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0. Introduction

In 1989, Dunkl introduced the remarkable operators ∇1, . . . ,∇n that act on the
polynomial algebra C[x1, . . . , xn] by

∇i =
∂

∂xi
+ c

∑
j 6=i

1
xi − xj

(1− sij),

where sij is the automorphism of C[x1, . . . , xn] switching the variables xi and xj ;
together, the sij generate the symmetric group Sn. Dunkl operators are a very spe-
cial deformation (with parameter c ∈ C) of the partial derivatives ∂/∂xi, because
they commute: ∇i∇j = ∇j∇i for all i, j. This striking fact, originally proved in
[D] by a lengthy direct computation, is interpreted in quantum mechanical terms
as the integrability of the Calogero–Moser system, and algebraically via rational
Cherednik algebras introduced in 2002 by Etingof and Ginzburg [EG]. A family
of commuting Dunkl operators is attached not only to Sn but to any finite group
generated by (complex) reflections.

The motivating idea behind the present paper is to introduce analogues of
Dunkl operators on noncommutative deformations of the symmetric algebra S(V ),
e.g., on the q-symmetric algebra

Sq(V ) = C〈x1, . . . , xn | xixj = qijxjxi for i < j〉
where V is a C-vector space with basis x1, . . . , xn and q = (qij) is a complex n×n
matrix.

Assume that qijqji = qii = 1 for all i, j and define braided partial derivatives
∂i : Sq(V )→ Sq(V ) by

∂i(xa1
1 · · ·x

ai
i · · ·x

an
n ) = ai q

a1
1,i · · · q

ai−1
i−1,i x

a1
1 · · ·x

ai−1
i · · ·xann .

Clearly, ∂i∂j = qij∂j∂i and ∂ixj = qjixj∂i + δij for all i, j.
It turns out that if qij = −1 for all i 6= j (denote such a matrix q by −1),

then we can introduce certain deformations ∇i : S−1(V )→ S−1(V ) of the braided
partial derivatives ∂i. Let C′ ⊂ C be finite (cyclic) subgroups of C× such that
−1 ∈ C (i.e., C is of even order), and let c : C′ → C be a function ε′ 7→ cε′ . For
each i = 1, . . . , n define the operator ∇i on the skew-field of fractions of S−1(V )
as follows:

∇i = ∂i + c1
∑

j 6=i, ε∈C

xi + εxj
x2
i − ε2x2

j

(1− σ(ε)
ij ) +

∑
ε′∈C′\{1}

cε′

1− ε′
· 1
xi

(1− t(ε
′)

i ), (1)

where t(ε)i , σ(ε)
ij are algebra automorphisms of S−1(V ) defined for i 6= j, ε ∈ C× by

t
(ε)
i (xk) =

{
xk if k 6= i,

εxi if k = i,
σ

(ε)
ij (xk) =


xk if k /∈ {i, j},
εxj if k = i,

−ε−1xi if k = j.

We refer to these new operators ∇i as noncommutative or braided Dunkl operators
due to the following
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Theorem 0.1. The operators ∇1, . . . ,∇n preserve S−1(V ) and satisfy ∇i∇j +
∇j∇i = 0 for all i 6= j.

Therefore, the operators ∇i may be viewed as an anti-commutative analogue
of a Calogero–Moser integrable system. We will elaborate on the connection with
integrable systems in a separate paper.

We prove Theorem 0.1 by means of braided Cherednik algebras which we
introduce (following the logic of [EG]) as the main tool for establishing anti- and
q-commutation relations between operators (1) and their generalisations.

Namely, let WC,C′ be the subgroup of GL(V ) generated by all σ(ε)
ij , ε ∈ C and

t
(ε′)
i , ε′ ∈ C′. Define Hc(WC,C′) to be the subalgebra of EndC(S−1(V )) generated

by WC,C′ , yi = ∇i, and operators of multiplication by xi.

Theorem 0.2.

(a) In the algebra Hc(WC,C′), the generators satisfy:
(i) xixj + xjxi = yiyj + yjyi = 0 for all i 6= j;

(ii) wxiw
−1 = w(xi), wyiw−1 = w(yi) for all w ∈WC,C′ , i = 1, . . . , n;

(iii) yjxi + xiyj = c1
∑
ε∈C εσ

(ε)
ij for all i 6= j, and

yixi − xiyi = 1 + c1
∑
j 6=i, ε∈C σ

(ε)
ij +

∑
ε′∈C′\{1} cε′t

(ε′)
i for i = 1, . . . , n.

(b) As an associative algebra, Hc(WC,C′) is determined by relations (i)–(iii) and
admits a triangular decomposition

Hc(WC,C′) = S−1(V )⊗ CWC,C′ ⊗ S−1(V ∗).

We prove Theorem 0.2 in Section 3.3. In what follows we will refer to the al-
gebra Hc(WC,C′) as a negative braided Cherednik algebra. Using the Verma module
Mtriv = S−1(V ) for Hc(WC,C′), induced from the trivial representation of WC,C′ ,
we obtain the following refinement of Theorem 0.1 (to be proved in Section 5.3).

Theorem 0.3. The generators yi of the above negative braided Cherednik algebra
Hc(WC,C′) act on its Verma module Mtriv = S−1(V ) by braided Dunkl opera-
tors (1).

Remark 0.4. In fact, if one drops the constant term 1 in the second relation of
Theorem 0.2(a)(iii) and at the same time drops the braided derivative ∂i in (1),
then one obtains a degenerate braided Cherednik algebra for which Theorems 0.2
and 0.3 are also valid. The latter algebra admits a finite-dimensional quotient by
the WC,C′ -invariant ideals of Sq(V ) and Sq(V ∗), which is an analogue of restricted
Cherednik algebras; see [G].

Remark 0.5. In a series of papers [KW1, KW2] Ta Khongsap and Weiqiang Wang
have discovered a different class of algebras with triangular decomposition and
anti-commuting generators. This similarity inspired us to start a new project [BB2]
where constructions of [KW1, KW2] are uniformly treated in the context of braided
doubles (developed in [BB1] and in Section 1 of the present paper).
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The groups WC,C′ are classified in terms of the infinite family of classical
complex reflection groups G(m, p, n) = Sn n T (m, p, n), m ≥ 1, p |m, where Sn ⊂
GL(V ) is the group of permutation matrices and T (m, p, n) = {diag(ε1, . . . , εn) |
εmi = 1 ∀i, (ε1 . . . εn)m/p = 1}. It is not difficult to show that

• if |C′| is even, then WC,C′ = G(m, p, n) with m = |C|, p = |C/C′|;
• if |C′| is odd, then WC,C′ = G(m, p, n)+, a subgroup of index 2 in G(m, p, n)

with m = |C|, p = |C/±C′|, consisting of g such that det(g)|C
′| = 1.

(Note, however, that the generators σ(ε)
ij of WC,C′ are of order 4 and are not complex

reflections.) The smallest example of such group in rank n is W{±1},{1} = B+
n of

even elements in a Coxeter group of type Bn; see Example 3.11.
Having been inspired by the construction of the above negative braided

Cherednik algebras corresponding to the matrix q = −1, we formulated and solved
the following problem.

Problem 0.6. Let q = (qij) be a complex n× n matrix with qijqji = qii = 1 and V
be a vector space with basis x1, . . . , xn. Find all finite groups W ⊂ GL(V ) acting
on Sq(V ) by automorphisms and all algebras H generated by W , V , and V ∗ such
that:

(a) H admits a triangular decomposition H = Sq(V ) ⊗ CW ⊗ Sq(V ∗), where
Sq(V )⊗ CW and CW ⊗ Sq(V ∗) are semidirect product algebras;

(b) yjxi − qijxiyj ∈ CW for all i, j, where y1, . . . , yn is the basis of V ∗ dual to
x1, . . . , xn.

Clearly, ordinary rational Cherednik algebras Hc(W ) associated to complex
reflection groups W ⊂ GL(V ) and the above negative algebras Hc(WC,C′) solve
Problem 0.6 for special examples of the matrix q. We refer to solutions of Problem
0.6 as braided Cherednik algebras.

Let us briefly describe how to construct all braided Cherednik algebras out of
the above building blocks (see Section 4 for details). Informally speaking, we prove
that each braided Cherednik algebra is a braided product (which, once again, justi-
fies the name) of rational Cherednik algebras and the negative algebras Hc(WC,C′).

More precisely, let each of H(W1), . . . ,H(Wm) be either a rational Cherednik
algebra of an irreducible complex reflection group Wk (one of the groups G(m, p, n)
and G4, . . . , G37 in Shephard–Todd’s classification [ST]) or a negative braided
Cherednik algebra of Wk = WC,C′ . One has H(Wk) ∼= S(Vk) ⊗ CWk ⊗ S(V ∗k ) or
S−1(Vk)⊗CWk⊗S−1(V ∗k ), respectively. Choose m(m−1)/2 arbitrary parameters
rkl ∈ C×, 1 ≤ k < l ≤ m. Define H to be the algebra generated by all H(Wk)
subject to the relations

xx′ = rklx
′x, yy′ = rkly

′y, xy′ = r−1
kl y

′x, yx′ = r−1
kl x

′y

for x ∈ Vk, y ∈ V ∗k , x′ ∈ Vl, y′ ∈ V ∗l , and the relation that Wk commute with
H(Wl) for k 6= l. In Section 5, we prove
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Theorem 0.7. (a) H factorises as a tensor product of its subalgebras,

H = H(W1)⊗ · · · ⊗ H(Wm), (2)

and is a braided Cherednik algebra of the group W1 × · · · ×Wm;
(b) each braided Cherednik algebra of a group W is isomorphic to one of such

algebras H (under a simple assumption of minimality of W , see Section 4.4).

The braided Cherednik algebra H so constructed has tensor factorisation
Sq(V ) ⊗ CW ⊗ Sq(V ∗) with V = V1 ⊕ · · · ⊕ Vm. Here q is the matrix consisting
of m2 blocks Mkl (of size dimVk × dimVl), k, l = 1, . . . ,m. The block Mkk has all
off-diagonal entries equal to 1 (respectively −1) ifH(Wk) is a rational (respectively
negative braided) Cherednik algebra. The block Mkl has all entries equal to rkl if
k < l or to r−1

lk if k > l.
The proof of the theorem is based on the theory of braided doubles developed

in our previous paper [BB1]. Results specific to quadratic braided doubles over
group algebras are given in Section 1. Using these results, in Section 2 we intro-
duce and classify q-Cherednik algebras as specific quadratic doubles with triangu-
lar factorisation Sq(V )⊗CW̃ ⊗SqT(V ∗) where W̃ is a certain Abelian extension of
W depending on q (and qT stands for the transposed matrix). Based on this clas-
sification and the braided reduction introduced in Section 1.7, we prove that each
braided Cherednik algebra is naturally a subalgebra of one of the q-Cherednik
algebras (Proposition 3.3), and, on the other hand, that each braided Chered-
nik algebra naturally admits a factorisation (2) in an appropriate braided tensor
category (Theorem 4.8).

Let us illustrate our construction of braided Cherednik algebras and the cor-
responding braided Dunkl operators for any finite Abelian group W , i.e., W = C1×
· · ·×Cn, where each Ci is a finite (cyclic) subgroup of C×, and an arbitrary n×n ma-
trix q as above. Define the braided Dunkl operators ∇1, . . . ,∇n : Sq(V )→ Sq(V )
attached to W by

∇i = ∂i +
∑

ε∈Ci\{1}

ci,ε
1− ε

· 1
xi

(1− t(ε)i ). (3)

Proposition 0.8. The braided Dunkl operators ∇1, . . . ,∇n satisfy, for all i, j,

∇ixj − qjixj∇i = δij

(
1 +

∑
ε∈Ci\{1}

ci,εt
(ε)
i

)
, ∇i∇j = qij∇j∇i.

In general, braided Dunkl operators attached to a direct product W1 × · · · ×
Wm of groups are obtained from Theorem 0.7. For each group Wk, one writes
either commuting Dunkl operators for complex reflection groups [DO] or anti-
commuting operators ∇i as above. The differential parts of these operators now
become braided derivatives ∂i of Sq(V ), and altogether they form a complete list
of braided Dunkl operators for W .

Our next result deals with universal embedding of each braided Cherednik
algebra in a modified Heisenberg double. This embedding is crucial in the proof



330 Y. Bazlov and A. Berenstein Sel. math., New ser.

of Theorems 0.1 and 0.3. Moreover, it leads to new interesting representations of
braided Cherednik algebras (see below).

A modified Heisenberg doubleA is an algebra attached to two Yetter–Drinfeld
module structures on the same module Y over a group W . It has triangular de-
composition A = U− ⊗ CW ⊗ U+, where

U− = T (Y )/<∧2
Ψ1
Y ∩ ∧2

Ψ2
Y >, U+ = T (Y ∗)/<∧2

Ψ∗1
Y ∗ ∩ ∧2

Ψ∗2
Y ∗>,

where ∧2
ΨX = ker(idX⊗X +Ψ) for Ψ ∈ End(X ⊗X) on any vector space X, and

Ψ1, Ψ2 are braidings on Y induced by the two Yetter–Drinfeld structures over W .
For a braided Cherednik algebra H(W ) = Sq(V )⊗CW ⊗Sq(V ), there is an

extension W̃ = W ·Γ ⊂ GL(V ) of W by means of an Abelian group Γ ⊂ GL(V ). To
this data we associate a q-reflections module Y over W̃ with two Yetter–Drinfeld
structures, hence a modified Heisenberg double A(W̃ ) = U− ⊗ CW̃ ⊗ U+.

Theorem 0.9. In the above setup, there exists an injective algebra homomorphism

ϕ : H(W )→ A(W̃ )

such that ϕ|W is the natural inclusion of W in W̃ , ϕ(V ) ⊂ Y and ϕ(V ∗) ⊂ Γ ·Y ∗.

The embedding ϕ : H(W ) ↪→ A(W̃ ) generalises our earlier result [BB1, The-
orem 7.26], where we constructed such embeddings for all rational Cherednik al-
gebras. This way we can obtain new representations of H(W ) in A(W̃ ) or in the
Verma-type A(W̃ )-module U−.

The quadratic algebra U− arising from Theorem 0.9 is itself of great interest.
In [BK], Anatol Kirillov and the first author show that when H(W ) is a rational
Cherednik algebra, the defining relations in U− are generalised classical Yang–
Baxter equations. In particular, if W = Sn, then U− coincides with the triangular
enveloping algebra U(trn) of Bartholdi–Enriquez–Etingof–Rains [BEER]; more-
over, U(trn) surjects onto the Fomin–Kirillov quadratic algebra En from [FK],
which is relevant for embeddings of rational Cherednik algebras (see [BB1, Ex-
ample 7.24]). It is also quite surprising that when H(W ) is a negative braided
Cherednik algebra from Theorem 0.2 with W = B+

n , then the image ϕ(S−1(V )),
which is a subalgebra of U− by Theorem 0.9, coincides with what Majid called
the algebra of flat connections with constant coefficients in the noncommutative
differential geometry of the symmetric group [M3].

To conclude the introduction, we list relevant open problems and new direc-
tions of study.

Degenerate q-Hecke algebras

Here, the problem is two-fold:

Problem 1. (a) Given a q-symmetric algebra Sq(Ṽ ), find all finite groups W ⊂
GL(Ṽ ) such that the W -action on Ṽ extends to a W -action on Sq(Ṽ ) by
algebra automorphisms.
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(b) For each such W , find all flat deformations of the semidirect product algebra
Sq(Ṽ ) o CW .

Here, we solve Problem 1(a) in the case when qij 6= 1 for all i 6= j and under
the assumption that W also acts on Sq(Ṽ ∗) by algebra automorphisms (Section
2.3). In fact, the above groups WC,C′ form the most important class of solutions
(when qij = −1 for all j 6= i).

Each q-Cherednik algebra and braided Cherednik algebra is a solution to
Problem 1(b) in the case when Ṽ = V ⊕ V ∗. In our forthcoming paper [BB2] we
construct more solutions to that problem.

Representations of braided Cherednik algebras

Similarly to the ordinary (rational) Cherednik algebras, one defines the category
O for each braided Cherednik algebra H. The following natural problem emerges:

Problem 2. For each braided Cherednik algebra H = Hc, describe the category O.
In particular, find all values of parameters c such thatO contains finite-dimensional
objects.

Even though O is not a tensor category, in addition to the Verma modules,
it contains a number of interesting objects: U− ⊗ ρ, where U− is the “generalised
r-matrix algebra” from Theorem 0.9 and ρ is any representation of W . As we
mentioned above, if W = Sn it is known from [BK] and [BEER] that the qua-
dratic algebra U− is Koszul. We expect this phenomenon to persist in general,
therefore, having an H-module structure on U− ⊗ ρ and on U− itself is beneficial
for understanding this quadratic algebra.

We plan to study finite-dimensional quotients of the Verma module Mtriv =
Sq(V ) for H in a separate paper. We expect that for negative braided Cherednik
algebras the answer can be given along the lines of [BEG] and [VV]. And, according
to Remark 0.4, the degenerate version of H has a number of finite-dimensional
modules that can be studied along the lines of [G].

