INVOLUTIONS ON GEL'FAND-TSETLIN SCHEMES
AND MULTIPlicITIES IN SKEW GL\(_n\)-MODULES

UDC 519.46

A. D. BERENSHTEIN AND A. V. ZELEVINSKII

An important problem in the theory of finite-dimensional representations of reductive groups and in numerous physical applications is that of calculating multiplicities under the restriction of irreducible representations of a connected reductive complex group \(G_1\) to a connected reductive subgroup \(G_2\) regularly embedded in \(G_1\). Two special types of multiplicities are particularly important:

a) multiplicities of weights in irreducible \(G\)-modules (here \(G_1 = G\) and \(G_2 = H\) is a Cartan subgroup of \(G\)); and

b) multiplicities in a decomposition into irreducible constituents of a tensor product of two irreducible \(G\)-modules (in this case \(G_1 = G \times G\) and \(G_2 \simeq G\) is the diagonal subgroup of \(G_1\)).

It is desirable to have a combinatorial expression for a multiplicity, i.e. to represent it as a number of certain combinatorial objects. At present such an expression is known only in some special cases. In this note we suggest a general method for obtaining combinatorial expressions for multiplicities, and illustrate it by the example of the group \(GL_n\).

Weyl's character formula entails a general formula for multiplicities under reduction from \(G_1\) onto \(G_2\) that expresses them as an alternating sum of certain partition functions (see [1]). We call this the Kostant-Heckman formula (for multiplicities of weights it becomes Kostant's classical formula). The individual summands in the Kostant-Heckman formula have a combinatorial meaning, so that the only obstacle to a combinatorial interpretation of multiplicities is the alternation. Our method consists of constructing involutions making it possible to cancel all negative summands in the Kostant-Heckman formula against some of the positive ones. This method of involutions has been widely used recently to prove various combinatorial identities (for example, [2]); in a situation close to ours it was used in [3] for an elementary construction of the representation theory of symmetric groups. Using the method of involutions, we obtain combinatorial expressions for multiplicities in a tensor product of so-called skew modules of the group \(GL_n\) (the class of skew modules defined below includes all irreducible modules).

The multiplicities under consideration admit a completely elementary formulation in terms of symmetric functions (see [4]): this involves the coefficients \(K_{\gamma \nu}\) in the expression of the skew Schur function \(s_\gamma(x)\) as a linear combination of monomials \(x^\gamma = x_1^{\gamma_1} \cdots x_n^{\gamma_n}\) and also the coefficients \(c^\mu\nu_{\gamma\nu}\) in the expression of a product \(s_\theta(x)s_\nu(x)\) (where \(s_\nu(x)\) is an ordinary Schur function) as a linear combination of Schur functions \(s_\mu(x)\). Combinatorial expressions for the coefficients \(K_{\gamma \nu}\) have been known for a long time (see [4], Chapter I, §5) and expressions for the \(c^\mu\nu_{\gamma\nu}\) were obtained in [5]; the method of involutions enables us to derive them very simply, straight from the classical definition of the Schur functions given by Jacobi. We obtain, in particular, a strikingly simple and short proof of the classical Littlewood-Richardson rule for multiplying Schur functions.

We describe the multiplicities \(K_{\gamma \nu}\) and \(c^\mu\nu_{\gamma\nu}\) in terms of Gel'fand-Tsetlin schemes. Their advantage over the traditional Young tables [4] or the pictures used in [5] is that the
§1. Combinatorial expressions for multiplicities. Let $G_n = GL_n(\mathbb{C})$. The lattice of weights P_n of the group G_n is identified in the standard way with \mathbb{Z}^n; the set P_n^+ of highest weights of finite-dimensional G_n-modules is equal to $\{ (\lambda_1, \ldots, \lambda_n) \in P_n : \lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_n \}$. For each $\lambda \in P_n^+$ let V_λ be an irreducible G_n-module with highest weight λ. For all k, $0 \leq k \leq n$, we embed the group $G_k \times G_{n-k}$ in G_n so that the subgroup G_k acts on the first k vectors of the standard basis of \mathbb{C}^n, and G_{n-k} on the last $n-k$ vectors; accordingly we will write the weights $\gamma \in P_{n-k}$ in the form $\gamma = (\gamma_{k+1}, \ldots, \gamma_n)$. For all $\lambda \in P_n^+$ and $\rho \in P_k^+$ we define the skew G_{n-k}-module V_λ/ρ by putting $V_\lambda/\rho = \text{Hom}_{G_k}(V_\gamma, V_\lambda|_{G_k})$ (when $k = 0$ it is convenient to assume that P_k^+ consists of one element $\rho = \emptyset$ and that V_λ/ρ is the irreducible G_n-module V_λ).

