13) that
My, (x) = My, (2'), (6.21)

where the right hand side of (6.21) is defined via the Chamber Ansatz for u instead
of w. Combining (6.20) and (6.21), we see that (6.19) becomes a consequence of
(6.9), with w, x, and y replaced by u, 2, and y’, respectively. Theorems 6.2 and
6.1, and hence Theorem 1.4, are proved.

As a first consequence of Theorem 6.1, the relations between the M., found in
Section 4 (see Theorem 4.3 and Corollary 4.4) imply the corresponding relations
between the functions A" € C[N_\G].

Corollary 6.6. The elements M., = AV € C[N_\G] satisfy the relations (4.5)—
(4.11).

Corollary 6.7. Let i = (i1,...,im) € R(w), and let v be a w-chamber weight.
Then, in the field of rational functions C(N_\G), the function A7 can be expressed
as a subtraction-free rational expression in the A (i) (k=1,...,m).

Remark 6.8. It is well known that the ring C[N_\G] is generated by the basis
vectors in all fundamental representations V,,, (generalized Pliicker coordinates)
subject to quadratic Pliicker relations. The functions A7 corresponding to cham-
ber weights v are the Pliicker coordinates whose weights are vertices of weight
polytopes for all V,,. It should be possible to deduce the relations (4.6) — (4.11)
from the Plicker relations, by eliminating all the coordinates whose weights lie
inside the weight polytopes. For the type A,, all the fundamental weights are
minuscule (see [4], Ch. VIII, 7.3), i.e., all the weights for V,, are extremal, so the
A" form a complete set of Pliicker coordinates. In general, this is not so, but the
above results imply that the A generate the field of fractions of C[N_\G].

Another consequence of Theorem 6.1 is Theorem 1.5 which produces a family
of criteria for total positivity. This theorem can be restated as follows (cf. [2],
Theorem 3.2.1).

Theorem 6.9. Let x € N* = NNB_wB_, and let i = (i1,... ,im) € R(w).
Then the following are equivalent:
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(1) z € NZy;
(2) AY(x) > 0 for all w-chamber weights ~y;
(3) AY*D(2) >0 fork=1,...,m.

Proof. The equivalence of (2) and (3) follows from Corollary 6.7. It remains to
prove that (1) < (3). The components t1, ... ,t,, in the factorization z = z;(t) =
xiy (t1) - - - 24, (tm) and the functions p1,...,pm given by pp = AYED (=1 ()
form two systems of algebraic coordinates on N*. By Proposition 1.1, the subset
NY¥y C N* can be defined by the inequalities t1 > 0,... ,t,, > 0. By Theorems 6.1
and 4.3, the coordinates (t1,... ,tm) and (p1,... ,pm) are related to each other by
an invertible monomial transformation (see also formulas (4.14) and (4.15) in the
proof of Theorem 4.3). Thus, the positivity of all ¢ is equivalent to the positivity
of all px. We conclude that € N* belongs to N, if and only if A"Y(k;i)(z) >0
for k=1,...,m, where z = 5 ' (z) € N*. On the other hand, by Theorem 1.2,
xr € NYj if and only if z € N¥;, and we are done.

We conclude this section with a generalization of some results of [7], which will
allow us to produce more criteria for total positivity. Following Section 5 in [7], we
will say that a collection {71,...,7vm} of w-chamber weights is a totally positive
base for Nv if for any w-chamber weight ~, the function A7 can be expressed in
the field of rational functions C(N_\G) as a subtraction-free rational expression
in the A™ (k=1,...,m). In view of Theorem 6.9, every such collection gives rise
to a criterion for total positivity on N*: an element z € N* belongs to N if and
only if A" (z) > 0 for k=1,...,m. For i€ R(w), let C(i) denote the collection
{7(1;i),...,v(m;1)}; by Corollary 6.7, each C(i) is a totally positive base for N*.