However, when H is a braided tensor product (of negative braided or ordi-
nary Cherednik algebras) as in (2), the representation category of H is not at all
determined by those of the tensor factors. For instance, by varying the matrix q
and parameters ci,ε in (3) and Proposition 0.8, one can expect new interesting
submodules of the Verma module Sq(V ) even when W = S2 × · · · × S2. Another
“degree of freedom” in representations of such factored H is a choice of the field
of definition K ⊂ C containing all qij , say, K = Q(qij | i, j = 1, . . . , n). Then,
under the assumption that all qij are roots of unity, i.e., K is a cyclotomic ex-
tension of Q, there exist finite-dimensional quotients Bq of Sq(V ) and we expect
that some of these Bq are, in fact, representations of H. It follows from the fa-
mous Merkurjev–Suslin theorem that essentially all central simple algebras over
K are simple finite-dimensional quotients of various Sq(V ), so that an H-module
structure on them would be of interest in K-theory.
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1. Quadratic doubles

In this section we introduce quadratic doubles as a subclass of braided doubles over
bialgebras (introduced and studied in our earlier paper [BB1]) and present new
results relating specifically to quadratic doubles over group algebras. It is an open
question if (and how) results such as Proposition 1.15 and Theorem 1.21 can be
extended to doubles over arbitrary bialgebras or Hopf algebras.

1.1. Triangular decomposition and braided doubles

Triangular decomposition of an associative algebra is defined as follows.

Definition 1.1. An algebra A admits triangular decomposition A = U−⊗U0⊗U+

if U0, U± are subalgebras in A such that U−U0 and U0U+ are also subalgebras
in A, and the vector space map

U− ⊗ U0 ⊗ U+ → A, u− ⊗ u0 ⊗ u+ 7→ u−u0u+ ∈ A,
is bijective.

Let V be a finite-dimensional module over a group W . To a linear map
β : V ∗⊗ V → CW and two subspaces R− ⊂ T>0(V ), R+ ⊂ T>0(V ∗) we associate
the algebra

Aβ(R−, R+) =
T (V ⊕ V ∗) o CW

<R−, R+, {f ⊗ v − v ⊗ f − β(f ⊗ v) | f ∈ V ∗, v ∈ V }>
.

Here the symbol o is used to denote a semidirect product. (If A is a W -module
algebra, then A o CW is the algebra with underlying vector space A ⊗ CW and
multiplication (a⊗ w)(a′ ⊗ w′) = aw(a′)⊗ ww′, where a, a′ ∈ A and w,w′ ∈ W .)
The angular brackets < > denote the two-sided ideal with given generators.

Definition 1.2. The algebra Aβ(R−, R+) is a braided double if it has triangular
decomposition

Aβ(R−, R+) ∼= T (V )/<R−>⊗ CW ⊗ T (V ∗)/<R+>.

Remark 1.3. The algebra Aβ(R−, R+) may be either a proper quotient of the
vector space on the right, or a braided double. In the latter case, <R−> is au-
tomatically a W -invariant ideal in the tensor algebra T (V ), and the subalgebra
T (V )/<R−>⊗ CW is isomorphic to T (V )/<R−>o CW ; similarly for R+.

To understand braided doubles, one would like to study the locus of parame-
ters (β,R−, R+) such that the algebra Aβ(R−, R+) has triangular decomposition.
The first major step is to determine for which β braided doubles of the form
Aβ(R−, R+) exist. We say that β : V ∗ ⊗ V → CW is a W -equivariant map if β is
a W -homomorphism with respect to the standard diagonal W -action on V ∗ ⊗ V
and the W -action on CW by conjugation.

Theorem 1.4. Let V be a finite-dimensional module over a group W and let β : V ∗⊗
V → CW be a linear map. The algebra Aβ(0, 0) is a braided double if and only if
β is a W -equivariant map.
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Proof. To prove the “only if” part, pick any f ∈ V ∗, v ∈ V and w ∈ W . Using
the relations wvw−1 = w(v) and wfw−1 = w(f) in the algebra T (V ⊕V ∗) o CW ,
write β(w(f), w(v)) = (wfw−1)(wvw−1) − (wvw−1)(wfw−1), which is equal to
w(fv − vf)w−1 = wβ(f, v)w−1. Thus, β(w(f), w(v)) = wβ(f, v)w−1 in Aβ(0, 0).
Both sides of this relation lie in the group algebra CW which embeds injectively
in Aβ(0, 0) because of the triangular decomposition of Aβ(0, 0). Hence the relation
holds in CW , and β is W -equivariant. The (more difficult) “if” part is proved
in [BB1, Theorem 3.3]; the key point here is that the W -equivariance may be
interpreted as the Yetter–Drinfeld condition for modules over a group algebra. �

A braided double of the form Aβ(0, 0) is called a free braided double and
denoted Ãβ . The above proof implies that if Aβ(R−, R+) is a braided double, then
β is W -equivariant and Aβ(R−, R+) is a quotient of Ãβ . The quotient map in
question is a morphism in the category of braided doubles:

Definition 1.5 (The category DW ). Denote by Dβ(V ) the set of braided doubles
of the form Aβ(R−, R+). We introduce the category DW such that

Ob DW =
⋃
V,β

Dβ(V ),

where the union is taken over all finite-dimensional W -modules V and all W -equi-
variant maps β : V ∗ ⊗ V → CW . If A ∈ Dβ(U) and B ∈ Dγ(V ), a morphism
ϕ : A → B in DW is an algebra map such that ϕ(U) ⊂ V , ϕ(U∗) ⊂ V ∗ and
ϕ|W = idW .

Clearly, ϕ is uniquely determined by the two W -module maps µ = ϕ|U and
ν = ϕ|U∗ . However, not every pair of W -module maps U

µ−→ V , U∗ ν−→ V ∗ extends
to an algebra homomorphism A → B. For example, zero maps µ = ν = 0 do not
extend to a morphism between A ∈ Dβ(U) and B ∈ Dγ(V ), unless β = 0.

Observe also that a braided double Aβ(R−, R+) is a W -module algebra
(where the action of W on generators w ∈W of Aβ(R−, R+) is by conjugation).

Using Lemma 4.4 of [BB1], one obtains a way to construct braided doubles
in terms of Ãβ :

Proposition 1.6. Let R− ⊂ T>0(V ) and R+ ⊂ T>0(V ∗) be W -submodules such
that [R+, V ] = [V ∗, R−] = 0 in the free braided double Ãβ. Then Aβ(R−, R+) is a
braided double. �

Remark 1.7. Based on this result, it is natural to expect that all braided doubles
can be obtained as quotients of free braided doubles by the zero commutator
condition in Proposition 1.6. For example, the enveloping algebras U(g) and Uq(g)
of a semisimple Lie algebra g have such presentations (with R± being the Serre
relations). Finding such “optimal” presentation for braided Heisenberg doubles
[BB1, 5.3] would imply interesting results on the structure of Nichols algebras.
This optimal presentation is available for the main object of this section, quadratic
doubles (see Theorem 1.8 below).
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1.2. Quadratic doubles

A braided double Aβ(R−, R+) in Dβ(V ) is called a quadratic double if R− ⊂ V ⊗V
and R+ ⊂ V ∗⊗V ∗. Our original motivating example of this is rational Cherednik
algebra; free braided doubles are quadratic too. We denote by Qβ(V ) the set of
quadratic doubles in Dβ(V ) and by QW the category of quadratic doubles over
CW (a full subcategory of DW ).

Theorem 1.8. Let β : V ∗ ⊗ V → CW be a W -equivariant map. Then Aβ(R−, R+)
is a quadratic double if and only if R− ⊂ V ⊗V , R+ ⊂ V ∗⊗V ∗ are W -submodules
and

[R+, V ] = 0, [V ∗, R−] = 0 in the free double Ãβ .

Proof. If Aβ(R−, R+) is a quadratic double, the ideal <R−> of T (V ) is W -in-
variant, hence so is its quadratic part R−. The same applies to R+. Furthermore,
the relations in the free double Ãβ imply that the commutator [V ∗, R−] is a sub-
space of V ⊗ CW which must obviously be in the kernel of the quotient map
Ãβ → Aβ(R−, R+). The quotient map has no kernel in degrees less than 2 with
respect to generators from V , thus [V ∗, R−] = 0 in Ãβ . The same argument applies
to [R+, V ] and thus establishes the “only if” statement. The “if” statement follows
by Proposition 1.6. �

We define

R−βmax = {r− ∈ V ⊗ V | [V ∗, r−] = 0 in Ãβ},

R+
βmax = {r+ ∈ V ∗ ⊗ V ∗ | [r+, V ] = 0 in Ãβ}.

It is easy to see that as long as β : V ∗ ⊗ V → CW is W -equivariant (as above),
R±βmax are W -invariant subspaces. This observation is useful in the following

Corollary 1.9. Let β : V ∗⊗V → CW be a W -equivariant map. The algebras Ãβ :=
Aβ(0, 0) and Aβ := Aβ(R−βmax, R

+
βmax) are quadratic doubles in Qβ(V ). For any

quadratic double A ∈ Qβ(V ) there are quotient maps Ãβ � A � Aβ in QW . �

Definition 1.10. The quadratic double

Aβ ∼= T (V )/<R−βmax> ⊗ CW ⊗ T (V ∗)/<R+
βmax>

in Qβ(V ) is called the minimal quadratic double with parameter β ∈ {W -equivari-
ant maps V ∗ ⊗ V → CW}.

Of the objects in Qβ(V ), it is the minimal quadratic double Aβ that is most
interesting algebraically. The quadratic relations in Aβ are given implicitly as
kernels of certain linear operators (see Lemma 1.16 below). The central problem
in the theory of quadratic doubles is two-fold:

Problem 1.11. Let V be a finite-dimensional module for a group W . Given a
W -equivariant map β : V ∗ ⊗ V → CW , define the algebra Aβ explicitly by gen-
erators and relations (i.e., find an explicit description of R±βmax).
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Problem 1.12. Given W -submodules R− ⊂ V ⊗ V and R+ ⊂ V ∗ ⊗ V ∗, find all
maps β : V ∗ ⊗ V → CW such that Aβ(R−, R+) is a quadratic double.

Problem 1.12 is in fact a deformation question. Regard Aβ(R−, R+) as a
deformation, with parameter β, of the algebra A0(R−, R+); the latter is a quadratic
double by Theorem 1.8. One needs to find the values of β for which the deformation
is flat (the flatness locus).

Example 1.13. When W ⊂ GL(V ), R− = ∧2V ⊂ V ⊗ V and R+ = ∧2V ∗ ⊂
V ∗⊗V ∗, the solution to Problem 1.12 is given by the rational Cherednik algebras
Aβ(R−, R+) with

β(ξ ⊗ v) = 〈v, ξ〉+
∑
s

cs〈v, α∨s 〉〈αs, ξ〉s

for ξ ∈ V ∗, v ∈ V ; cf. [EG]. The sum is taken over all complex reflections s ∈ W ,
the parameters c = {cs}, cs ∈ C, satisfy cwsw−1 = cs for all w ∈ W , and αs ∈ V ,
α∨s ∈ V ∗ is the root-coroot pair for the complex reflection s, meaning that s(v) =
v− 〈v, α∨s 〉αs for all v ∈ V . Here 〈v, ξ〉 can be any W -invariant pairing between V
and V ∗. If it is the standard evaluation pairing, denote the corresponding rational
Cherednik algebra by Hc(W ), whereas if 〈v, ξ〉 = 0, denote the corresponding
algebra by H0,c(W ).

1.3. Operations � and ? on quadratic doubles

Recall that the parameter β in a quadratic double Aβ(R−, R+) belongs to the
space of W -equivariant linear maps from V ∗⊗V to CW . Let us now observe that
this parameter space has the structure of an algebra. Write β in the form

β(f ⊗ v) =
∑
w∈W
〈Lw(v), f〉w, f ∈ V ∗, v ∈ V,

where Lw ∈ End(V ) are zero for all but finitely many w ∈W . We identify β with
the element

∑
w∈W δw ⊗ Lw of the algebra

(C(W )0 ⊗ End(V ))W .

Here C(W )0 is the algebra, with respect to pointwise multiplication, of com-
plex-valued functions on W with finite support. It is spanned by delta-functions
δw, w ∈ W . The action of W on C(W )0 is by conjugation: w(δσ) = δwσw−1 . The
⊗ is the standard tensor product of algebras, where the tensorands commute. The
algebra (C(W )0 ⊗End(V ))W of parameters contains an identity if and only if the
group W is finite.

Let β =
∑
w δw⊗Lw, γ =

∑
w δw⊗Mw be elements of (C(W )0⊗End(V ))W .

We observe that their sum and product in the algebra of parameters are rewritten
as linear maps from V ∗ ⊗ V to CW as follows:

(β+γ)(f ⊗ v) =
∑
w∈W
〈(Lw +Mw)(v), f〉w, (βγ)(f ⊗ v) =

∑
w∈W
〈(LwMw)(v), f〉w.
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Let
Q(V ) :=

⊔
β∈(C(W )0⊗End(V ))W

Qβ(V )

be the set of all quadratic doubles of the W -module V . We will now see how the
above sum and product can be “lifted” from the algebra of parameters to Q(V ),
to yield two operations, � and ?.

Definition 1.14. Let A = Aβ(R−, R+) and B = Aγ(S−, S+) be quadratic doubles
in Q(V ). Define

A �B = Aβ+γ(R− ∩ S−, R+ ∩ S+), A ? B = Aβγ(S−, R+).

Proposition 1.15. If A and B are quadratic doubles in Q(V ), then A�B and A?B
are also quadratic doubles in Q(V ).

The proposition will follow from a technical

Lemma 1.16. Suppose that β =
∑
w δw⊗Lw is an element of the parameter algebra

(C0(W )⊗End(V ))W . The quadratic relations in the minimal quadratic double Aβ
are given by

R−βmax =
⋂
w∈W

kerT−w,β , R+
βmax =

⋂
w∈W

kerT+
w,β ,

where T−w,β ∈ End(V ⊗ V ) and T+
w,β ∈ End(V ∗ ⊗ V ∗) are defined by

T−w,β(u⊗ v) = (Lw ⊗ idV )(u⊗ w(v) + v ⊗ u),

T+
w,β(f ⊗ g) = (idV ∗ ⊗L∗w)(w−1(f)⊗ g + g ⊗ f).

Proof. Recall that R−βmax is defined, following Theorem 1.8, as the space of qua-
dratic tensors in V ⊗ V that commute, in the free double Ãβ , with all elements
of V ∗. By the Leibniz rule, the commutator of f ∈ V ∗ with u⊗ v ∈ V ⊗ V in Ãβ
is∑
w∈W

(〈Lw(u), f〉wv + u〈Lw(v), f〉w) =
∑
w∈W

(〈Lw(u), f〉w(v) + 〈Lw(v), f〉u)⊗ w

=
∑
w∈W

(〈·, f〉 ⊗ idV )T−w,β(u⊗ v)⊗ w,

hence indeed R−βmax =
⋂
w∈W kerT−w,β . The argument for R+

βmax is similar. �

Proof of Proposition 1.15. To establish that A �B is a quadratic double, we need
to show that R± ∩ S± is a W -submodule of R±β+γmax and to apply Theorem 1.8.
But clearly T±w,β+γ = T±w,β + T±w,γ , thus kerT±w,β+γ contains the intersection of
kerT±w,β and kerT±w,γ , which contains R± ∩ S±. The latter is a W -submodule as
an intersection of W -submodules. In a similar fashion, to show that A ? B is a
quadratic double, we need to check that S− ⊂ kerT−w,βγ and R+ ⊂ kerT+

w,βγ for
all w ∈ W . Write β =

∑
w∈W δw ⊗ Lw and γ =

∑
w∈W δw ⊗Mw. Observe that

T−w,βγ = (Lw⊗ idV )T−w,γ , therefore the kernel of T−w,βγ contains that of T−w,γ , which
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contains S−. Furthermore, T+
w,βγ = (idV ∗ ⊗M∗w)T+

w,β , hence its kernel contains
that of T+

w,β , which contains R+. �

Remark 1.17. The two operations �, ? : Q(V )×Q(V )→ Q(V ) satisfy the following
axioms:

(A �B) � C = A � (B � C), (A ? B) ? C = A ? (B ? C);
A �B = B �A;
A0 �A = A �A0 = A;
A ? (B � C) = (A ? B) � (A ? C), (A �B) ? C = (A ? C) � (B ? C),

where A0
∼= V ⊗CW ⊗V ∗ is the minimal quadratic double corresponding to β = 0

(the “smallest possible” quadratic double). This is a subset of the semiring axioms;
however, note that there is no zero or identity element with respect to ?.

Warning: the operations � and ? do not preserve the minimality of quadratic
doubles: A �B and A ? B may not be minimal even if A, B are both minimal.

We will now see how the operation � “behaves” with respect to morphisms
in QW .

Proposition 1.18. Let U , V be two finite-dimensional W -modules, and assume that
A,B ∈ Q(U), A′, B′ ∈ Q(V ) are quadratic doubles. If a pair U

µ−→ V , U∗ ν−→ V ∗ of
W -module maps extends to a morphism ϕ : A→ A′ and to a morphism ψ : B → B′

in QW , then the same maps µ, ν extend to a morphism

ϕ � ψ : A �B → A′ �B′.