Suppose $\lambda = (\lambda_1, \ldots, \lambda_n) \in P_n$ and $\rho = (\rho_1, \ldots, \rho_k) \in P_k$. By a (truncated Gel'fand-Tsetlin) semischeme of type λ/ρ we will mean a set of weights $\Lambda = \{ (\lambda^{(j)}_1, \ldots, \lambda^{(j)}_j) \in P_j, k \leq j \leq n \}$ such that $\lambda^{(k)} = \rho$, $\lambda^{(n)} = \lambda$, and $\lambda^{(j+1)}_i \geq \lambda^{(j)}_i$ whenever $1 \leq i \leq j < n$. By the weight of the semischeme Λ we mean the weight $\gamma = (\gamma_{k+1}, \ldots, \gamma_n) \in P_{n-k}$ defined by the equalities $\rho_1 + \cdots + \rho_k + \gamma_{k+1} + \cdots + \gamma_j = \lambda^{(j)}_1 + \cdots + \lambda^{(j)}_j$ for all $k < j \leq n$. The semischeme Λ is called a (truncated Gel'fand-Tsetlin) scheme if $\lambda^{(j)}_i \geq \lambda^{(j+1)}_{i+1}$ for all $1 \leq i \leq j < n$. It is clear that all components $\lambda^{(j)}_i$ of the scheme Λ are highest weights and, in particular, $\rho \in P_k^+$ and $\lambda \in P_n^+$.

Theorem 1. The multiplicity $K_{\lambda/\rho, \gamma}$ of the weight γ in the skew G_{n-k}-module V_λ/ρ is equal to the number of all truncated Gel'fand-Tsetlin schemes of type λ/ρ and of weight γ.

The proof will be given in §2. Suppose $\Lambda = \{ \lambda^{(k)}_1, \ldots, \lambda^{(n)}_n \}$ is a truncated scheme. For all j and i with $k < j < n$ and $1 \leq i \leq j$ we put
\[
d_i^{(j)}(\Lambda) = \sum_{1 \leq h < i} (\lambda^{(j+1)}_h - 2\lambda^{(j)}_h + \lambda^{(j-1)}_h) + \lambda^{(j+1)}_i - \lambda^{(j)}_i;
\]
the numbers $d_i^{(j)}(\Lambda)$ will be called the exponents of the scheme Λ (see [6] and [7]). Suppose $\nu \in P_{n-k}^+$; the scheme Λ will be called ν-bounded if $d_i^{(j)}(\Lambda) \leq \nu_j - \nu_{j+1}$ for all i and j.

Theorem 2. Suppose $\lambda \in P_n^+$, $\rho \in P_k^+$, and $\mu, \nu \in P_{n-k}^+$. Then the multiplicity $e_{\lambda/\rho, \nu}^{\mu}$ of an irreducible G_{n-k}-module V_μ in the tensor product $V_\lambda/\rho \otimes V_\nu$ is equal to the number of all ν-bounded truncated schemes of type λ/ρ and of weight $\mu - \nu$.

The proof will be given in §3.

Remark. For $k = 0$ Theorem 2 can be found in [7], where it was proved that in this case it is equivalent to the Littlewood-Richardson rule. It is easy to show that in the general case Theorem 2 is equivalent to Theorem 1 of [5].