Let ¢ and j be two different indices, and let d be the order of s;s; in W. If
d = 3,4, or 6 then by a weak d-flip we will mean the following operation on a
collection C of chamber weights (cf [7], Section 5):

Case d = 3. Replacing the weight w's,w; € C with w's;jw;, provided that
l(w'sisjs;) = l(w') + 3, and that C U {w;,w;} contains four weights w'w;, w'wj,
w'sjsiw;, and w's;sjwj.

Case d = 4. Replacing two weights w’s,w; and w's;s;jw; in C with w's;jw; and
w'sjs;w;, provided that I(w's;s;s:s;) = l(w') + 4, and that C U {w;,w;} contains
four weights w'w;, w'wj, w's;s;s;w;, and w's;s;sjw;.

Case d = 6. Replacing four weights w’s;w;, w's;s;w;, w's;s;siw;, and w's;s;8;8jw;
in C with w'sjw;, w'sjs,w;, w'sjs;sjw;, and w'sjs;sjs;w;, provided that
l(w's;sjsi858i8;) = l(w') + 6, and that C U {w;,w;} contains four weights w'w;,
wwj, w's;$j8i8;Swi, and w's;8;8;8;S;w;.

The following proposition is an immediate consequence of the relations (4.5)—
(4.11) (cf. [7], Proposition 5.10).
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Proposition 6.10. Weak d-flips preserve the set of all totally positive bases for
NY.

Note that if two reduced expressions i and i’ of w are related to each other by
a d-move then the corresponding totally positive bases C(i) and C(i') are related
to each other by a weak d-flip (if d = 2 then C(i) = C(i’)). However, even when
C = C(i), it often happens that there exist weak d-flips on C that do not correspond
to a d-move on i. Such flips transform C(i) into a totally positive base which is not
of the form C(i') (a lot of examples of this kind for the type A, were given in [7]).
It would be interesting to classify all totally positive bases obtained by applying
weak d-flips to the bases of the form C(i).

7. Special cases

In this section we will give a graphical interpretation of the Chamber Ansatz for
classical groups of types A,, B;, and C,.. We start by briefly recalling the A, case
which was treated in [2] and served as a prototype for the results in the present
paper. In this case G = SL,11, the maximal torus H is the subgroup of diagonal
matrices in G, and N C G is the subgroup of unipotent upper-triangular matrices.
The standard generators of g are:

ei=FE; 41, hi=FEi; —Eif1,41, fi=FEiq1, i=1,...,r). (7.1)

Thus, the one-parameter subgroups z;(t) in IV are given by x;(t) = 1+tE; ;1. The
Weyl group W is naturally identified with the symmetric group S,41, the simple re-
flection s; being identified with the transposition (i,i+1). The anti-automorphisms
z — 27 and 2 — z* of G act as follows: 27 is the transpose of a matrix z, while
xt = dox_ldal, where dp is a diagonal matrix diag(1,—1,...,(=1)"). Chamber
weights of level ¢ are identified with the subsets of size ¢ in [1,r+1] := {1,... ,r+1}:
the weight + corresponding to a subset I is the character of H given by

d = diag(dy, ... ,dp1) = d’ =[] d:. (7.2)
el

Under this identification, the function AY(z) becomes the flag minor Al(z), that
is, the minor of x with the row set [1,4] and the column set I.

To visualize the Chamber Ansatz (see (1.10) or (4.4) above), we represent a
reduced expression i = (i1, ... ,i,) € R(w) by means of its wiring diagram Arr (i).
This diagram is a pseudo-line arrangement which can be drawn by combining
segments taken from r 4 1 horizontal lines on the plane with m X-shaped switches
between them, where the k-th from the left switch occurs between the ig-th and
(i + 1)-th lines, counting from the bottom. The pseudo-lines are labeled so that
their right endpoints are numbered 1 through r + 1 bottom-up; scanning the left
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2 4
3 3
1 2
4 1
| = 1 2 3 2
Figure 1
endpoints bottom-up yields the sequence w=1(1),... , w1 (r +1). See example in
Figure 1, where r = 3, and i = (1,2,3,2) (cf. [2], Figure 11). The coordinates
1,..., 1, on the Lusztig variety £ are associated with the crossings of pseudo-

lines in Arr (i) scanning from the left end; we denote the k-th crossing from the
left by the same symbol tk as the corresponding coordinate.