Proof. Let A = Aβ(R−, R+) and B = Aγ(S−, S+) be quadratic doubles, where
β, γ : U∗ ⊗ U → CW are W -equivariant maps, R−, S− ⊂ U ⊗ U , and R+, S+ ⊂
U∗⊗U∗. Let A′ = Aβ′(R′

−
, R′

+), B′ = Aγ′(S′
−
, S′

+), similarly to A, B but with
U replaced with V . Looking at the relations in quadratic doubles, we conclude
that µ, ν extend to algebra homomorphisms A → A′, B → B′ if and only if
β = β′ ◦ (ν ⊗ µ), γ = γ′ ◦ (ν ⊗ µ) and

(µ⊗ µ)R− ⊂ R′−, (µ⊗ µ)S− ⊂ S′−, (ν ⊗ ν)R+ ⊂ R′+, (ν ⊗ ν)S+ ⊂ S′+.

But then β + γ = (β′ + γ′) ◦ (ν ⊗ µ) and (µ ⊗ µ)(R− ∩ S−) ⊂ R′
− ∩ S′−, and

similarly for R+ ∩ S+. Thus, µ, ν extend to a morphism A � B → A′ � B′, which
we denote by ϕ � ψ. �

1.4. Yetter–Drinfeld modules

Yetter–Drinfeld modules over W provide a family of deformation parameters β,
for which the minimal quadratic doubles Aβ have a nice description and are in
a sense universal, as many quadratic doubles can be realised as their subalgebras
(see Theorem 1.21 below). Let us recall the definition of a Yetter–Drinfeld module.
When the groupW is finite, it is the same as a module over the Hopf algebraD(W ),
the Drinfeld quantum double of W .

Definition 1.19. A Yetter–Drinfeld module for a group W is a W -module Y with
a grading Y =

⊕
w∈W Yw such that σ(Yw) = Yσwσ−1 for all w, σ ∈W .
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Whenever Y is a Yetter–Drinfeld (YD-) module over W , we denote by |y|
the W -degree of homogeneous y ∈ Y . When the notation | · | is used in formulas,
extension from homogeneous elements to all elements of Y by linearity is implied.
For example, the Yetter–Drinfeld axiom may be written as |w(y)| = w|y|w−1.

Clearly, if Y is finite-dimensional, the dual module Y ∗ is a Yetter–Drinfeld
module via Y ∗ =

⊕
w∈W (Y ∗)w with (Y ∗)w = HomC(Yw−1 ,C). Define the linear

map βY : Y ∗ ⊗ Y → CW by

βY (f ⊗ v) = 〈v, f〉|v|.
It is straightforward to verify that the map βY is W -equivariant.

1.5. Heisenberg quadraic doubles

To each finite-dimensional Yetter–Drinfeld module Y over W is therefore associ-
ated a minimal quadratic double AY := AβY , referred to as the Heisenberg quad-
ratic double of Y .

To describe Heisenberg quadratic doubles more explicitly, recall that the lin-
ear map

ΨY : Y ⊗ Y → Y ⊗ Y, ΨY (y ⊗ z) = |y|(z)⊗ y,
is a braiding on Y , i.e., a solution to the braid equation; see [BB1, Section 5].
Viewing Y ∗⊗Y ∗ as a dual space to Y ⊗Y , denote by Ψ∗Y the adjoint map to ΨY .
(This braiding on Y ∗ is not the same as the braiding ΨY ∗ given by the YD-module
structure on Y ∗; the two are related via Ψ∗Y = τ ◦ΨY ∗ ◦ τ , where τ(x⊗ y) = y⊗x
is the trivial braiding.) Furthermore, any braiding Ψ ∈ End(V ⊗ V ) on a vector
space V gives rise to a braided analogue of the symmetric algebra of V :

S(V,Ψ) = T (V )/<ker(idV⊗V +Ψ)> ,

of which S(V ) is a particular case corresponding to Ψ = τ . Theorem 5.4 in [BB1]
implies

Proposition 1.20. The Heisenberg quadratic double AY has triangular decomposi-
tion

AY = S(Y,ΨY )⊗ CW ⊗ S(Y ∗,Ψ∗Y ). �

The crucial property of Heisenberg quadratic doubles is given in

Theorem 1.21. For any finite-dimensional W -module V and any two quadratic
doubles A, B in Q(V ), there exists a finite-dimensional Yetter–Drinfeld module Y
over W and a morphism A ? B → AY in QW .

Proof. Let A = Aβ(R−, R+) and B = Aγ(S−, S+), where β, γ are W -equivariant
maps from V ∗ ⊗ V to CW given by β(f ⊗ v) =

∑
w∈W 〈Lw(v), f〉w, γ(f ⊗ v) =∑

w∈W 〈Mw(v), f〉w with Lw,Mw ∈ End(V ). The finite subset E = {g ∈ W |
Lg 6= 0 or Mg 6= 0} of W is conjugation-invariant by the W -equivariance of β, γ.
Denote by CE the linear span of E in CW . We introduce the space Y equipped
with W -action and W -grading by

Y = CE ⊗ V, w(g ⊗ v) = wgw−1 ⊗ w(v), |g ⊗ v| = g
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for all g ∈ E, v ∈ V , w ∈ W . It is easy to see that Y is a Yetter–Drinfeld module
for W . The dual Yetter–Drinfeld module Y ∗ can also be described explicitly: Y ∗ =
CE−1⊗V ∗, w(h⊗f) = whw−1⊗w(f), |h⊗f | = h for all h ∈ E−1 = {g−1 | g ∈ E},
f ∈ V ∗ and w ∈ W . One checks that 〈g ⊗ v, h ⊗ f〉 = δg−1,h〈v, f〉 is a pairing
between Y and Y ∗ that indeed makes Y ∗ the YD-module dual to Y . The maps
µ : V → Y , ν : V ∗ → Y ∗ given by

µ(v) =
∑
w∈W

w ⊗Mw(v), ν(f) =
∑
w∈W

w−1 ⊗ L∗w(f)

are W -module homomorphisms because γ, β are W -equivariant.
It remains to show that µ, ν extend to a morphism between the quadratic

doubles A ? B = Aβγ(S−, R+) and AY . As in the proof of Proposition 1.18, it is
enough to show that βγ = βY ◦ (ν ⊗ µ) and

(µ⊗ µ)S− ⊂ ker(idY⊗Y +ΨY ), (ν ⊗ ν)R+ ⊂ ker(idY ∗⊗Y ∗ +Ψ∗Y ).

Since βY (h⊗ f ⊗ g⊗ v) = δg,h−1〈v, f〉g where g, h−1 ∈ E, f ∈ V ∗, v ∈ V , one has
βY (ν(f)⊗µ(v)) =

∑
w∈E〈Mw(v), L∗w(f)〉w =

∑
w〈(LwMw)(v), f〉w = (βγ)(f ⊗v)

as required. The remaining two equalities are established by applying Lemma 1.16
(similarly to the proof of [BB1, Theorem 6.9]). The theorem is proved. �

1.6. Generalised Dunkl operators

We now look at the Dunkl operators in the context of quadratic doubles and
propose their generalisation.

Suppose that V is a finite-dimensional module over a group W and A =
U− ⊗ CW ⊗ U+ is a quadratic double in Q(V ). The subalgebra CW ⊗ U+ of A
has one-dimensional trivial representation triv , where w ∈ W acts by 1 and V ∗

acts by 0. One has the induced representation of A:

IndACW⊗U+(triv) ∼= U− as vector spaces.

Denote the action of ξ ∈ V ∗ on U− via this representation by ∂ξ. The operators
∂ξ : U− → U− are of degree −1 with respect to the grading in U−.

In Heisenberg quadratic doubles, the operators ∂ξ are called braided deriva-
tives. They can be computed as follows. Suppose that Y =

⊕
w∈W Yw is a Yetter–

Drinfeld module for W . Let {yiw ∈ Yw | w ∈W, i = 1, . . . ,dimYw} be a basis of Y
compatible with the W -grading, and let f iw ∈ (Y ∗)w−1 form the dual basis of Y ∗.
One shows that the braided derivatives

∂iw = ∂fiw : S(Y,ΨY )→ S(Y,ΨY )

satisfy, and are determined by, the following properties:
(i) ∂iwy

j
σ = δi,jδw,σ;

(ii) (w-twisted Leibniz rule) ∂iw(ab) = (∂iwa)w(b)+a(∂iwb) for all a, b ∈ S(Y,ΨY ).
Let us now consider a quadratic double A = U− ⊗ CW ⊗ U+ in Q(V ) which is
not Heisenberg. For emphasis, we will now write ∇ξ instead of ∂ξ in A and call
∇ξ generalised Dunkl operators.
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Suppose that A embeds in a Heisenberg quadratic double AY for some Yetter–
Drinfeld module Y , and let V

µ−→ Y , V ∗ ν−→ Y ∗ be a pair of maps which give rise
to such embedding. Put

αiw := ν∗(yiw) ∈ V, α∨
i
w := µ∗(f iw) ∈ V ∗, i = 1, . . . ,dimYw.

The vectors αiw, respectively α∨iw, are an analogue of roots, respectively coroots,
of the group W . Initial data for this generalised root system is a W -module V
equipped with a W -homomorphism β from V ∗ ⊗ V to the adjoint representation
of W . Strictly speaking, the construction depends on a particular “quantisation”
Y of (V, β), but one hopes that the “root system” has a reasonable uniqueness
property; we do not consider this question here. It is not difficult to see that the
generalised Dunkl operators are expressed as

∇ξ =
∑
w∈W

dimYw∑
i=1

〈αiw, ξ〉∂̄iw,

with ∂̄iw : U− → U− defined by its two properties,

∂̄iw(v) = 〈v, α∨iw〉, v ∈ V ; ∂̄iw satisfies the w-twisted Leibniz rule.

1.7. Braided reduction of quadratic doubles

To conclude this section, we describe a method of obtaining a wider class of alge-
bras with triangular decomposition over CW as subalgebras in quadratic doubles.
Recall that if Y is a finite-dimensional Yetter–Drinfeld module over W , then ΨY

is the braiding y ⊗ z 7→ |y|(z)⊗ y on Y , and τ is the trivial braiding. The spaces
Y ∗, Y ∗ ⊗ Y ∗ etc. are also YD-modules, and the W -grading on Y ∗ ⊗ Y ∗ is given
by |f ⊗ g| = |f | |g|.

Proposition 1.22. Assume that a W -module V has a W -grading which makes V
a Yetter–Drinfeld module. Let A = Aβ(R−, R+) be a quadratic double in Qβ(V )
such that τ(R+) is a W -graded subspace of V ∗ ⊗ V ∗. Let

A =
T (V ⊕ V ∗) o CW

<R−, R+, {[θ, v]− |θ|β(θ ⊗ v) | θ ∈ V ∗, v ∈ V }>
,

where [f, v] = f ⊗v−|f |(v)⊗f is the braided commutator between V ∗ and V , and
R+ = (ΨV ∗ ◦ τ)R+. Then there exists an algebra isomorphism t : A→ A, given on
generators of A by

t|V = idV , t|W = idW , t(θ) = |θ| · θ, θ ∈ V ∗.

Proof. First, we have to show that t maps relations in A to relations in A. For
θ ∈ V ∗ we have t(wθw−1 − w(θ)) = w · |θ|θ · w−1 − |w(θ)|w(θ). This is a relation
in A, as |w(θ)| = w|θ|w−1 by the Yetter–Drinfeld condition on V ∗. Furthermore,
t([θ, v]) = |θ|θv − |θ|(v) · |θ|θ = |θ|(θv − vθ), which in A coincides with |θ|β(θ, v).

Now observe that ΨV ∗(τ(θ ⊗ κ)) = |κ|(θ) ⊗ κ for θ ⊗ κ ∈ V ∗ ⊗ V ∗. This is
mapped by t to |κ| |θ| |κ|−1 · |κ|(θ) · |κ|κ = |κ| |θ| · θκ. Hence if a ∈ R+ is such
that τ(a) is W -homogeneous (such a span R+), then t(ΨV ∗τ(a)) = |τ(a)|a. Thus,
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t(R+) ⊂ CW ⊗ R+. It remains to note that the relations wvw−1 − w(v) and R−

in A are mapped by t to exactly the same relations in A. We conclude that t is a
map of algebras.

In the same fashion one shows that the map t−1, given on generators of
A by t−1|V = idV , t−1|W = idW , t−1(f) = |f |−1 · f , f ∈ V ∗, is an algebra
homomorphism from A to A. As tt−1 and t−1t are identity on generators, t−1 is
the inverse of t. �

Remark 1.23. It is easy to deduce from the proposition that the algebra A, given
by its presentation, has triangular decomposition

A = T (V )/<R−>⊗ CW ⊗ T (V ∗)/<R+>.

Definition 1.24. In the above notation, assume that for all θ ∈ V ∗, v ∈ V the
braided commutator [θ, v] in A lies in CW ′ for some subgroup W ′ of W . The
algebra A = A has a subalgebra A′ ∼= T (V )/<R−> ⊗ CW ′ ⊗ T (V ∗)/<R+>. We
call A′ a braided reduction of A.

Example 1.25 (Braided Weyl algebra). To show how the braided reduction works,
we consider the “extreme” example which is A = AV , the Heisenberg quadratic
double of a Yetter–Drinfeld module V over W . We compute the braided commu-
tator in A of θ ∈ V ∗ and v ∈ V :

[θ, v] = |θ|βV (θ, v) = |θ| · 〈v, θ〉 · |v| = 〈v, θ〉 · 1,

as 〈v, θ〉 6= 0 for W -homogeneous θ, v only if |θ| = |v|−1. We thus have a braided
reduction A′ ∼= T (V )/<R−> ⊗ C · 1 ⊗ T (V ∗)/<R+> of A. Furthermore, using
ΨV ∗ = τ ◦Ψ∗V ◦ τ we find R+ = (ΨV ∗τ) ker(id + τΨV ∗τ) = ker(id + ΨV ∗). Hence

AV := A′ ∼= S(V,ΨV )⊗ S(V ∗,ΨV ∗)

with defining commutation relation θv − |θ|(v)θ = 〈v, θ〉 · 1 between θ ∈ V ∗ and
v ∈ V . We have AV ∼= AV o CW as algebras. The algebra AV is a particular case
of Majid’s braided Weyl algebra [M1], hence

Definition 1.26. AV is called the braided Weyl algebra of the Yetter–Drinfeld mod-
ule V .

2. q-Cherednik algebras

In this section we introduce q-Cherednik algebras. They are quadratic doubles,
which allows us to use the methods of Section 1. On the other hand, results about
q-Cherednik algebras will be translated to braided Cherednik algebras, obtained
from q-Cherednik algebras by braided reduction.
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2.1. The q-polynomial algebra

Recall that a rational Cherednik algebra of a finite linear group W ⊂ GL(V ) is a
deformation of the semidirect product D(V )oCW , where D(V ) ∼= S(V )⊗S(V ∗) is
the Weyl algebra of the space V . Our aim is to replace the polynomial algebra S(V )
with its q-analogue. Throughout, V = span (x1, . . . , xn) will be a space spanned
by n independent variables, and the symbol q will stand for an n × n matrix of
deformation parameters qij such that qii = 1, qijqji = 1 for all i, j = 1, . . . , n. The
q-polynomial algebra

Sq(V ) := C〈x1, . . . , xn | xixj = qijxjxi〉

is a flat deformation of the symmetric algebra S(V ). The space of quadratic rela-
tions in Sq(V ) is

∧2
qV = span(xi ⊗ xj − qijxj ⊗ xi | 1 ≤ i, j ≤ n) ⊂ V ⊗ V,

the q-exterior square of V . For future use, we denote by y1, . . . , yn the basis of
V ∗ dual to {xi}, so that V ∗ = span (y1, . . . , yn). Furthermore, we introduce the
Abelian group

Γq ⊂ GL(V ), Γq = 〈γ1, . . . , γn〉, γi(xj) = qijxj ,

and observe that V is a Yetter–Drinfeld module over Γq , via the natural action of
Γq and the grading

|xi| = γi.

This gives rise to the braiding τq on V , defined by τq(xi ⊗ xj) = qijxj ⊗ xi. The
algebra Sq(V ) coincides with the braided symmetric algebra S(V, τq).

2.2. The q-Heisenberg double

Our next step is to introduce a q-differential calculus via a q-analogue of the Weyl
algebra D(V ). We have two candidates for the role of such q-analogue. One is the
Heisenberg quadratic double AV , associated to V as a Yetter–Drinfeld module over
the group Γq . The other candidate is the braided Weyl algebra AV (Definition 1.26)
of V , and this will be relevant for braided Cherednik algebras later. The two are
related by braided reduction, as described in Section 1.

In this section we construct q-Cherednik algebras as deformations of the
Heisenberg quadratic double AV . The presentation of AV is given in

Proposition 2.1. Let V be viewed as a Yetter–Drinfeld module over the group Γq as
above. The Heisenberg quadratic double Aq := AV has the triangular decomposition

Aq
∼= Sq(V )⊗ CΓq ⊗ SqT(V ∗),

where qT is the transpose of the matrix q, so that SqT(V ∗) is generated by V ∗

subject to relations yiyj = qjiyjyi. The commutation relation between xi and yj is
yjxi − xiyj = δi,jγi ∈ CΓq .
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Proof. The braiding τ∗q on V ∗ is computed as τ∗q(yi ⊗ yj) = qjiyj ⊗ yi (note the
order of the indices). One thus obtains the relations yiyj − qjiyjyi in S(V ∗, τ∗q)
as the kernel of id +τ∗q . The claim then follows from Proposition 1.20 and the
definition of the map βY in Section 1. �

It is now natural to look for a q-analogue of rational Cherednik algebras
among quadratic doubles with triangular decomposition

A ∼= Sq(V )⊗ CW ⊗ SqT(V ∗),

where W is a subgroup of GL(V ). Our next step is to determine what the group
W can be.

2.3. The subgroup of GL(V ) that preserves ∧2
qV and ∧2

qTV
∗

Suppose that W is a subgroup of GL(V ) such that there exists a quadratic double
of the form Sq(V )⊗ CW ⊗ SqT(V ∗). By Theorem 1.8,

W (∧2
qV ) = ∧2

qV, W (∧2
qTV

∗) = ∧2
qTV

∗.

In the case qij = 1 ∀i, j (the commutative case) these conditions are vacuous; but
they are not so in general. The group W must be a subgroup of

N(q) = {w ∈ GL(V ) | w(∧2
qV ) = ∧2

qV, w(∧2
qTV

∗) = ∧2
qTV

∗}.

To describe N(q), we define

S(q) = {σ ∈ Sn | qσ(i)σ(j) = qij ∀i, j}

and view S(q) as a subgroup of GL(V ) acting on V by permutations of the basis
{xi}. Recall the grading V =

⊕
γ∈Γ

q
Vγ given by |xi| = γi and observe that the

component Vγi of V is spanned by {xj | qjk = qik for all indices k}. Set

L(q) = {g ∈ GL(V ) | g(Vγ) = Vγ for all γ ∈ Γq}.

Clearly, the group S(q) normalises L(q), therefore S(q) · L(q) is a subgroup in
GL(V ).

Proposition 2.2. (i) N(q) = S(q) · L(q).
(ii) N(q) is the stabiliser of the set {γi | i = 1, . . . , n} in GL(V ) and is the

normaliser of Γq in GL(V ).

The proposition will follow from two elementary lemmas.

Lemma 2.3. Let ci, c′i (i = 1, . . . , n) and q be scalars, and let x =
∑
i cixi, x

′ =∑
i c
′
ixi. Then x⊗ x′ − qx′ ⊗ x ∈ ∧2

qV if and only if (1− qqij)c′icj = (q − qij)cic′j
for all indices i, j.

Proof. Recall that ∧2
qV = ker(id + τq). Applying id + τq to x⊗ x′ − qx′ ⊗ x and

equating the coefficient of xj ⊗ xi to zero gives the desired identity. �
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Lemma 2.4. Let A be an endomorphism of V acting by Axi =
∑
j A

j
ixj. Then both

A preserves ∧2
qV and its adjoint A∗ preserves ∧2

qTV
∗ if and only if

(qkl − qij)AikA
j
l = 0

for all indices i, j, k, l.

Proof. The condition that A preserves ∧2
qV is equivalent to the condition that

Axk ⊗ Axl − qklAxl ⊗ Axk ∈ ∧2
qV for all k, l. By Lemma 2.3 this is the same as

(1− qklqij)AilA
j
k = (qkl − qij)AikA

j
l for all i, j, k, l. The matrix of A∗ with respect

to the basis {yi} dual to {xi} is the transpose of the matrix of A, and qT is
the transpose of q, therefore in V ∗ we obtain the condition (1 − qlkqji)AliAkj =
(qlk−qji)AkiAlj . Swapping the indices i, l, as well as j, k, we get (1−qklqij)AilA

j
k =

−(qkl − qij)AikA
j
l . Hence both sides of this equation are zero. �

Proof of Proposition 2.2. (i) It is clear that S(q) and L(q) both preserve ∧2
qV

and ∧2
qTV

∗, thus it is enough to show that N(q) ⊂ S(q) · L(q). Let w ∈ N(q).
By definition of the action of GL(V ) on V ∗, the action of w−1 on V ∗ is by the
adjoint w∗ of w, thus w∗ preserves ∧2

qTV
∗. By Lemma 2.4, (qkl− qij)wikw

j
l = 0 for

all indices i, j, k, l, where wik are the entries of the matrix of w in the basis {xi}.
By invertibility of w, there exists a permutation σ ∈ Sn such that wσ(i)

i 6= 0 for all
indices i. For any pair i, j of indices one has the relation (qij−qσ(i)σ(j))w

σ(i)
i w

σ(j)
j =

0, hence qij = qσ(i)σ(j) and σ ∈ S(q).
What is left is to prove that the matrix g := σ−1w, with entries also satisfying

the equation in Lemma 2.4 and with gii 6= 0 for all i, is in L(q); equivalently, that
γi 6= γj ∈ Γq implies gji = 0. Indeed, find l such that qil 6= qjl. The relation
(qil − qjl)gji gll = 0 implies that gji = 0 as required.

(ii) For g ∈ GL(V ), gΓqg
−1 = Γq if and only if g permutes the simultaneous

eigenspaces of Γq . These are the same as simultaneous eigenspaces of γi, i.e.,
the subspaces Vγj of V . It is obvious that such g are precisely the elements of
S(q)L(q). �

Corollary 2.5. Let W be a subgroup of GL(V ) that contains Γq . The group W

preserves ∧2
qV and ∧2

qTV
∗ if and only if V is a Yetter–Drinfeld module via the

W -action on V and the W -grading by |xi| = γi. �

Remark 2.6. An element w ∈ GL(V ) stabilises ∧2
qTV

∗ if and only if w stabilises
the q-symmetric square S2

q(V ) := spani,j(xi ⊗ xj + qijxj ⊗ xi) of V . This is be-
cause S2

q(V ) is the orthogonal complement of ∧2
qTV

∗ with respect to the standard
pairing. Note that S2

q(V ) and ∧2
qV are the eigenspaces of the involutive braiding

τq on V ⊗ V . Therefore, N(q) is the centraliser of τq in GL(V ).
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2.4. q-Cherednik algebras

To obtain a nice classification of deformations of the Heisenberg quadratic double
Aq , we impose an extra nondegeneracy condition:

Definition 2.7. A quadratic double A ∼= T (V )/<R−> ⊗ CW ⊗ T (V ∗)/<R+> is
called nondegenerate if the commutator map [·, ·] : V ∗×V → CW has no nontrivial
kernels in V ∗ and in V .

Definition 2.8. A q-Cherednik algebra is a nondegenerate quadratic double with
triangular decomposition Sq(V )⊗ CW ⊗ SqT(V ∗), where W is a (not necessarily
finite) subgroup of GL(V ).

In the next proposition, we keep the notation for q, xi, yi, V and W .

Proposition 2.9. A q-Cherednik algebra is generated by x1, . . . , xn ∈ V , w ∈ W
and y1, . . . , yn ∈ V ∗ subject to the relations
• xixj = qijxjxi, yiyj = qjiyjyi, wxiw−1 = w(xi) ∈ V , wyiw−1 = w(yi) ∈ V ∗,
• yjxi − xiyj =

∑
w∈W 〈Lw(xi), yj〉w for some Lw ∈ End(V ).

The maps Lw are such that
⋂
w∈W kerLw = 0,

⋂
w∈W kerL∗w = 0, and satisfy

g(Lw(g−1(x))) = Lgwg−1(x) (W -equivariance);{
(xi − qijw(xi))⊗ Lw(xj) = (qijxj − w(xj))⊗ Lw(xi),

(yi − qjiw(yi))⊗ L∗w(yj) = (qjiyj − w(yj))⊗ L∗w(yi)

(q-commutativity equations)

for all g, w ∈W and all indices i, j. Conversely, an algebra with the above presen-
tation, with W ≤ GL(V ) centralising τq and Lw subject to the above conditions,
is a q-Cherednik algebra.

Proof. The defining relations follow from the definition of a q-Cherednik algebra
as a quadratic double, while

⋂
w∈W kerLw = 0,

⋂
w∈W kerL∗w = 0 is precisely

the nondegeneracy condition. Furthermore, the W -equivariance condition in the
proposition is the same as W -equivariance of the commutator, as required by
Theorem 1.4. It remains to show that the q-commutativity equations are equivalent
to the conditions [R+, V ] = 0 and [V ∗, R−] = 0 in Theorem 1.8, where R+ =
∧2

qTV
∗ and R− = ∧2

qV . To analyse the commutator [V ∗, R−], write

[y, xixj − qijxjxi] = xi[y, xj ]− qij [y, xj ]xi + [y, xi]xj − qijxj [y, xi]

=
∑
w∈W

(
(xiw − qijwxi)〈Lw(xj), y〉 − (qijxjw − wxj)〈Lw(xi), y〉

)
=
∑
w∈W

(
(xi − qijw(xi)) · w · 〈Lw(xj), y〉 − (qijxj − w(xj)) · w · 〈Lw(xi), y〉

)
,

which vanishes for all y ∈ V ∗ if and only if the first q-commutativity equation
holds. Similarly, [R+, V ] = 0 is equivalent to the second q-commutativity equation.

�
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2.5. The block structure of the matrix q

The structure of the subgroup S(q) of Sn and its action on the space V may be
complicated, depending on the combinatorics of the matrix q. We will soon show,
however, that the q-commutativity equations in Proposition 2.9 imply that only
the part of S(q) generated by transpositions actually matters for q-Cherednik
algebras. This leads to V and the matrix q being split into blocks; let us formally
introduce this block structure.

Definition 2.10. We say that indices i, j ∈ {1, . . . , n} are in the same block (with
respect to the matrix q) if

qik = qjk for all k 6= i, j; qij = ±1.

Lemma 2.11. Being in the same block is an equivalence relation on the index set
{1, . . . , n}. An equivalence class B (a block of indices) can be of one of the following
two types:

• positive block: qij = 1 for all i, j ∈ B;
• negative block: qij = −1 for all i, j ∈ B, i 6= j, where |B| > 1.

Proof. Let us write i ∼+ j, respectively i ∼− j, if i, j are indices such that
qik = qjk for any k 6= i, j and qij = 1 (respectively qij = −1). We need to check
that the relation ∼ = ∼+ ∪ ∼− is an equivalence relation. Note that ∼+ is an
equivalence relation, because i ∼+ j means that rows i and j of the matrix q are
identical. Hence ∼ is reflexive, and is symmetric as both ∼+ and ∼− are. Moreover,
∼+ is transitive, therefore it remains to check that a ∼− b ∼ c implies a ∼ c. If
c = a or c = b, we are done, otherwise a ∼− b implies qac = qbc and b ∼ c implies
qba = qca. Since qba = −1, we have qac = qbc = −1 and qab = qcb = −1. Finally,
for any k 6= a, b, c we have qak = qbk = qck. Thus, a ∼− c. �

Corollary 2.12 (Block structure of the matrix q). Let the matrix q be given. The
index set {1, . . . , n} is split into disjoint blocks. To each pair B, C of blocks there
is associated a complex number qB,C = q−1

C,B ∈ C such that

qij = qB,C whenever i 6= j, i ∈ B, j ∈ C.

In particular, qB,B is 1 or −1 depending on whether the block B is positive or
negative. �

Let B be a block of indices. Introduce the following subspaces:

VB = span(xi | i ∈ B) ⊂ V, V ∗B = span(yi | i ∈ B) ⊂ V ∗,

and let γB ∈ N(q) ⊂ GL(V ) be such that

γB |VC = qB,C idVC

for any block C, where the scalars qB,C are as introduced in Corollary 2.12.
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2.6. q-Cherednik algebras: the structure theorem

Proposition 2.9 gives the relations in a q-Cherednik algebra explicitly, except the
most important one—the commutation relation between V ∗ and V . It turns out
that, similar to rational Cherednik algebras, the commutator is expressed in terms
of complex reflections in the group W , but premultiplied with elements γB as an
extra ingredient. For reference, we need a list of complex reflections in GL(V ) that
preserve the relations in the algebras Sq(V ) and SqT(V ∗).

Lemma 2.13. Let s ∈ GL(V ) be a complex reflection (not necessarily of finite
order) and αs ∈ V , α∨s ∈ V ∗ be the root-coroot pair for s. If s ∈ N(q), then:
(1) There is a block B ⊂ {1, . . . , n} of indices such that αs ∈ VB and α∨s ∈ V ∗B.
(2) If B is a positive block, then s is an arbitrary complex reflection in VB.
(3) If B is negative, then s must be of the form t

(η)
i (η 6= 0, 1) or (ij)t(ε)i t

(ε−1)
j .

Here (ij) permutes variables xi and xj with i, j ∈ B, and t
(ε)
i multiplies the

variable xi by ε ∈ C×, leaving the rest of the variables intact.

Proof. (1) By Proposition 2.2, s = s · g where s is a permutation of indices such
that qs(i)s(j) = qij , and g preserves all Γq -graded components Vγk of V . It follows
that (1− s)Vγk ⊂ Vγk +Vγs(k) . But then dim(1− s)V = 1 implies that there are at
most two indices k such that (1− s)Vγk 6= 0. If there is only one such index k, let
B be the block of indices containing k. Otherwise, there are two such indices i, j,
and necessarily s is the permutation (ij). One has qji = qij (hence qij = ±1) and
qia = qja for all a 6= i, j, thus i, j belong to the same block; let B be the block
which contains i, j. In either case, (1− s)VB′ = 0 for B′ 6= B and (1− s)VB ⊂ VB ,
which implies αs ∈ VB and α∨s ∈ V ∗B .

Part (2) is clear, as VB is of the form Vγk if B is a positive block, thus any
complex reflection s in VB has a decomposition id · s ∈ S(q) · L(q) and hence
commutes with τq .

Finally, if B is a negative block, then by Lemma 2.11, VB = ⊕{Vγi | i ∈ B}
is a direct sum of one-dimensional Γq-graded components. By Proposition 2.2,
s must act imprimitively and permute these 1-dimensional subspaces. All such
imprimitive complex reflections are listed in (3) (cf. [DO, Section 3]). �

The following theorem completes the description of the structure of q-Che-
rednik algebras.

Theorem 2.14. Let A ∼= Sq(V ) ⊗ CW ⊗ SqT(V ∗) be a q-Cherednik algebra. Then
the commutator of y ∈ V ∗ and x ∈ V in A is of the form

yx− xy =
∑

blocksB

γB ·
(

(x, y)B · 1 +
∑
s

cs〈x, α∨s 〉〈αs, y〉s
)
,

where the sum is taken over complex reflections s which commute with the braiding
τq and satisfy αs ∈ VB, α∨s ∈ V ∗B and γBs ∈W . The pairing (·, ·)B between V and
V ∗ is such that (xi, yj)B = 0 unless i, j ∈ B, and is so chosen, together with the
constants cs, as to make the commutator W -equivariant and nondegenerate.
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Corollary 2.15. In particular, in a q-Cherednik algebra one has yjxi − xiyj = 0
unless i, j are in the same block of indices with respect to q.

Proof of Theorem 2.14. We write the commutator as [y, x] =
∑
w∈W 〈Lw(x), y〉w

with Lw ∈ End(V ). It is enough to show that if the map Lw is nonzero, then either
(a) w = γB for some block B, Lw(VB′) = 0 for blocks B′ 6= B, and Lw(VB) ⊂ VB ;

or
(b) w = γBs for a complex reflection s such that αs ∈ VB , α∨s ∈ V ∗B , and

Lw(x) = const · 〈x, α∨s 〉αs.

Case 1: w preserves each Γq -homogeneous component Vγi of V

Find an index i such that Lw(xi) 6= 0. For an index j such that γj 6= γi, the vectors
xi − qijw(xi) ∈ Vγi and qijxj − w(xj) ∈ Vγj cannot be nonzero and proportional,
therefore, both sides of the q-commutativity equation in Proposition 2.9 must
be zero. It follows that qijxj − w(xj) = Lw(xj) = 0. Hence w|Vγj = γi|Vγj and
Lw|Vγj = 0 on all Γq-homogeneous components Vγj of V such that γj 6= γi.
Similarly, L∗w vanishes on Γq -homogeneous components of V ∗ other than (V ∗)γ−1

i
,

which means that Lw(Vγi) ⊂ Vγi .
Furthermore, Proposition 2.9 implies that for x, x′ ∈ Vγi ,

(x− w(x))⊗ Lw(x′) = (x′ − w(x′))⊗ Lw(x). (∗)

It is easy to see that this tensor equation may hold only if either w = id on Vγi ,
or dim(1 − w)Vγi = dimLw(Vγi) = 1. In the former case, w = γi. If i belongs
to a positive block B, one has VB = Vγi and therefore w = γB , so that option
(a) holds. If i belongs to a negative block B, then dimVγi = 1, therefore Lw(x) =
const ·〈x, yi〉xi. The element w = γi decomposes as γB t

(−1)
i , and t(−1)

i is a complex
reflection on Vγi = Cxi with root-coroot pair xi, 2yi, so that option (b) holds.

In the case dim (1−w)Vγi = dimLw(Vγi) = 1, the element w is necessarily γis,
where s is a complex reflection on Vγi . Write Lw(x) = 〈x, α〉β with α ∈ V ∗

γ−1
i

and

β ∈ Vγi . By (∗), Lw(x) vanishes on ker(1− s), therefore α = const ·α∨s . Moreover,
Proposition 2.9 implies the equation (y − s(y)) ⊗ L∗w(y′) = (y′ − s(y′)) ⊗ L∗w(y)
for y, y′ ∈ (V ∗)γ−1

i
, so that β = const · αs. If i belongs to a positive block B,

we have VB = Vγi , and option (a) holds. If i belongs to a negative block B so
that dimVγi = 1, then s = t

(η)
i for some η 6= 1, and w = γit

(η)
i = γB t

(−η)
i . No

matter what η is, the root and the coroot of t(−η)
i are proportional to xi and yi,

respectively, hence option (b) still holds.