The i-chamber weights correspond to chambers of an arrangement Arr (i), that
is, to the connected components of the complement of the union of all pseudo-lines.
The chamber set associated to a chamber C' is the set of labels of all horizontal
segments lying below C. The definitions readily imply that if C' is the chamber
whose right end is t}c, then the chamber set L(C) corresponds to the chamber
weight y(k;1) (see (2.10)).

Using all this notation, Theorem 1.4 takes the following form: if z =

zi(ty,... ,tm) € Ny, and z = it (2) then
AL(A) () ALD) (3)
tp = AL(D) (z)AL(C)(z) , (7.3)

where A, B, C, and D are the chambers of Arr (i) surrounding the crossing t}c,
with A and D lying above and below ¢}, and B and C being on the same horizontal
level.

Our next target is the type C,.. The group G is now the symplectic group
Spa,-. We will choose a matrix realization of G most convenient for studying total
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positivity. Let G = SLs,, and consider two involutive anti-automorphisms z +— x*
and x — 27 of G given by

xt = dox_ldal , 2" = woxTwal , (7.4)
where dy and wq are matrices of order n = 2r given by

(do)ij = 655 (1)1, (w0)ij = Sisng1-, - (7.5)

The maps z +— z* and z — 27 commute with each other, so their composition is
an involutive automorphism of G given by

2 =J 1T, (7.6)
where J = dgwg is the matrix given by
Jij = Oimy1-(—1)"" 1. (7.7)

We will think of G as the subgroup (;?” C G of fixed points of the automorphism
v7. In view of (7.6), an element x € G belongs to G if and only if 27 Jz = J; since
n = 2r is even, it follows from (7.7) that J© = —J, so G is indeed the symplectic

group.

We will use our standard notation such as N, W, z;(t) etc., for the objects
related to G, and will denote by N, W, Z;(t) etc. the corresponding objects
related to G. The antiautomorphisms z — z* and z — 27 of G preserve N and
H , and we have

N=NT"=NNG, H=H"=HNG. (7.8)

Weset i* =n+1—4i=2r4+1—4fori=1,...,2r. In this notation, the
standard generators of g are:

€ =&+ &1, hi=hi+hy_1, fi=fi+fr1 (i=1,...,r—1),
er = Er, hr:ilrv fT:.frv (7'9)
where the &, h;, and f; are given by (7.1). It follows that
xi(t) = "Ei(t)ii*fl(t) (Z =1,...,r— 1)7 xr(t) = ‘%r(t) . (710)

The Weyl group W of G is naturally identified with the subgroup of W = S, =
So, given by
W={wesS, wi*)=wk)" (i=1,...,7)}. (7.11)

Simple reflections in W are expressed through simple reflections in W as follows:

Sizgigi*_l (121, ,7”—1), 57"257"- (712)



Vol. 72 (1997) Total positivity in Schubert varieties 159

Motivated by (7.12), we introduce the following notation: for a sequence i =
(i1,... ,im) of indices taking values in [1, ], we denote by ithe sequence obtained
from i by replacing each index iy, =4 < r with the pair (¢,7* — 1). For instance, if
r=2andi=(1,2,1,2) then i= (1,3,2,1,3,2). The following proposition is an
easy consequence of (7.12) and (7.10).

Proposition 7.1.
(a) For any w € W and any reduced expressioni= (i1,... ,im) of w in W, the
sequence i is a reduced expression of w in w.
(b) In the situation of (a), for anyt = (t1,...,tm) € C™, we have

wi(t) = &:(D) (7.13)

where T is a sequence obtained from t by replacing each ty such that iy < r
with the pair (tg,ty).