Case 2: there exist indices i, j such that γi 6= γj and w(Vγi) = Vγj
By Proposition 2.9,

(xi − qikw(xi))⊗ Lw(xk) = (qikxk − w(xk))⊗ Lw(xi) for all k.

Note that xi−qikw(xi) cannot be zero, because xi ∈ Vγi , w(xi) ∈ Vγj and Vγi∩Vγj
= 0. Therefore Lw(xi) 6= 0, as otherwise the commutativity equation would imply
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that Lw(xk) = 0 for all k. Now observe that for any x ∈ Vγj , x 6= 0, one has

(xi − qijw(xi))⊗ Lw(x) = (qijx− w(x))⊗ Lw(xi) (∗∗)

and qijx−w(x) 6= 0 because w(Vγj )∩Vγj = 0. It follows that Lw(x) is proportional
to Lw(xi) for any x ∈ Vγj , thus dimLw(Vγj ) = 1.

Now if dimVγj > 1, then Lw must have a kernel in Vγj . Pick 0 6= x ∈ Vγj such
that Lw(x) = 0. Substituting x in (∗∗) leads to a contradiction, as the left-hand
side of the equation becomes zero while the right-hand side does not. Therefore
dimVγi = dimVγj = 1 and w(xi) = εxj for some ε ∈ C×.

By (∗∗), xi − qijεxj is proportional to qijxj −w(xj). It follows that w(xj) =
ε−1xi. Hence for l 6= i, j the subspace w(Vγl) has zero intersection with Vγi and
with Vγj , thus the vector qilxl − w(xl) cannot coincide with xi − qilw(xi) up to a
nonzero factor. Equation (∗∗) therefore forces qilxl − w(xl) = 0 and Lw(xl) = 0
for each l 6= i, j. A similar equation in V ∗ forces L∗w(yl) = 0 for l 6= i, j, hence
Lw(Cxi + Cxj) ⊂ Cxi + Cxj .

Furthermore, Proposition 2.2 implies that qik = qki and that qil = qjl for all
l 6= i, j. As γi 6= γj , one has qij = −1. This means that i and j belong to a negative
block B, and w acts as γB on each Vγl with l 6= i, j. We have the decomposition

w = γB · (ij)t
(ε)
i t

(ε−1)
j .

Now (∗∗) reads

(xi + εxj)⊗ Lw(xj) = −(ε−1xi + xj)⊗ Lw(xi),

so that Lw(xi) = −εLw(xj). Moreover, the W -equivariance condition in Propo-
sition 2.9 implies that Lw commutes with w, whence w(Lw(xi)) = εLw(xj) =
−Lw(xi), thus Lw(xi) = xi − εxj . It follows that

Lw(x) = const · 〈x, yi − ε−1yj〉(xi − εxj)

and option (b) holds. �

Corollary 2.16. Let W be a subgroup of GL(V ) centralising the braiding τq . An
algebra given by generators and relations from Proposition 2.9 and the commu-
tation relation from Theorem 2.14 is a q-Cherednik algebra if the commutator is
W -equivariant and nondegenerate.

Proof. Indeed, we checked in the proof of Theorem 2.14 that the q-commutativity
equations in Proposition 2.9 are satisfied. �

3. Braided Cherednik algebras

In this section, we introduce braided Cherednik algebras. Besides the well-known
rational Cherednik algebras of Etingof and Ginzburg, irreducible groups give rise
to a new class of negative braided Cherednik algebras.
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3.1. The q-Weyl algebra Aq

Recall from Section 2 that the classical Weyl algebra of polynomial differential
operators on the space V admits two possible q-versions. One of them is the
Heisenberg quadratic double Aq

∼= Sq(V )⊗CΓq ⊗SqT(V ∗) over the group Γq ; we
introduced q-Cherednik algebras as deformations of this. The other is the braided
Weyl algebra of V , obtained from Aq via braided reduction. We denote it by Aq

and will now review it in more detail. Note the appearance of the q-symmetric
algebra

Sq(V ∗) := C〈y1, . . . , yn | yiyj = qijyjyi〉,
which is not the same as SqT(V ∗) used in the previous section; in fact, Sq(V ∗) ∼=
SqT(V ∗)op.

Proposition 3.1. Let V be viewed as a Yetter–Drinfeld module over the group Γq

as above. The braided Weyl algebra Aq := AV decomposes as

Aq
∼= Sq(V )⊗ Sq(V ∗),

where y1, . . . , yn is a basis of V ∗ dual to {xi}, and the commutation relation be-
tween yj and xi is given by

yjxi − qijxiyj = δi,j .

Proof. This follows immediately from Propositions 2.1 and 1.22. Alternatively, it
can be deduced from Example 1.25. �

We can view the space V ⊕ V ∗ as a Yetter–Drinfeld module over the group
Γq (a direct sum of two YD-modules) and denote the resulting braiding on V ⊕V ∗
again by τq . Then one has the braided commutator

[a, b]q := a⊗ b− τq(a⊗ b), a, b ∈ V ⊕ V ∗.

The Γq-grading on V ⊕ V ∗ is given by |xi| = γi, |yi| = γ−1
i , and recall that

γi(xj) = qijxj , γi(yj) = qjiyj . Hence, the q-commutator is explicitly written as

[xi, xj ]q = xi ⊗ xj − qijxj ⊗ xi, [yi, yj ]q = yi ⊗ yj − qijyj ⊗ yi,
[yj , xi]q = yj ⊗ xi − qijxi ⊗ yj .

Let ω(a, b) be the skew-symmetric bilinear form on V ⊕ V ∗ uniquely determined
by ω(x, x′) = ω(y, y′) = 0, ω(x, y) = 〈x, y〉 for x, x′ ∈ V , y, y′ ∈ V ∗. The q-Weyl
algebra can be defined as

Aq = T (V ⊕ V ∗)/<[a, b]q − ω(a, b)>.

Moreover, any subgroup W ≤ GL(V ) which preserves the q-deformed exterior
squares ∧2

qV and ∧2
qTV

∗, will also preserve ∧2
qV
∗ = τ(∧2

qTV
∗) and centralise the

braiding τq on V ⊕ V ∗. Trivially, W preserves the form ω, therefore the q-Weyl
algebra Aq will be a W -module algebra.
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3.2. Braided Cherednik algebras

Informally, one can now interpret ω in the above presentation of the braided Weyl
algebra Aq as a CW -valued form. This leads to a braided version of Drinfeld’s
degenerate affine Hecke algebra [Dr] and Etingof–Ginzburg symplectic reflection
algebra [EG], and is a natural way to introduce braided Cherednik algebras. Their
formal definition is as follows.

Definition 3.2. A braided Cherednik algebra associated to the matrix q is an algebra
with triangular decomposition Sq(V )⊗ CW ⊗ Sq(V ∗) where

wxw−1 = w(x), wyw−1 = w(y), [y, x]q ∈ CW

for x ∈ V , y ∈ V ∗, w ∈W , such that the braided commutator [·, ·]q : V ∗×V → CW
has zero kernels in V ∗ or V .

To establish the connection to q-Cherednik algebras, recall that if there exists
a q-Cherednik algebra of a group W̃ ≤ GL(V ) such that W̃ contains Γq , then V
is a Yetter–Drinfeld module over W by Corollary 2.5. This means that such a
q-Cherednik algebra has braided reduction. We have

Proposition 3.3. Braided Cherednik algebras associated to the matrix q are the
same as braided reductions of q-Cherednik algebras.

Proof. First, assume that A = Sq(V ) ⊗ CW̃ ⊗ SqT(V ∗) is a q-Cherednik algebra
where W̃ ⊃ Γq . Then it is easily deduced from Proposition 1.22 that A, which is
the same algebra as A but with generators xi, w and

yi = γ−1
i yi,

has triangular decomposition Sq(V )⊗CW ⊗Sq(V ∗) and satisfies the relations in
Definition 3.2. To prove that A is a braided Cherednik algebra, we show that A is
a nondegenerate quadratic double if and only if the q-commutator [·, ·]q between
V ∗ and V in A has zero kernels in V ∗, V .

Indeed, we have [yj , xi]q = γ−1
j · [yj , xi] for x ∈ V . Hence it is enough to

show that the kernels of [·, ·] and [·, ·]q are spanned by Γq -homogeneous elements.
But observe that the Γq -homogeneous elements in V ∗ and in V are precisely the
simultaneous eigenvectors for the action of Γq . Furthermore, the kernels of [·, ·]
and of [·, ·]q in V ∗ and V are W -submodules, therefore Γq-submodules and thus
spanned by eigenvectors for the action of Γq , as required.

Second, let a braided Cherednik algebra of the form Sq(V )⊗CW ⊗ Sq(V ∗)
be given. Then the group W preserves the q-exterior squares ∧2

qV and ∧2
qV
∗.

Hence W preserves ∧2
qTV

∗ = τ(∧2
qV
∗) and, by Proposition 2.2, W normalises

Γq . It follows that W̃ := W · Γq is a group which preserves ∧2
qV and ∧2

qV
∗. By

Corollary 2.5, V is a Yetter–Drinfeld module with respect to the action of W̃ and
the grading by elements of Γq ≤ W̃ . Put yi = γiyi; then x1, . . . , xn, y1, . . . , yn

and W̃ generate a quadratic double A, as shown in Proposition 1.22, of the form
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Sq(V )⊗CW̃ ⊗ SqT(V ∗). Our braided Cherednik algebra is the braided reduction
of A. Moreover, by what we have already proved, A is a nondegenerate quadratric
double, i.e. the commutator [·, ·] between V ∗ and V has zero kernels, because this
is true for [·, ·]q . �

The proposition and its proof imply a W -equivariance condition for the
braided commutator:

Corollary 3.4. Let H(W ) = Sq(V )⊗CW ⊗Sq(V ∗) be a braided Cherednik algebra
of a group W ⊂ GL(V ), associated to a matrix q. Then the braided commutator
[·, ·]q : V ∗ ⊗ V → CW is W -equivariant and Γq-equivariant. (The action of both
W and Γq on V ∗ ⊗ V is standard diagonal, and on CW is by conjugation inside
GL(V ).)

Proof. As in the proof of Proposition 3.3, put W̃ = W · Γq and view H(W )
as the braided reduction of H(W̃ ) = Sq(V ) ⊗ CW ⊗ SqT(V ∗). To compute the
braided commutator of y ∈ V ∗ and x ∈ V in H(W ), we assume y to be Γq -ho-
mogeneous, put y = |y|y and write [y, x]q = [|y|y, x]q = |y|[y, x] precisely as in
Proposition 1.22. Now for any w ∈ W̃ we have

[w(y), w(x)]q = |w(y)|[w(y), w(x)] = w|y|w−1 · w[y, x]w−1 = w|y|[y, x]w−1

= w[y, x]qw
−1

because V ∗ is a Yetter–Drinfeld module for W̃ and the commutator [·, ·] in H(W̃ )
is W̃ -invariant. Extending to arbitrary y by linearity, we obtain W̃ = W ·Γq -equiv-
ariance of [·, ·]q . �

Note that the group W may not be stable under conjugation by Γq , but the
braided commutator must still be Γq -equivariant.

3.3. Negative braided Cherednik algebras

Clearly, if qij = 1 for all i, j, braided Cherednik algebras associated to q are
ordinary rational Cherednik algebras. We will now construct a family of braided
Cherednik algebras of finite groups with

qij = −1 for all i, j = 1, . . . , n, i 6= j.

The matrix with such entries was denoted −1 in the introduction. Recall, also
from the Introduction,

• the elements σ(ε)
ij of order 4 in GL(V ), defined for i 6= j and ε ∈ C×;

• the finite group WC,C′ = 〈{σ(ε)
ij | ε ∈ C} ∪ {t

(ε′)
i | ε′ ∈ C′}〉 ≤ GL(V ), where

C′ ⊂ C are finite subgroups of C× such that |C| is even.
We will write WC,C′(n) to emphasise that there is a separate group WC,C′ in each
rank n = dimV . We note that WC,C′ is an irreducible linear group, i.e., it irre-
ducibly acts on V , and keep in mind that WC,C′(n) is one of the groups G(m, p, n)
or G(m, p, n)+ with m and p as described in the introduction.
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Definition 3.5. Fix a scalar function c : C′ → C. The negative braided Cherednik
algebra Hc(WC,C′) is the algebra generated by V = span(x1, . . . , xn), WC,C′ and
V ∗ = span(y1, . . . , yn) subject to the relations

(i) xixj + xjxi = yiyj + yjyi = 0 for all i 6= j;
(ii) wxiw

−1 = w(xi), wyiw−1 = w(yi);
(iii) yjxi + xiyj = c1

∑
ε∈C εσ

(ε)
ij for all i 6= j,

yixi − xiyi = 1 + c1
∑
j 6=i, ε∈C σ

(ε)
ij +

∑
ε′∈C′\{1} cε′t

(ε′)
i ,

where i, j = 1, . . . , n and w ∈WC,C′ .

Proposition 3.6. Hc(WC,C′) is a braided Cherednik algebra.

Proof. The matrix q is given by q = −1. Note that all indices form a single
negative block with respect to −1.

Identify the group GL(V ) with GLn(C) via the basis {xi} of V . Let m = |C|.
Take W̃ to be the complex reflection group G(m, 1, n) of matrices in GLn(C) with
precisely n nonzero entries, all of which are mth roots of unity. Note that

s
(ε)
ij := (ij)t(ε)i t

(ε−1)
j

and t(ε)i , ε ∈ C, are complex reflections in W̃ . Let H(W̃ ) be the algebra generated
by V , W̃ and V ∗ subject to the relations in Proposition 2.9 (with qij = −1 for all
i 6= j !) and the commutation relation

yjxi − xiyj = (− id) · c1
∑
ε∈C
−εs(ε)

ij if i 6= j, (∗)

yixi − xiyi = (− id) ·
(
t
(−1)
i + c−1 · 1− c1

∑
j 6=i, ε∈C

s
(ε)
ij +

∑
ε′∈C′\{±1}

cε′t
(−ε′)
i

)
,

(∗∗)

where − id is the negative identity matrix in GLn(C) (it is an element of W̃ since
m is even). The coefficient c−1 is assumed to be zero if −1 6∈ C′. To observe that
H(W̃ ) is a −1-Cherednik algebra, rewrite the commutation relation as

yx− xy =(− id)
(
c−1〈x, y〉+

1
2

∑
i

〈x, 2yi〉〈y, xi〉t(−1)
i

+ c1
∑
i6=j

〈x, yi − ε−1yj〉〈xi − εxj , y〉s(ε)
ij

+
∑

i, ε′∈C′\{±1}

cε′

1 + ε′
〈x, (1 + ε′)yi〉〈xi, y〉t(−ε

′)
i

)
.

This is the same as the commutator in Theorem 2.14: given that there is only one
block B = {1, . . . , n} of indices which is negative, one has γB = − id. This com-
mutator is nondegenerate because of the coefficient of t(−1)

i , and is W̃ -equivariant,
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since t(ε)i and t(δ)j are not conjugate in GL(V ) if ε 6= δ, and s(ε)
ij is never conjugate

to t(ε
′)

k in G(m, p, n) (see [DO, Section 3]).
Hence H(W̃ ) is a −1-Cherednik algebra by Corollary 2.16. It remains to

observe thatHc(WC,C′) is a braided reduction ofH(W̃ ). Indeed, let (− id)βij be the
commutator of yj and xi in H(W̃ ), defined above. By Proposition 1.22, the braided
commutator [yj , xi]−1 in the braided reduction of H(W̃ ) is equal to |yj |(− id)βij =
γ−1
j (− id)βij . Note that γ−1

j = γj acts on xi, i 6= j, by −1 and on xj by 1. Thus

γ−1
j · (− id) = t

(−1)
j . It remains to note that t(−1)

j s
(ε)
ij = σ

(−ε)
ij and t

(−1)
i t

(ε′)
i =

t
(−ε′)
i , therefore γ−1

j (− id)βij is precisely the braided commutator of yj and xi in
Definition 3.5. �

Using the notation from the proof of Proposition 3.6, we can make another
“change of variables” in the −1-Cherednik algebra H(W̃ ) when − id ∈ W̃ . Namely,
V becomes a Yetter–Drinfeld module for W̃ via the grading |v| = − id for all v ∈ V .
By Proposition 1.22, the elements zi = (− id) · yi ∈ H(W̃ ), together with the xi
and w ∈W , generate an algebra H(W̃ ) with the relations

(i) xixj + xjxi = zizj + zjzi = 0 for all i 6= j;
(ii) wxiw

−1 = w(xi), wziw−1 = w(zi) for all w ∈WC,C′ , i = 1, . . . , n;
(iii) zjxi + xizj = c1

∑
ε∈C −εs

(ε)
ij for all i 6= j, and

zixi + xizi = t
(−1)
i + c−1 · 1 − c1

∑
j 6=i, ε∈C s

(ε)
ij +

∑
ε′∈C′\{±1} cε′t

(−ε′)
i for

i = 1, . . . , n,
obtained directly from (∗) and (∗∗) in the proof of Proposition 3.6. We thus obtain

Corollary 3.7. The algebra with the above presentation (i)–(iii) has triangular de-
composition S−1(V )⊗ CW̃ ⊗ S−1(V ∗).

Remark 3.8 (The degenerate version). We introduce the “degenerate” negative
braided Cherednik algebra H0,c(WC,C′) by omitting 1 from the commutator yixi−
xiyi in Definition 3.5:

yixi − xiyi = c1
∑

j 6=i, ε∈C

σ
(ε)
ij +

∑
ε′∈C′\{1}

cε′t
(ε′)
i .

This is a braided Cherednik algebra, provided that the function c is not identically
zero. The proof is the same as for Hc(WC,C′).

Remark 3.9 (The rank 2 case). It turns out that when dimV = 2, the definition
of Hc(WC,C′(2)) and Hc(WC,C′(2)) can be modified to allow one extra degree of
freedom in choosing the parameter c. We modify Definition 3.5 to say that if
dimV = 2, the algebra depends on |C′| + 1 parameters c1, c′1, cε′ (ε′ ∈ C′ \ {1}),
and the commutation relations in Hc(WC,C′(2)) will be

(iii) yjxi + xiyj = c1
∑
ε∈C2 εσ

(ε)
ij + c′1

∑
ε∈C\C2 εσ

(ε)
ij when {i, j} = {1, 2},

yixi−xiyi = 1 + c1
∑
j 6=i, ε∈C2 σ

(ε)
ij + c′1

∑
j 6=i, ε∈C\C2 σ

(ε)
ij +

∑
ε′∈C′\{1} cε′t

(ε′)
i .
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Here C2 denotes the set of squares of elements of C (the only subgroup of index 2
in C). The proof that Hc(WC,C′(2)) is a braided Cherednik algebra is the same as
in Proposition 3.6, but taking into account that in the complex reflection group
G(m, 1, 2) the complex reflections s(ε)

12 and s(ε′)
12 are conjugate if and only if ε′ = εδ2

for some δ ∈ C2.

It turns out that the algebras Hc(WC,C′) and H0,c(WC,C′) exhaust all possible
“negative braided” Cherednik algebra structures over the group WC,C′ :

Proposition 3.10. Any braided Cherednik algebra H of the form

S−1(V )⊗ CWC,C′ ⊗ S−1(V ∗)

is isomorphic to Hc(WC,C′) or to H0,c(WC,C′) for some choice of the parameter c.

Proof. Let W̃ = WC,C′Γ−1 , and consider a −1-Cherednik algebra H(W̃ ) such
that H is its braided reduction (as in the proof of Proposition 3.3). The braided
commutator [yj , xi]−1 in H rewrites as γ−1

j [yj , xi], where γ−1
j = γj = t

(−1)
j and

[yj , xi] is the commutator in H(W̃ ), necessarily given by [yj , xi] = (− id)(scalar +∑
s cs〈xi, α∨s 〉〈αs, yi〉s). Here s runs over some complex reflections in the group

W̃ , and cs are some scalars. Now observe that W̃ is contained in the complex
reflection group G(m, 1, n) where m = |C|. We know what the complex reflections
in G(m, 1, n) are; it follows that for i 6= j, the only possible complex reflections
appearing in the commutator [yj , xi] are of the form s

(ε)
ij , and if i = j, then they

can be of the form t
(η)
i or s(ε)

ik for some k 6= i. We do not know the linear conditions
on the scalars cs, because this depends on how the complex reflections split into
conjugacy classes in W̃ ; but we certainly know that the coefficients of the same
complex reflection s

(ε)
ij in [yj , xi] and in [yi, xi] differ by a factor of ε.

All this is sufficient to determine that the cross-commutation relations in H
must be of the form

• yjxi + xiyj = (yj , xi) +
∑
ε∈C εa(i, j, ε)σ(ε)

ij ,

yixi − xiyi = (yi, xi) +
∑
j 6=i, ε∈C a(i, j, ε)σ(ε)

ij +
∑
ε′∈C′\{1} b(i, ε

′)t(ε
′)

i

for some bilinear form (·, ·) : V ∗ ⊗ V → C and some coefficients a(i, j, ε) (i 6= j),
b(i, ε). Now we are going to use the WC,C′ -equivariance of the braided commuta-
tor (Corollary 3.4). The form (·, ·) must be WC,C′ -invariant, and as WC,C′ is an
irreducible group, (·, ·) = λ〈·, ·〉 is proportional to the evaluation pairing.

Equivariance of the second commutator formula with respect to σ(1)
i1 implies

that a(i, j, ε) = a(1, j, ε) and b(i, ε′) = b(1, ε′), and then equivariance under σ(1)
2j

implies that a(1, j, ε) = a(1, 2, ε). Finally, equivariance under σ(1)
31 σ

(ε)
13 = t

(ε−1)
1 t

(ε)
3

implies the equation a(1, 2, ε) = a(1, 2, 1), because t
(ε−1)
1 t

(ε)
3 σ

(1)
12 [t(ε

−1)
1 t

(ε)
3 ]−1 =

σ
(ε)
12 . The same result can be obtained by using equivariance under t(

√
ε−1)

1 . Thus,
a(i, j, ε) (ε ∈ C) are all equal to some constant c1, and b(i, ε′) = cε′ (ε′ ∈ C′). One
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concludes that H ∼= H0,c(WC,C′) if λ = 0, or H ∼= Hc(WC,C′) if λ 6= 0, where c is
the function ε′ 7→ cε′ on C′.

The above argument only fails if the group WC,C′ does not contain t
(ε−1)
1 t

(ε)
3

and C′ does not contain
√
ε, for ε ∈ C. This happens precisely when dimV = 2

(the rank 2 case). In this case, one may use equivariance of the braided commu-
tator under σ(δ)

12 , δ ∈ C, to establish a(1, 2, ε) = a(1, 2, ε−1δ2) by observing that
(σ(δ)

12 )−1σ
(ε)
12 σ

(δ)
12 = σ

(ε−1δ)
12 . In this case, the algebra will depend not on |C′| but on

|C′|+ 1 scalar parameters, as described in Remark 3.9. �

Example 3.11 (Braided Cherednik algebra of type B+
n ). The smallest possible

example of a nontrivial group WC,C′ in rank n corresponds to |C| = 2 and |C′| = 1.
The group G(2, 1, n) is the Coxeter group of type Bn, and W{±1},{1} is the group
of even elements in Bn. Denote this group by B+

n . It is generated by σij , i, j =
1, . . . , n, i 6= j, so that σ(1)

ij = σij and σ
(−1)
ij = (σij)−1 = σji.

The following is the list of relations in the negative braided Cherednik algebra
of type B+

n :
• xixj + xjxi = yiyj + yjyi = 0 for i 6= j;
• σijxi = xjσij , σijxj = −xiσij , σijxk = xkσij for k 6= i, j, and the same with
yi in lieu of xi;

• yjxi + xiyj = c(σij − σji) for i 6= j;
• yixi − xiyi = 1 + c

∑
j 6=i(σij + σji).

4. Classification of braided Cherednik algebras

In this section, we classify braided Cherednik algebras of finite groups (under a
natural minimality assumption on the group W ). We do this by showing that they
are braided tensor products of rational Cherednik algebras of irreducible complex
reflection groups and negative braided Cherednik algebras of groups G(m, p, n)
and G(m, p, n)+, introduced in the previous section.

4.1. Braided tensor product of algebras

For k = 1, . . . ,m, let Hk be a braided Cherednik algebra of a finite group Wk ⊂
GL(Vk), associated to a matrix qk of size nk × nk where nk = dimVk. We would
like to turn the vector space H1 ⊗ · · · ⊗ Hm into a braided Cherednik algebra
associated to a matrix q of size n =

∑
k nk, with submatrices qk along the main

diagonal. However, the standard tensor product A ⊗ B of algebras, where a ∈ A
and b ∈ B commute, is not general enough because it would only give a matrix q
with all entries outside the submatrices qk equal to 1.

It turns out that the appropriate tensor multiplication here is the braided
tensor product of algebras, well known in the theory of braided monoidal categories;
see [M2]. Let us recall this notion without going into too much detail. Let C be
a braided tensor category, i.e., for each pair X, Y of objects there is a braiding
ΨX,Y : X ⊗ Y → Y ⊗X which is a morphism in C; these morphisms satisfy the
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axioms of the categorical braiding. An algebra in C is an object A of C equipped
with associative multiplication mA : A⊗A→ A and the unit map 1A : I→ A that
are morphisms in C, where I is the unit object in the category. The braided tensor
product of algebras A and B in C is

A⊗B = A⊗B as an object of C ;

mA⊗B = (mA ⊗mB)(idA⊗ΨB,A ⊗ idB) : A⊗B ⊗A⊗B → A⊗B,
1A⊗B = 1A ⊗ 1B .

The categorical braiding axioms ensure that mA⊗B is an associative multiplication.

4.2. The braided tensor category MΓ,R

The category Γ
ΓYD of Yetter–Drinfeld modules (as introduced in Section 1) over a

group Γ is a braided category, with braiding

X,Y ∈ Ob Γ
ΓYD 7→ ΨX,Y : X ⊗ Y → Y ⊗X, ΨX,Y (x⊗ y) = |x|(y)⊗ x.

Our main example of a braided category will, however, be slightly different. Let Γ
be an Abelian group. Fix a map R : Γ × Γ → C× which is a unitary bicharacter,
i.e., R(γ, ·) is a homomorphism from Γ to C× for fixed γ ∈ Γ, and R(γ, γ′) =
R(γ′, γ)−1. Assume that R is nondegenerate, that is, γ 7→ R(γ, ·) is an embedding
of Γ in the group Γ̂ of its multiplicative characters. Denote by Γ̂R the image of
this embedding. Elements of Γ̂R are viewed as 1-dimensional Γ-modules.

Definition 4.1. Define the categoryMΓ,R as a full subcategory of Γ-modules con-
sisting of objects isomorphic to direct sums of modules in Γ̂R. Each module X in
MΓ,R is Γ-graded by

x ∈ X, g(x) = R(γ, g)x ∀g ∈ Γ ⇒ |x| = γ.

It is clear that this grading makes X a Yetter–Drinfeld module so that MΓ,R is
a full subcategory of Γ

ΓYD and defines the braiding ΨX,Y between X and Y in
MΓ,R.

In what follows, Γ will be an Abelian group with fixed unitary nondegenerate
bicharacter R on Γ. For X ∈ ObMΓ,R, define

|X| = {γ ∈ Γ | there exists x ∈ X, x 6= 0, with |x| = γ}.

4.3. Braided tensor product of braided Cherednik algebras

We will now observe that if Γ acts on a braided Cherednik algebra H(W ) in a
certain standard way, then H(W ) is guaranteed to be a Γ-module algebra.

Definition 4.2. Let H(W ) ∼= Sq(V ) ⊗ CW ⊗ Sq(V ∗) be a braided Cherednik al-
gebra, where V , as usual, is spanned by x1, . . . , xn. A Γ-structure on H(W ) is a
representation ρ : Γ→ GL(V ) such that:
• V becomes an object ofMΓ,R, and xi ∈ V are simultaneous eigenvectors for
ρ(Γ);
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• g−1w−1gw ∈ W ∩ ρ(Γ) for all g ∈ ρ(Γ) and w ∈ W ; in particular, (γ,w) 7→
ρ(γ)wρ(γ)−1 is a Γ-action on W ;
• the braided commutator [·, ·]q : V ∗⊗V → CW is equivariant with respect to

the Γ-action.

Lemma 4.3. Let H(W ) be a braided Cherednik algebra with Γ-structure. Then:

(a) W acts on the set |V | ⊂ Γ;
(b) CW is a Γ-submodule of H(W ), and |CW | = {γ−1 · w(γ) | γ ∈ |V |};
(c) H(W ) is an algebra in the category MΓ,R.

Proof. (a) If x ∈ V is a simultaneous eigenvector for ρ(Γ), and w is in W , then
w(x) is a simultaneous eigenvector for wρ(Γ)w−1 corresponding to the same eigen-
character. But wρ(Γ)w−1 = ρ(Γ) by definition of Γ-structure. Thus, the action of
W permutes ρ(Γ)-simultaneous eigenspaces in V , which are Γ-homogeneous com-
ponents of V , hence W permutes Γ-degrees of elements of V . Note that the action
of W on the set |V | is such that w(|xi|) = |w(xi)|.

(b) Consider the Γ-action on End(V ) given by (γ,m) 7→ ρ(γ)mρ(γ)−1 for
m ∈ End(V ). It is then easy to see that the canonical isomorphism End(V ) ∼=
V ⊗ V ∗ is an isomorphism of Γ-modules. Let {yi}, as usual, be the basis of V ∗

dual to {xi}. Then xi⊗yj ∈ V ⊗V ∗ is a simultaneous eigenvector for Γ of Γ-degree
|xi| |xj |−1. An element w ∈ W is written as

∑n
i=1 w(xi) ⊗ yi ∈ V ⊗ V ∗, and the

Γ-degree of w(xi) ⊗ yi is w(|xi|) · |xi|−1. Thus, the Γ-degrees that appear in the
Γ-submodule of CW generated by w are of the form w(|xi|) · |xi|−1, and the linear
independence of w(xi)⊗ yi in the expansion of w implies that all these Γ-degrees
actually appear in this submodule.

(c) Thus, Γ acts on generators of H(W ), and we check that this action
preserves the relations in H(W ). The relation wxw−1 = w(x) where x ∈ V
and w ∈ W becomes ρ(γ)wρ(γ)−1 · ρ(γ)(x) · ρ(γ)w−1ρ(γ)−1 = (ρ(γ)w)(x), i.e.,
w′x′w′−1 = w′(x′) where w′ = ρ(γ)wρ(γ)−1 ∈ W and x′ = ρ(γ)(x). This is also
a relation in H(W ). The relations xixj = qijxjxi are preserved since the xi are
simultaneous eigenvectors of Γ. Similarly, the relations wyw−1 = w(y) for y ∈ V ∗,
and yiyj = qijyjyi, are preserved. Finally, the braided commutation relations be-
tween yj and xi are preserved because the braided commutator between V ∗ and
V is Γ-equivariant. �

The Γ-structure paves the way for introducing a braided tensor product ⊗
of braided Cherednik algebras. (Obviously, the usual tensor product where the
two tensorands commute is a particular case of this, corresponding to the trivial
“{1}-structure” on any braided Cherednik algebra.) Let us write down the trian-
gular decomposition property of the braided tensor product:

Lemma 4.4. Let

H(W ) ∼= Sq(V )⊗ CW ⊗ Sq(V ∗), H(W ′) ∼= Sq′(V ′)⊗ CW ′ ⊗ Sq′(V ′∗)
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be braided Cherednik algebras with Γ-structure, where V is spanned by variables
x1, . . . , xn and V ′ is spanned by variables xn+1, . . . , xn+m. Let R be a nondegen-
erate unitary bicharacter on Γ. The braided tensor product of H(W ) and H(W ′)
in the category MΓ,R has triangular decomposition

H(W )⊗H(W ′) ∼= Seq(V ⊕ V ′)⊗ (CW ⊗ CW ′)⊗ Seq(V ∗ ⊕ V ′∗).

The (n+m)× (n+m) matrix q̃ = (q̃ij) is given by

q̃ij = qij (i, j ≤ n), q̃ij = q′ij (n < i, j), q̃ij = R(gi, gj) (otherwise),

where gi = |xi| is the Γ-degree of xi; in particular, q̃ij = q̃−1
ij .

Remark 4.5. Warning: CW ⊗ CW ′ is not necessarily a group algebra!

Proof of Lemma 4.4. It is clear that we may write H(W ) ⊗ H(W ′) as a tensor
product

(Sq(V )⊗ Sq′(V ))⊗ (CW ⊗ CW ′)⊗ (Sq(V ∗)⊗ Sq′(V ′∗)) =: U− ⊗ U0 ⊗ U+

of subalgebras. The subalgebra U− is generated by x1, . . . , xn+m modulo the re-
lations

xixj = qijxjxi (i, j ≤ n), xixj = q′ijxjxi (n < i, j),

xixj = R(gi, gj)xjxi (otherwise),

the latter relation being dictated by the braided tensor product. Immediately
U− = Seq(V ⊕ V ′) as required. In the same way U+ = Seq(V ∗ ⊕ V ′∗). Moreover,
U−U0 is a subalgebra. This follows from the commutation relations wxi = w(xi)w,
w′xk = w′(xk)w where i ≤ n < k, w ∈ W , w′ ∈ W ′, and some way (provided
by the braided tensor product) to re-express the product w′xi as an element in
V ⊗CW ′; and a way to re-express wxk as an element in V ′⊗CW . Similarly, U0U+

is a subalgebra. �

In general, however, ⊗ applied to braided Cherednik algebras H(W ) and
H(W ′) will not produce a braided Cherednik algebra, at least because the as-
sociative algebra CW ⊗ CW ′ may not be the group algebra of W × W ′. This
generalisation of braided (and in particular, rational) Cherednik algebras may de-
serve to be studied elsewhere. For the purposes of the present paper, we would
like to force H(W ) ⊗ H(W ′) to be a braided Cherednik algebra by some extra
condition on the bicharacter R on Γ. Here is the criterion for the braided product
of two braided Cherednik algebras to be a braided Cherednik algebra of the direct
product of groups:

Proposition 4.6. In the notation of Lemmas 4.3 and 4.4, H(W ) ⊗ H(W ′) is a
braided Cherednik algebra of the group W ×W ′ acting on the space V ⊕ V ′ if and
only if R(w(γ), w′(γ′)) = R(γ, γ′) for all w ∈W , w′ ∈W ′, γ ∈ |V |, γ′ ∈ |V ′|.