For instance, if r =2 and i = (1,2, 1, 2) then (7.13) takes the form

T(1,2,1,2) (01, t2,83,t4) = (1 321,32)(t1, 11,22, 13,13, ta) -

As a corollary of Proposition 7.1, we can now describe a relationship between
totally positive varieties in N and N.

Corollary 7.2. For any w € W, we have N¥; = ]\7;”0 N N. Therefore, N>o =
NZO NN.

Proof. The inclusion N, C ]\7;”0 N N follows at once from (7.13) and Propo-
sition 1.1. To prove the reverse inclusion, we notice that the automorphism
z — 27 of G sends x;(t) to x;_1(t), in particular, leaves z,.(t) intact. Now
let i = (i1,...,4m) be a reduced expression of w in W, and let i be the corre-
sponding reduced expression of w in W. Writing an element x € ]\7;”0 as the
product :Ic;(p), where p is some tuple of positive real numbers, and applying the
automorphism z +— z‘7 to this product, we conclude that z*” = x if and only if
Pk = Dk+1 Whenever Ek+1 = Ez — 1. Using (7.13) and Proposition 1.1 again, we see
that if x € ]\7;”0 is such that 7 = x then z belongs to N¥,, and we are done.

We now turn to the description of the Chamber Ansatz for G. First notice
that the anti-automorphisms x — 27 and x +— 2* of G are obtained by restricting
to G the corresponding anti-automorphisms of G. Therefore, for any w € W the
map 1, for G (see Proposition 5.1) agrees with the corresponding map for G.
For i = 1,...,r, the fundamental weight w; for G is the restriction to H of the
corresponding fundamental weight &; of G. The function A is the restriction to
G of A% that is, A% (z) = Al (z), the principal flag minor of z € G. In view
of (7.11), the correspondence w~lw; + w~1([1,4]) identifies chamber weights of
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Figure 2

level ¢ for G with isotropic subsets of size ¢ in [1,27]; here a subset I C [1,2r] is
called isotropic if INI* = (), i.e., if I contains at most one element from each pair
{i,i*}. Under this identification, the function A e () becomes the flag minor
Aw_l([lvi})(x)'

We will now introduce a wiring diagram for representing a reduced expression
i= (i1,...,im) of w € W (see Figure 2). Let i be the corresponding reduced
expression of w in W (see Proposition 7.1), and consider the pseudo-line arrange-
ment Arr (i) representing i. Each term i = ¢ < 7 in i creates a pair of consecutive
crossings in Arr (I), one on the level ¢ from the bottom and another on the level ¢
from the top. Since, for i < r, the simple reflections §; and $;«_1 in W commute
with each other (as well as the corresponding one-parameter subgroups Z;(t) and
T+ _1(t)), the order of these two consecutive crossings is irrelevant for applications
such as the Chamber Ansatz; this makes it natural to put these two crossings
on the same vertical line. With this convention, the arrangement Arr (i) has a
horizontal symmetry axis that lies in the middle between the r-th and (r + 1)-
th horizontal lines. We denote this axis by M (for “mirror”). Now we define the
wiring diagram (or arrangement) Arr (i) as the half of the arrangement, Arr (i) that
lies below M. Thus, Arr (i) consists of r pseudo-lines whose right endpoints are
numbered 1 through r bottom-up; scanning the left endpoints bottom-up yields
the sequence w=L(1),... ,wt(r+1).

The crossings of Arr (i) that lie in Arr (i) will be called the crossings of Arr (i).
They involve ordinary crossings, that is, the exchanges between the pairs of hori-
zontal lines, and also the reflections in the “mirror” M. Under such a reflection,
the pseudo-line changes its label from i* (to the left of the reflection point) to
i, for some ¢ = 1,... ,r. By the definition, the arrangement Arr (i) has exactly
m = l(w) crossings. As in the case of A,, we associate these crossings with the
terms in the factorization zi(t1, ... ,tm); we will again denote a crossing by the
same symbol t;, = t}C as the corresponding coordinate on the Lusztig variety.
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The chambers and chamber sets for Arr (i) are defined in the same way as for
A,.. In full analogy with the A, case, if C' is the chamber whose right end is t}C
then the chamber set L(C) is the isotropic subset corresponding to the chamber
weight y(k;1) (see (2.10)).