Proof. Clearly,H(W )⊗H(W ′) is a braided Cherednik algebra of the group W×W ′
acting on V ⊕ V ′ only if the following relations hold in H(W )⊗H(W ′):
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(a) ww′ = w′w for w ∈ W and w′ ∈ W ′, equivalent to CW ⊗ CW ′ being the
group algebra of W ×W ′;

(b) xkw = wxk (w ∈ W , n < k ≤ n + m), w′xi = xiw
′ (w′ ∈ W ′, 1 ≤ k ≤ n),

which are equivalent to the correct smash product relations between W ×W ′
and x1, . . . , xn+m;

(c) same as (b), but with yi instead of xi.
Let us observe that conditions (a)–(b) are not only necessary but also sufficient.
Indeed, the commutation relation in H(W ) ⊗ H(W ′) between yj and xi where,
say, i ≤ n < j, is

yjxi = R(g−1
j , gi)xiyj = q̃ijxiyj ⇔ [yj , xi]eq = 0

where the matrix q̃ is given in Lemma 4.4, and the same holds for j ≤ n < i. Thus,
[yj , xi]eq ∈ CW ⊗CW ′ for all indices i, j. Moreover, the CW ⊗CW ′-valued braided
commutator [·, ·]eq on (V ∗ ⊕ V ′∗) × (V ⊕ V ′) has no left or right kernel, because
it coincides with the nondegenerate commutator [·, ·]q (respectively [·, ·]q′) when
restricted to V ∗ × V (respectively V ′∗ × V ′) and has zero restriction to V ∗ × V ′
and to V ′∗ × V . Thus, (a)–(c) imply that H(W )⊗H(W ′) is a braided Cherednik
algebra associated to the matrix q̃.

But (a)–(c) can clearly be rewritten as the relations

w′a = aw′ (a ∈ H(W ), w′ ∈W ′), bw = wb (b ∈ H(W ′), w ∈W ).

in the algebra H(W ) ⊗ H(W ′). In terms of the bicharacter R on Γ these are
equivalent to R(g, h) = 1 for all g ∈ |CW |, h ∈ |H(W ′)| and for all g ∈ |H(W )|,
h ∈ |CW ′|. This is precisely equivalent to the (W,W ′)-invariance of the restriction
of R to |V | × |V ′|, stated in the proposition, because |CW | consists of γ−1w(γ)
where w runs over W and γ runs over |V |, and |H(W ′)| lies in the subgroup of Γ
generated by |V ′|; similarly for |CW ′| and |H(W )|. �

4.4. Braided Cherednik algebras: the main structural theorem

Braided tensor multiplication is a powerful method of constructing new associative
algebras. Even restricted by the orthogonality condition in Proposition 4.6, braided
tensor multiplication is sufficient for obtaining essentially any braided Cherednik
algebra of a finite group as a product of algebras from the following list:
(1) Hc(W ) where W is an irreducible complex reflection group G(m, p, n) or

G4, . . . , G37 in the Shephard–Todd classification [ST];
(2) H0,c(W ), W as in (1);
(3) Hc(W ), whereW isG(m, p, n) withm even,m/p even, n ≥ 2, or the subgroup

G(m, p, n)+ of even elements in G(m, p, n) with m even, m/2p odd, n ≥ 2;
(4) H0,c(W ), W as in (3).

We gave the definition of the algebras Hc(W ) and H0,c(W ) in Example 1.13. These
are rational Cherednik algebras, whereas Hc(W ) (Definition 3.5, Remark 3.9) and
H0,c(W ) (Remark 3.8) are negative braided Cherednik algebras. In other words,
(1)–(4) is the list of all rational and negative braided Cherednik algebras of irre-
ducible groups.
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“Essentially any braided Cherednik algebra” refers to H(W ) that satisfies
the condition in

Definition 4.7. We say that the group W is minimal for a braided Cherednik algebra
H(W ) ∼= Sq(V )⊗CW⊗Sq(V ∗) if the image of the braided commutator [·, ·]q : V ∗×
V → CW does not lie in CW1 for any proper subgroup W1 ≤W .

Every braided Cherednik algebra H(W ) ∼= Sq(V ) ⊗ CW ⊗ Sq(V ∗) contains
a subalgebra given as Sq(V ) ⊗ CWmin ⊗ Sq(V ∗) where Wmin is the subgroup
generated by elements of W that appear in braided commutators between V ∗

and V with nonzero coefficients. Clearly, all relevant information about a braided
Cherednik algebra H(W ) is contained in this subalgebra, the braided Cherednik
algebra of Wmin. This is the reason why rational Cherednik algebras are often
considered only over complex reflection groups. We apply the same principle to
arbitrary braided Cherednik algebras:

Theorem 4.8. Any braided Cherednik algebra H(W ), where W is minimal and fi-
nite, decomposes as a braided tensor product of algebras from (1)–(4) above in the
category MΓ,R for some Abelian group Γ and a nondegenerate unitary bicharac-
ter R.

Remark 4.9. The conclusion of the theorem does not hold for q-Cherednik alge-
bras.

Proof of Theorem 4.8. Fix the triangular decomposition

H(W ) ∼= Sq(V )⊗ CW ⊗ Sq(V ∗)

where V is spanned by the variables x1, . . . , xn and V ∗ is spanned by y1, . . . , yn. We
put Γ = Γq ; recall from Section 2 that Γq is the subgroup of GL(V ) generated by
γ1, . . . , γn where γi(xj) = qijxj . We let R = Rq be determined, via the extension
to the whole of Γq by the bicharacter property, by Rq(γi, γj) = qij . It is easy to
check that Rq is a well-defined nondegenerate unitary bicharacter. In the course
of the proof it will become apparent that the natural representation of Γq on V is
a Γq-structure on H(W ).

Step 1: Factorisation into algebras HB indexed by blocks B

Recall from Corollary 2.12 that the index set splits into disjoint blocks so that for
i 6= j one has qij = qB,C whereB, C are blocks, i ∈ B, j ∈ C. Each blockB is either
positive (qB,B = 1) or negative (|B| > 1, qB,B = −1). Recall from Proposition 3.3
that H(W ) is a braided reduction of a q-Cherednik algebra H(W̃ ) ∼= Sq(V ) ⊗
CW̃ ⊗ SqT(V ∗). Here W̃ is a group containing W (we assume W̃ = W · Γq as in
the proof of Proposition 3.3), and the basis of V ∗ is now given by yi = γ−1

i yi,
i = 1, . . . , n, so that

Cij := [yj , xi]q = γ−1
j [yj , xi].

By Corollary 2.15, yj commutes with xi unless i, j are in the same block. Equiv-
alently,

yjxi = qijxiyj = R(γ−1
j , γi)xiyj
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if i, j are not in the same block. If i, j are in the same block (say B), Theorem 2.14
implies

Cij = γ−1
j γB

(
aij +

∑
s

bi,j,ss
)

for certain constants aij and bi,j,s, where s runs over a set of complex reflec-
tions in GL(VB) with VB =

⊕
k∈B Cxk. The group GL(V ) contains the subgroup

GL(VB1)×· · ·×GL(VBN ) where B1, . . . , BN are all blocks of indices, B1∪· · ·∪BN =
{1, . . . , n}. This corresponds to the direct sum decomposition V = VB1⊕· · ·⊕VBN .
Note the crucial fact that

γ−1
j γB = 1 if the block B is positive, γ−1

j γB = t
(−1)
j if B is negative,

where t
(−1)
j acts by −1 on xj and by 1 on the rest of the variables xi. Thus,

t
(−1)
j ∈ GL(VB), and all elements of W that appear in Cij (i, j ∈ B) with nonzero

coefficients are elements of GL(VB). By minimality, W is generated by such ele-
ments, and hence has direct product decomposition

W = WB1 × · · · ×WBN ⊂ GL(VB1)× · · · ×GL(VBN ), WBk := W ∩GL(VBk).

It is now clear that H(W ) (as a vector space) has a factorisation

H(W ) = HB1 ⊗ · · · ⊗ HBN ,
where HB is the subalgebra of H(W ) generated by xi, yi (i ∈ B) and WB . If B
is a positive block, the algebra HB has triangular decomposition HB ∼= S(VB) ⊗
CWB⊗S(V ∗B) and is a rational Cherednik algebra of a complex reflection group VB .
If B is a negative block, the algebra HB has triangular decomposition S−1(VB)⊗
CWB ⊗ S−1(V ∗B).

Let us show that the algebraH(W ) and all subalgebrasHB have Γq -structure
given by the action of Γq on V (and hence on all VB that are Γq -submodules of V ).
According to Definition 4.2, we have to check that
(a) γwγ−1w−1 ∈WB ∩ Γq for γ ∈ Γq , w ∈WB ;
(b) the braided commutator [·, ·]q : V ∗B × VB → CWB is Γq-equivariant.

In (a), we already know that W normalises Γq by Proposition 2.2, hence it is
enough to check that Γq normalises WB in GL(V ). But this follows from (b),
because by minimality of W , WB is generated by elements of GL(V ) that appear
in the braided commutator [·, ·]q : V ∗B × VB → CW . Of course, (b) is true by
Corollary 3.4.

Let us now show that H(W ) is a tensor product of the HB not only as a
vector space but as an algebra in the category MΓ

q
,R

q
. Since we already have

the Γq-structure on HB and tensor factorisation of H(W ) into the algebras HB ,
it is enough to check that the commutation relations in HB ⊗ HB′ between HB
and HB′ for blocks B 6= B′ hold also in H(W ). By Lemma 4.4, the xi q-commute
in HB ⊗HB′ , as do the yi; the same holds in H(W ). Furthermore, the definition
of ⊗ prescribes the relations yjxi = qijxiyj in HB ⊗ HB′ where i ∈ B, j ∈ B′;
we have already shown in this proof that the same holds in H(W ). Similarly for
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i ∈ B′, j ∈ B. Finally, let us find the relations between WB and HB′ and between
HB and WB′ in HB ⊗ HB′ . The group WB acts on {γi | i ∈ B} by conjugation,
and for two blocks B 6= B′ we have

Rq(wγiw−1, w′γi′w
′−1) = Rq(γi, γi′) = qii′

for all w ∈ WB , w′ ∈ WB′ , i ∈ B, i′ ∈ B′ simply because qjj′ = qii′ for all j ∈ B,
j′ ∈ B′ by definition of a block. Therefore, by Proposition 4.6, WB commutes with
HB′ and HB commutes with WB′ in HB ⊗HB′ . But again, the same happens in
H(W ). Hence the braided tensor product HB1 ⊗ · · · ⊗HBN indeed coincides with
H(W ).

Step 2: Factorisation of HB , B a positive block, into rational Cherednik algebras
of irreducible groups

It remains to break up each of the algebras HB into a braided tensor product, in
the category MΓ

q
,R

q
, of “elementary” braided Cherednik algebras from the list

(1)–(4). The more familiar case is that of a positive block, where HB has triangular
decomposition S(VB)⊗ CWB ⊗ S(V ∗B) with commutation relation

yx− xy = (x, y)B · 1 +
∑
s

cs〈x, α∨s 〉〈αs, y〉s,

where s runs over complex reflections in WB , and (·, ·)B is some WB-invariant
bilinear form on VB × V ∗B . By a known result on complex reflection groups, WB ⊂
GL(VB) is a direct product W 1×· · ·×W l of irreducible complex reflection groups
corresponding to a direct sum decomposition VB = V 1 ⊕ · · · ⊕ V l. Denote by
πk : VB → V k the projection of V onto its direct summand V k. The dual space V ∗B
has the dual direct sum decomposition V 1∗ ⊕ · · · ⊕ V l∗ with V k∗ = imπk∗. Since
V k are irreducible W -submodules of V , the W -invariant pairing (·, ·)B between V
and V ∗ is of the form

∑l
k=1 λk〈πk(·), ·〉 for some λk ∈ C. Moreover, any complex

reflection s ∈W belongs to one of the W k, thus αs ∈ V k and α∨s ∈ V k∗. It follows
that x ∈ V k and y ∈ V k′ commute in HB for k 6= k′, and HB decomposes as the
tensor product

HB = H(W 1)⊗ · · · ⊗H(W l)
of commuting subalgebras. Here H(W k) = S(V k)⊗CW k⊗S(V k∗) with the main
commutation relation

yx− xy = λk〈x, y〉+
∑
s∈Wk

cs〈x, α∨s 〉〈αs, y〉s

between y ∈ V k∗ and x ∈ V k, thus is a rational Cherednik algebra isomorphic to
either H0,c(W k) or Hc(W k), depending on whether λk is zero or not.

It remains to note that the standard tensor product of commuting subalgebras
is in this case the same as the braided tensor product in the category MΓ

q
,R

q
.

First of all, Γq acts by scalars on VB and V ∗B , hence trivially on WB . Thus V k,
CW k and V k∗ are Γq-submodules of VB , CWB and V ∗B , respectively. We now only
need to check that the commutation relations between H(W k) and H(W k′) inside
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HB (where these two subalgebras commute) are the same as in the braided tensor
product H(W k)⊗H(W k′). Note that the Γq-degrees that arise in the Γq -module
HB lie in the subgroup of Γq generated by {γi | i ∈ B}; therefore, the value of
Rq on any two such degrees is 1, because Rq(γi, γj) = qij = 1 for any i, j in the
positive block B. Thus, H(W k) and H(W k′) indeed commute in H(W k)⊗H(W k′).

Step 3: Factorisation of HB , B a negative block, into braided Cherednik algebras
H(W k)
Now assume that B is a negative block. The group WB may not be a complex
reflection group. By an observation at Step 1 of this proof, Theorem 2.14 and
Lemma 2.13(3), WB is generated by some elements of the form

t
(−1)
j , t

(−1)
j t

(η)
j (η 6= 1 root of unity), or t

(−1)
j (ij)t(ε)i t

(ε−1)
j (ε ∈ C×), i, j ∈ B,

because only such elements may appear in Cij (i, j ∈ B) with nonzero coefficients.
We rewrite the list of possible generators of WB as

t
(η)
j (η any root of unity), σ

(ε)
ij (ε ∈ C×), i, j ∈ B.

Call two indices i, j ∈ B linked if i = j or WB contains an element σ(ε)
ij for some

ε ∈ C×. The relation of being linked is symmetric and transitive, because

σ
(ε)
ij = σ

(−ε−1)
ji , (σ(ε)

ij )−1σ
(δ)
jk σ

(ε)
ij = σ

(εδ)
ik .

Let B = O1 ∪ · · · ∪ Ol be the partition of B into equivalence classes, and define
V k =

⊕
{Cxi | i ∈ Ok}. The generating set for WB is partitioned into pairwise

commuting subsets {t(η)
j , σ

(ε)
ij ∈ WB | i, j ∈ Ok}, k = 1, . . . , l, thus WB is a direct

product W 1 × · · · ×W l of groups acting on the direct sum VB = V 1 ⊕ · · · ⊕ V l of
spaces. The algebra HB is then a tensor product

HB = (S−1(V 1)⊗ CW 1 ⊗ S−1(V 1∗))⊗ · · · ⊗ (S−1(V l)⊗ CW l ⊗ S−1(V l∗))

of vector spaces, where V k∗ =
⊕
{Cyi | i ∈ Ok}. Observe that each factor

S−1(V k) ⊗ CW k ⊗ S−1(V k∗) is a subalgebra, because the braided commutator
Cij of yj and xi (i, j ∈ Ok) may only contain generators σ(ε)

ij , t(η)
j of WB that

lie in W k. Thus, H(W k) := S−1(V k) ⊗ CW k ⊗ S−1(V k∗) is a braided Cherednik
algebra.

Let us show that

HB = H(W 1)⊗ · · · ⊗ H(W l)

is a braided tensor product of algebras in the category MΓ
q
,R

q
. First of all, V k

and V k∗ are Γq -submodules of VB and V ∗B , respectively, because they are spanned
by simultaneous eigenvectors of Γq . Next, since W k is generated by its elements
that appear with nonzero coefficients in braided commutators of V k and V k∗,
and the braided commutator map is Γq -equivariant (proved in Step 1), the group
algebra CW k is a Γq-submodule of CWB . This gives the Γq-structure on H(W k).
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It remains to check that the commutation relations between H(W k) and H(W k′)
inside HB are the same as in the braided tensor product H(W k)⊗H(W k′).

In H(W k)⊗H(W k′), the variables xi and xj (i ∈ Ok, j ∈ Ok′) qij-commute,
and the same happens in HB . Similarly for yi and yj . Furthermore, yj and xi
qij-commute in H(W k) ⊗ H(W k′), and the same happens in HB , since Cij = 0:
i, j are not linked, hence there is no element σ(ε)

ij in WB . Finally, for any w ∈W k

and w′ ∈ W k′ one has Rq(w(γi), w′(γj)) = Rq(γi, γj) = −1, simply because
w(γi) ∈ |V k| ⊂ |VB |, w′(γj) ∈ |V k

′ | ⊂ |VB |, and the value of Rq at any pair of
distinct elements of |VB | is −1 as B is a negative block. Hence by Proposition 4.6,
W k′ commutes withH(W k) andH(W k′) commutes with W k inH(W k)⊗H(W k′).
But the same relations hold in HB , thus HB = H(W 1)⊗ · · · ⊗ H(W l).

Step 4: Proof that each H(W k) is an “elementary” braided Cherednik algebra

Recall that we are working with a negative block B of indices, and have already
factorised HB into braided Cherednik algebras H(W k), k = 1, . . . , l, where W k ⊂
GL(V k) and V k =

⊕
{Cxi | i ∈ Ok}. We fix an index k and will show that H(W k)

is isomorphic to one of the “elementary” braided Cherednik algebras, listed in (1)–
(4) before the theorem. Without loss of generality we may assume that the set Ok
of indices is {1, . . . , d}. If d = 1, then W k is a cyclic group (an irreducible complex
reflection group of rank 1), and H(W k) is a rational Cherednik algebra isomorphic
to Hc(W k) or H0,c(W k).

Assume d ≥ 2. All indices in {1, . . . , d} are pairwise linked, that is, for each
pair i, j ∈ {1, . . . , d} of distinct indices, there is at least one nonzero number—call
it εij—such that σ(εij)

ij ∈W k.
We may assume that εij = 1 for all i 6= j in {1, . . . , d}. Indeed, we may change

the basis of V k by rescaling the variable xi by a factor of ε12ε23 . . . εi−1,i and
denote the new basis again by {xi}. The braided Cherednik algebra structure of
H(W k) obviously does not change under such rescaling, nor does the action of Γq .
We apply rescaling to the dual basis in V k∗ so that {xi} and {yi}, i = 1, . . . , d,
remain a pair of dual bases. Now with respect to the new basis, W k contains σ(1)

i−1,i

and hence also contains σ(1)
i,i−1 = (σ(1)

i−1,i)
−1 for each i = 2, . . . , d. It then follows

from the relation σ
(1)
ba σ

(1)
bc σ

(1)
ab = σ

(1)
ac that W k contains σ(1)

ij for any pair i 6= j,
i, j = 1, . . . , d.

Besides σ(1)
ij , the group W k may have some other generators, namely some

of t(η)
j and σ

(ε)
ij . We replace each generator t(η)

j by

t
(η)
1 = σ

(1)
j1 t

(η)
j σ

(1)
1j ∈W

k,

and each generator σ(ε)
ij by

t
(ε)
1 t

(ε−1)
2 = σ

(1)
21 σ

(1)
j2 σ

(1)
i1 σ

(ε)
ij σ

(1)
1i σ

(1)
2j .
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Thus the new set of generators for the same group W k contains σ(1)
ij for all i 6= j,

i, j = 1, . . . , d, and also t(η)
1 and t

(ε)
1 t

(ε−1)
2 for some unknown choice of the η’s and

ε’s. Let

C = {ε ∈ C× | t(ε)1 t
(ε−1)
2 ∈W k}, C′ = {η ∈ C× | t(η)

1 ∈W k}.

Then C (respectively C′) is a finite subgroup of C× because it is the inverse im-
age of W k under a group monomorphism ε 7→ t

(ε)
1 t

(ε−1)
2 (respectively η 7→ t

(η)
1 )

from C× to GL(V k). Moreover, C′ ⊆ C because if t(η)
1 ∈ W k, then t

(η)
1 t

(η−1)
2 =

t
(η)
1 [σ(1)

12 t
(η)
1 σ

(1)
21 ]−1 is also in W k. Furthermore, C contains −1, as t(−1)

1 t
(−1)
2 =

(σ(1)
12 )2 ∈W k, hence C is of even order. We have proved that

W k = WC,C′(d).

By Proposition 3.10, H(W k) is isomorphic to Hc(WC,C′(d)) or to H0,c(WC,C′(d))
for some parameter c. �

Remark 4.10. Note that to form a braided tensor product H = H1 ⊗ · · · ⊗ Hm of
braided Cherednik algebras of irreducible groups (algebras listed in (1)–(4) above),
one needs m(m − 1)/2 extra nonzero complex parameters rab, 1 ≤ a < b ≤ m.
The matrix q for H can be written as a block matrix with m2 blocks Mab, a, b =
1, . . . ,m, such that:
• the size of Mab is rankHa × rankHb;
• in a diagonal block Maa, all entries are 1 or else all entries outside the main

diagonal are −1;
• in an off-diagonal block Mab where a < b (respectively a > b), all entries are

equal to rab (respectively r−1
ab ).

The commutation relations in the braided tensor product include xx′ = rabx
′x

whenever x is one of the xi variables in Ha and x′ is one of the xi variables in Hb.

5. Universal embeddings and braided Dunkl operators

In the last section of the paper, we embed braided Cherednik algebras in modified
Heisenberg quadratic doubles, introduced here. We use this result to arrive at the
explicit formulae for braided Dunkl operators.

5.1. Degenerate q-Cherednik algebras and Heisenberg quadratic doubles

We say that a q-Cherednik algebra of the form H0,c(W ) = Sq(V )⊗CW ⊗SqT(V ∗)
is degenerate if the commutator of y ∈ V ∗ and x ∈ V in H0,c(W ) is β′(y ⊗ x) =
yx − xy =

∑
B γB

∑
s cs〈x, α∨s 〉〈αs, y〉s (compare with Theorem 2.14). Here and

below, B are blocks of indices with respect to the matrix q, and s runs over complex
reflections in GL(VB) ⊂ GL(V ); we continue to use the notation introduced in
Section 2. We would like to construct a morphism (not necessarily injective) from
a degenerate q-Cherednik algebra to a Heisenberg quadratic double over W . This
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is done via Theorem 1.21; the crucial step is to represent H0,c(W ) as a ?-product
(Definition 1.14) of two quadratic doubles. This is done as follows:

H0,c(W ) = H0,c(W ) ?H0,c0(W ),

where the value of the fixed parameter c0 at s is 〈αs, α∨s 〉−1. Application of Theo-
rem 1.21 now yields a Yetter–Drinfeld module

Yq =
⊕
B,s

C · [γBs].

We refer to elements γBs ∈ W as q-reflections. The YD-module structure on Yq

is induced by its embedding in the YD-module CW ⊗ V via [γBs] = γBs ⊗ αs.
The dual YD-module Y ∗q =

⊕
B,s C · [γBs]∗ embeds in CW ⊗ V ∗ via [γBs]∗ =

(γBs)−1⊗〈αs, α∨s 〉−1α∨s . By Theorem 1.21, the W -equivariant maps µc : V → Yq ,
ν : V ∗ → Y ∗q given by

µc(x) =
∑
B,s

cs〈x, α∨s 〉[γBs], ν(y) =
∑
B,s

〈αs, y〉[γBs]∗,

extend to an algebra morphism

H0,c(W )→ AY
q

= S(Yq ,ΨY
q
)⊗ CW ⊗ S(Y ∗q ,Ψ

∗
Y
q
).

5.2. q-Cherednik algebras are subalgebras in modified Heisenberg quadratic
doubles

One can obtain a version of the above morphism H0,c(W )→ AY
q

for nondegener-
ate q-Cherednik algebras. A new ingredient for this is the operation �, introduced
in Section 1.

Suppose that Y is a module over a group W , and that Y has two different
Yetter–Drinfeld structures over W ; that is, two W -gradings satisfying the Yetter–
Drinfeld axiom with respect to the same W -action on Y . These two YD structures
give rise to two braidings Ψ1, Ψ2 on Y and two Heisenberg quadratic doubles

AiY = S(Y,Ψi)⊗ CW ⊗ S(Y ∗,Ψ∗i ), i = 1, 2.

Definition 5.1. The quadratic double A1
Y � A2

Y is called a modified Heisenberg
quadratic double of the two Yetter–Drinfeld structures on Y .

By definition of �, the triangular decomposition of A1
Y �A2

Y is

T (Y )
<ker(id + Ψ1) ∩ ker(id + Ψ2)>

⊗ CW ⊗ T (Y ∗)
<ker(id + Ψ∗1) ∩ ker(id + Ψ∗2)>

.

Now, by Theorem 2.14 an arbitrary q-Cherednik algebra can be written in the form
Sq(V )⊗CW ⊗SqT(V ∗) with the commutator β(y⊗x) =

∑
B γB (x, y)B+β′(y⊗x)

between V ∗ and V , where β′(y⊗x) is as above. Denote this algebra by H(·,·),c(W ),
where (·, ·) =

∑
B γB(·, ·)B is the CΓ̄-valued pairing between V and V ∗. Clearly,

H(·,·),c(W ) = H0,c(W ) � H(·,·),0(W ),
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where H0,c(W ) is the degenerate q-Cherednik algebra with commutator β′ as
above, and H(·,·),0(W ) is the q-Cherednik algebra with commutator β − β′. We
have already constructed a morphism H0,c(W ) → AY

q
, and will now turn to the

algebra H(·,·),0(W ).
Recall that the module Yq has W -grading given by

|[γBs]| = γBs.

Assume that the group W contains the Abelian group

Γ̄ = 〈γB1 , . . . , γBN 〉 ⊂ GL(V ) ;

since W permutes the subspaces VB , the group Γ̄ is normal in W . It follows that
we can introduce the second, Γ̄-valued grading

|[γBs]|Γ̄ := γB

on Yq , which also makes Yq a Yetter–Drinfeld module over W . This second YD
structure leads to a Heisenberg quadratic double

AΓ̄
Y
q

∼= S(Yq , τΓ̄)⊗ CW ⊗ S(Y ∗q , τ
∗
Γ̄),

where the braiding τΓ̄ is given by τΓ̄([γBs] ⊗ [γC t]) = qB,C [γC t] ⊗ [γBs]. Clearly,
S(Yq , τ

∗
Γ̄

) is none other than a (qB,C)-polynomial algebra of Yq .

Lemma 5.2. For some pairings (·, ·)B, the maps µc : V → Yq and ν : V ∗ → Y ∗q
defined above extend to a morphism H(·,·),0(W )→ AΓ̄

Y
q

. This morphism is injective
if the roots {αs | cs 6= 0} span V .

Proof. Let B,C ⊂ {1, . . . , n} be blocks of indices. For any i ∈ B, j ∈ C with i 6= j
the relation xixj = qB,Cxjxi holds in Sq(V ). Note that µc(xi) is a linear combina-
tion of [γBs] where s ∈W runs over complex reflections in VB , and similarly µc(xj)
is a combination of [γCt] where t runs over complex reflections in VC . The relation
[γBs][γCt] = qB,C [γCt][γBs] holds in S(Yq , τΓ̄) for any such s, t, hence µc extends
to a morphism Sq(V )→ S(Yq , τΓ̄). If {αs | cs 6= 0} span V , µc : V → Yq is injec-
tive; then µc(xi) are linearly independent vectors in Yq that generate a subalgebra
in S(Yq , τΓ̄) isomorphic to the q-polynomial algebra, therefore the extension of µc
to Sq(V ) is injective. Similarly, ν extends to a morphism SqT(V ∗) → S(Y ∗q , τ

∗
Γ̄

),
injective if all α∨s span V ∗ (that is, all αs span V ).

The CΓ̄-valued commutator of ν(yj) and µc(xi) in the algebra AΓ̄
Y
q

is equal to
δB,CγB

∑
s cs〈x, α∨s 〉〈αs, y〉 where s ∈W runs over complex reflections in VB . Let

the same formula define the pairing γB(xi, yj)B between V and V ∗. Then we have
a morphism H(·,·),0(W ) → AΓ̄

Y
q

that extends the maps µc, ν. It follows from the
triangular decomposition that if this morphism is injective on Sq(V ) and SqT(V ∗),
it is injective on H(·,·),0(W ). �

Applying Proposition 1.18, we obtain



Vol. 14 (2009) Noncommutative Dunkl operators 369

Theorem 5.3. If the parameter c is such that the roots {αs | cs 6= 0} span V , then
for some pairings (·, ·)B, the above maps µc : V → Yq and ν : V ∗ → Y ∗q extend to
an embedding H(·,·),c(W ) ↪→ AY

q
�AΓ̄

Y
q

. �

Remark 5.4. The W -invariant CΓ̄-valued pairing (·, ·) between V and V ∗ in the
theorem depends on the parameter c. As in any q-Cherednik algebra, this pairing
is of a special kind: namely, it is obtained from a scalar W -invariant pairing by the
change of variables as in Corollary 3.7. If the group W is irreducible, such a pairing
is unique up to a scalar factor. One deduces that any q-Cherednik algebra of an
irreducible group, with at least one nonzero parameter cs, embeds in a modified
Heisenberg double.

The following is left as an exercise to the reader:

Exercise. Describe an embedding of the twist of a rational Cherednik algebra, in-
troduced just before Corollary 3.7, in an appropriate version of a modified Heisen-
berg double.

Remark 5.5. Embedding of a braided Cherednik algebra H(W ) in a modified
braided Heisenberg double, described in Theorem 0.9, is obtained by first embed-
dingH(W ) in a q-Cherednik algebraH(W̃ ) with W̃ = W ·Γq ·Γ̄, and then applying
Theorem 5.3 to H(W̃ ).

5.3. Braided Dunkl operators

We will now consider the braided Cherednik algebra Hc(W ) of the irreducible
group W = WC,C′ , as introduced in Definition 3.5. The parameter c is a function
c : C′ → C (with the exception of rank n = 2, see Remark 3.9; we are going to
ignore this exception and claim that in rank 2, the proof may easily be modified as
appropriate). The algebra has triangular decomposition Hc(W ) = S−1(V )⊗CW⊗
S−1(V ∗) where V is spanned by x1, . . . , xn and V ∗ is spanned by y1, . . . , yn. The
group Γ−1 is generated by n commuting involutions γi with γi(xj) = −1 (i 6= j)
and γi(xi) = 1.

Denote by pr the projection idS−1 (V )⊗εW ⊗ εV ∗ of S−1(V )⊗CW ⊗S−1(V ∗)
onto S−1(V ), where εW : CW → C is the algebra morphism such that εW (w) = 1
for w ∈ W , and εV ∗ : S−1(V ∗) → C is the algebra morphism such that εV ∗(V ∗)
= 0. The braided Dunkl operators attached to the group W are

∇i : S−1(V )→ S−1(V ), ∇i(a) = pr(yia).

Our last goal is to prove formula (1) for ∇i, given in the Introduction.
We put W̃ = W · Γ−1 · {± id} and embed Hc(W ), as a braided reduction,

in the q-Cherednik algebra Hc(W̃ ). Explicitly, we have yi = γ−1
i yi = γiyi for

i = 1, . . . , n, where y1, . . . , yn span V ∗ in Hc(W̃ ). The q-complex reflections in W̃
are

−id · s(ε)
ij , ε ∈ C; −id · t(ε

′)
i , ε′ ∈ ±C′,
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where −id ·s(ε)
ij = γiσ

(ε)
ij . (Formally, the parameters c in Hc(W ) and in Hc(W̃ ) are

not the same, but they are identified in a rather obvious way.) We can find the
generalised Dunkl operators ∇i for the algebra H(W̃ ) and then put ∇i = γi∇i.

The generalised Dunkl operators ∇i will be computed using the procedure
described in 1.6. First, we embedHc(W̃ ) in a modified Heisenberg quadratic double
as in 5.2. We then have the following “generalised root system” of 1.6:

α−id·s(ε)ij
= xi − εxj , α∨

−id·s(ε)ij
= c1(yi − ε−1yj),

α−id·t(ε
′)

i

= xi, α∨
−id·t(ε

′)
i

= cε′(1− ε′)yi.

It follows from 1.6 that
∇i = ∂i +

∑
w

〈αw, yi〉∂̄w,

where ∂i is defined by ∂i(xa1
1 . . . xann ) = aix

a1
1 . . . xai−1

i . . . xann and ∂̄w are uniquely
defined operators on S−1(V ) satisfying

∂̄w(x) = 〈x, α∨w〉, ∂̄w(ab) = ∂̄w(a)w(b) + a∂̄w(b)

for x ∈ V , a, b ∈ S−1(V ). If we know that ∂̄w lowers the degree in S−1(V ) by 1,
both rules are equivalent to the equation

[∂̄w, x] = 〈x, α∨w〉w

in EndC(S−1(V )). Put σij := σ
(1)
ij and define

Dij =
1

x2
i − x2

j

(
(xi + xj)(1− σij) + (xi − xj)(1− σji)

)
.

We claim that c1γiDij = ∂̄−id·s(1)ij
+ ∂̄−id·s(−1)

ij
. Indeed, it is not difficult to check,

using the anticommutativity of the xi and the centrality of x2
i −x2

j in S−1(V ), that

[γiDij , xi] = (− id) · s(1)
ij + (− id) · s(−1)

ij ,

[γiDij , xj ] = (− id) · s(1)
ij − (− id) · s(−1)

ij ,

[γiDij , xk] = 0.

Conjugating everything with t
(ε)
j shows that

c1γit
(ε)
j Dijt

(ε)−1
j = ∂̄−id·s(ε)ij

+ ∂̄−id·s(−ε)ij
.

In the same way it is shown that if D(ε′)
i = 1

xi
(1 − t(ε

′)
i ), then cε′γiDi = ∂̄

t
(ε′)
i

because
[γiD

(ε′)
i , xk] = δik(1− ε′)t(ε

′)
i

(verified directly). We thus have the following expansion for ∇i:

∇i = ∂i + γic1
∑

j 6=i, ε∈eC
t
(ε)
j Dijt

(ε)−1
j + γi

∑
ε′∈C′\{1}

cε′

1− ε′
D

(ε′)
i ,
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where C̃ is a set of |C|/2 elements of C distinct modulo the subgroup {±1}. Mul-
tiplying by γi on the left and observing that γi∂i = ∂i, we obtain formula (1) for
∇i as given in the introduction.
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