Now everything is ready for a “concrete” formulation of Theorem 1.4 for the
type Cy. Let x = xi(t1,... ,tm) € N¥, and let z = Nt (x). If i < r then the
crossing t; in Arr (i) is surrounded by four chambers A, B, C, and D as in the
case A,, and tj, is given by (7.3). If iy, = r, i.e., the corresponding crossing t;, lies
on the mirror M then this crossing is surrounded by three chambers: the chamber
A below ti, and the chambers B and C just below the mirror on both sides of t.
Then (1.10) takes the following form:

(AL ()2
T ALB) ()AL ()

tk (7.14)

Note that (7.14) can be deduced from the Chamber Ansatz for type A,,_1 with
the help of the following lemma.

Lemma 7.3. For any subset I C [1,n] = [1,2r] and any x € G, we have Al(x) =
Al (x), where T is the complement of I in [1,n].

This lemma follows from the observation that Af(z'7) = AT (z) for any x € G
(cf. [2], (3.4.4)).

Applying Lemma 7.3 to a subset L(A) in (7.14) (which is an isotropic subset
of size r — 1), we conclude that AL (z) = AL(D)(2), where D is the chamber
above tj, in Arr (i). Therefore, (7.14) becomes a consequence of (7.13) and (7.3),
the latter applied to the reduced expression i

We now turn to the type B,. The group G is the spin group Sping,+1 which
is a two-sheeted covering over the special orthogonal group Gg = SO2,41. Since
the projection G — Gy restricts to an isomorphism of the maximal unipotent
subgroup N of G with that of Gg, in studying the totally positive varieties in N
we can (and will) work with Gg rather than with G. Our treatment of Go will
be completely parallel to the above treatment of the symplectic group. We set
n=2r+1 and G = SL,, and we think of G as the subgroup G*" C G of fixed
points of the automorphism 7, where the involutive anti-automorphisms z — x*
and = — 27 of G are given by (7.4) and (7.5). Formulas (7.6) and (7.7) remain
valid; the only difference with the symplectic case is that now the matrix J given
by (7.7) is symmetric, so Gq is indeed the special orthogonal group. With the
same notational conventions as for the symplectic group, (7.8) also remains valid
in our case.

Weset i*=n+1—i=2r+2—i¢fori=1,...,2r + 1. In this notation, the
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standard generators of g are:

€ =€ + €1, hi=hit+he_1, fi=fi+tfoo1li=1...,r-1),
Er :\/E(ér+ér+l)7 hr :2(hr+hr+1)7 f’l" = \/§(fr+fr+l)v ( )
7.15
where the &, h;, and f; are given by (7.1). (The coefficients v/2 in (7.15) are
necessary if we want the anti-automorphism z — 27 of Gy to be the ordinary
transpose of matrices.) The analogue of (7.10) is now

16)

2i() = B (OF () (i= 1,000 7 —1), 20(t) = :zT(\/ii):zm(\/Etm(

ol
N

(the last equality in (7.16) is proved by a direct calculation in SL3).

The Weyl group W of G is naturally identified with the subgroup of W = S, =
Sor+1 given by (7.11). Since n is now odd, all permutations from W leave r + 1
fixed; restricting these permutations to [1,n] —{r+1} = [1,7]U[1,r]* we obtain a
natural isomorphism of W with the Weyl group for the type C,.. Simple reflections
in W are expressed through simple reflections in W as follows:

S; = 51'57;*_1 (Z = 1, e T — 1), Syr = 57«57«4_157«. (717)

Modifying the corresponding construction for the type C,, for a sequence i =
(i1, ... ,im) of indices taking values in [1, r], we denote by i the sequence obtained
from i by replacing each index iy =4 < r with the pair (¢,7* — 1), and each index
i, = r with the triple (r,r+1,7). For instance, if r = 2 and i = (1,2,1,2) then i =
(1,4,2,3,2,1,4,2,3,2). We then have the following analogue of Proposition 7.1.

Proposition 7.4.
(a) For any w € W and any reduced expression i = (i1,... ,im) of w in W, the
sequence i is a reduced expression of w in w.
(b) In the situation of (a), for anyt = (t1,... ,tm) € C™, we have

xi(t) = :Z‘I(t) , (7.18)

where T is a sequence obtained from t by replacing each ty such that iy < r
with the pair (tx,tr) and each tp such that iy, = r with the triple

(\t/_%v \/itk, %) .
For instance, if r = 2 and i = (1, 2) then (7.18) takes the form

- to to
z(1,2)(t1,t2) = T(142.32) (tlatl, —=,V2ty, —2> :

V2’ V2
As in the case of C}., we conclude that Corollary 7.2 remains valid for the type
B,. The same proof applies, with the following modification. We need to show
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that an element z = Z,(p1)Z,+1(p2)Z,(p3) with p1,p2,p3 > 0 is invariant under
the automorphism z +— z*7 if and only if po = 2p; = 2p3, ie., (p1,p2,03) =
(\/LE’ V2t %) for some t > 0. Using the transition rule (3.3), we see that

- - ~ ~ p2p3 - ~ pip2
T =z T z ::10( )x + :10(7)
r+1(P1)Zr (P2)Tr41(P3) = Tr T r+1(P1 + p3)Zr T
Therefore, the condition that 2™ = z is equivalent to (p1,p2,p3) = (101;2‘1{);’3 .01+

P1P2
D3> 5 +ps

) which is easily seen to be equivalent to ps = 2p1 = 2ps3.

As in the case of C,, the anti-automorphisms z — z7 and z — z* of Gy, as
well as the map 7, for any w € W, agree with the corresponding maps for G.
Fori=1,...,r — 1, the descriptions of the fundamental weight w;, the chamber
weights of level ¢ and the corresponding functions A” are the same as for the type
C,. Thus, chamber weights of level i < r are identified with isotropic subsets of
size ¢ in [1,7]U[1,7]* = [1,2r + 1] — {r+ 1}; under this identification, the function
A '@i(2) on G becomes the flag minor A~ (L) ().

The situation with level r is somewhat different. The fundamental weight w,. is
the highest weight of the spinor representation of GG; thus, the restriction to H of
the fundamental weight @, is the square of the character w, (see, e.g., [5], Ch. 20).
It follows that chamber weights of level r are still identified with isotropic subsets
of size r in [1,7] U [1,7]* = [1,2r + 1] — {r + 1}; however, the function N (x)
is now identified with Vv Awfl([l”])(ac), the square root of the corresponding flag
minor. Note that VA»~'([1.]) is not a well-defined function on the whole group
Go = S02,41, only on its two-sheeted covering G = Sping,4+1; but its restriction
to N is a well-defined regular function, since IV is identified with the maximal
unipotent subgroup of G. We only have to specify the choice of the sign of the
square root. This can be done by using the normalization condition (6.6). To be
more precise, we note that the spinor representation V,,. of G is minuscule (cf.
Remark 6.8). Thus, its set of weights is the set Ww, of chamber weights of level
7, so these weights are identified with isotropic subsets I C [1,7] U[1,7]* of size r.
The corresponding functions VAT form a basis in V.. The action of the raising

operators eq, ... ,e, on this basis can be described as follows (cf. [2], (3.5.8)): for
i=1,...,7—1 we have
e;(VAT) :{ VATOTE =TT 1A {i,i 4+ 1,4° — 1) = {i+ 1i%);
0 , otherwise;
(7.19)

the action of e, is given by

 ATU{r}—{r*} i ror*l = {p*1.
eT(\/F):{ A ) ffﬂ{, } { }:

) (7.20)
0 , otherwise.

Formulas (7.19) and (7.20) imply, in particular, that all operators e? acting
on V. are equal to 0 (this is a general property of minuscule representations).
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Combining this fact with (6.17), we can obtain an explicit combinatorial expression
for /AT similar to [2], (2.4.8). To do this, consider the vector space of formal linear
combinations of isotropic subsets of size r in [1, 7]U[1, r]*. Define the shift operators
ui,... , U, in this space by setting

TU{ii— 1) —{i+ 1,y L if In{ii+ 1" —1,i*) = {i +1,i%)
ui(I) =

0 , otherwise
(7.21)
for i < r, and
Tu{r}—A{r*} ,if In{r,r*}={r*
w2 {10 =) S e S,
0 , otherwise.
As a consequence of (6.17), for any sequence i = (i1,...,4y) of indices from [1,r],

and any complex numbers t1,...,%,,, we have
\/F(mi(tlv e tm)) = Ztaltag sty (7.23)
where the sum is over all sequences 1 < a1 < ag < --- < as < m such that
Wiy Wiy, Uiy, (1) = [1,7]

For example, if r = 2 and © = z(y 91 9)(t1, t2, {3, t4) then (7.23) gives

\/ A{172} (Q)) = 17 \/W(I) =t9 + t47

A{Q’l*}(x) = tols, A{2*,1*}($) = tol3ty .

Returning to the Chamber Ansatz, we recall that the Weyl group W for the
type B, is canonically identified with the Weyl group for the type C,., by means of
the order-preserving bijection [1,7] U[L,r]* =[1,2r +1] —{r+1} — [1,2r]. Using
this identification, for any w € W and any reduced expression i € R(w) in the
B, case, we define the pseudo-line arrangement Arr (i), its chambers and chamber
sets in exactly the same way as for the type C, above (see Figure 2). So the only
difference between two cases is that whenever we see an index ¢* for some i € [1, 7],
either as the label of a segment of a pseudo-line, or as a member of a chamber set,
it is understood as 2r + 2 — ¢ in the B, case, and as 2r + 1 — i in the C). case.

We are now in a position to give a “concrete” formulation of Theorem 1.4 for
the type B;. Let © = zi(t1,... ,tm) € N¥y, and let z = Nt (x). If ij, < r then the
crossing ¢y in Arr (i) is surrounded by four chambers A, B, C, and D as in the cases
A, or C, above, and t, is given by (7.3). If i, = r, i.e., the corresponding crossing
tx lies on the mirror M then this crossing is surrounded by three chambers: the
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chamber A below t, and the chambers B and C just below the mirror on both
sides of t;. Then (1.10) takes the following form (cf. (7.14)):

B AW ()
C VALB) () VALO)(2)

tk

(7.24)

Note that Lemma 7.3 and its proof remain valid for the type B,.. Using this
lemma and comparing (7.24) with the expression for V/2t;, given by the Chamber
Ansatz for the type Ag, applied to the right hand side of (7.18), we arrive at the
following identity.

Proposition 7.5. Let L C [1,7]U[1,r]* be an isotropic subset of size r — 1, and
let i € [1,7] be the index such that LN {i,i*} = 0. Then

ALY () = /o ALUGH () / ALV} () (7.25)
for any x € Gg = SO2,41.

Remark 7.6. The realization of the symplectic group Spa,. as a subgroup of S Lo,
that we used above, agrees with the general strategy of Lusztig using the “descent”
realization of a non-simply-laced semisimple group as a subgroup of a simply laced
one. In particular, Corollary 7.2 for the type C, is a special case of a general result
by Lusztig. However, the above realization of SOg,11 as a subgroup of SLo, 1
does not follow this pattern; in Lusztig’s approach, SOg,4+1 would be realized as
a subgroup of the group SO2,49 of type D,41. It is possible to treat the case D,
by using an embedding of SOg, into SLg,. However, the resulting description of
totally positive varieties is not as nice as for the types B, and C, (in particular,
there seems to be no way to satisfy Corollary 7.2), and we do not give it here.
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