2. Proof of Theorem 1. Fix numbers $0 \leq k \leq n$ and weights $\lambda \in P_n^+$, $\rho \in P_k^+$, and $\gamma \in P_{n-k}$. Let $\{ \varepsilon_1, \ldots, \varepsilon_n \}$ be the standard basis of the lattice $P_n = \mathbb{Z}^n$. We define a partition function p_k on P_n by putting $p_k(\omega)$ equal to the number of representations of the weight $\omega \in P_n$ in the form $\omega = \sum m_{ij}(\varepsilon_i - \varepsilon_j)$, where the sum extends over the set $\{ (i, j) : 1 \leq i < j \text{ and } k < j \leq n \}$ and all the m_{ij} are nonnegative integers. Put $\delta_n = (n-1, n-2, \ldots, 0) \in P_n$ and $\rho \gamma = (\rho_1, \ldots, \rho_k, \gamma_{k+1}, \ldots, \gamma_n) \in P_n$. The symmetric group S_n acts on the lattice P_n, rearranging the weights ε_i; for $w \in S_n$ we denote by
\[\varepsilon(m) = \pm 1 \] the parity of \(w \). We define a shifted action of \(S_n \) on \(P_n \) by putting \(w \cdot \lambda = w(\lambda + \delta_n) - \delta_n \); in particular, \((i,i+1) \cdot \lambda = (\lambda_1, \ldots, \lambda_{i-1}, \lambda_{i+1} - 1, \lambda_i + 1, \lambda_{i+2}, \ldots, \lambda_n)\).

PROPOSITION 1. \(K_{\lambda/\rho, \gamma} = \sum_{w \in S_n} \varepsilon(w) p_k(w \cdot \lambda - \rho \gamma) \).

PROOF. By definition of a skew module, the multiplicity \(K_{\lambda/\rho, \gamma} \) is equal to that of the irreducible \(G_k \times (G_1)^{n-k} \)-module \(V^{} = V_\gamma \otimes V_{\gamma_{n+1}} \otimes \cdots \otimes V_{\gamma_n} \) in the restriction of the irreducible \(G_n \)-module \(V_\lambda \) to the subgroup \(G_k \times (G_1)^{n-k} \) in \(G_n \). Therefore Proposition 1 is a special case of the Kostant-Heckman formula ([1], Formula 3.5); note that when \(k = 0 \) this is the usual formula of Kostant for the multiplicity of a weight in a reducible \(G_n \)-module.

PROPOSITION 2. The number \(p_k(w \cdot \lambda - \rho \gamma) \) is equal to the number of all truncated semischemes of type \((w \cdot \lambda) / \rho\) and of weight \(\gamma \).

PROOF. A bijective correspondence between the partitions \(w \cdot \lambda - \rho \gamma = \sum m_{ij} (\varepsilon_i - \varepsilon_j) \), where \(1 \leq i < j \) and \(k < j \leq n \), and the truncated semischemes \((A_i) \) of type \((w \cdot \lambda) / \rho\) and of weight \(\gamma \) can be established by the formula \(m_{ij} = \lambda_i^{(j)} - \lambda_i^{(j-1)} \).

For all \(w \in S_n \) we denote by \(A_w \) the set of all truncated semischemes of type \((w \cdot \lambda) / \rho\) and of weight \(\gamma \). It is easy to see that the weights \(w \cdot \lambda \) are distinct, and hence the sets \(A_w \) are pairwise disjoint; let \(A = \bigcup_{w \in S_n} A_w \). It is also clear that \(w \cdot \lambda \in P_n^+ \) only when \(w = e \), so that a scheme \(\Lambda \in A \) can lie only in the subset \(A_e \). In view of Propositions 1 and 2, Theorem 1 is a direct consequence of the following combinatorial result.

THEOREM 3. There exists an involution \(\sigma \) on \(A \) with the following properties:

1. \(\sigma \Lambda = \Lambda \) for all schemes \(\Lambda \in A \).
2. If \(\Lambda \in A_w \) is a semischeme that is not a scheme, then \(\sigma \Lambda \in A_{(i,i+1)w} \) for some \(i \).

PROOF. For all schemes \(\Lambda \in A \) we put \(\sigma \Lambda = \Lambda \). Now suppose \(\Lambda = (\lambda_i^{(j)}) \in A_w \) is a semischeme, but not a scheme. By a violation for the semischeme \(\Lambda \), we mean any pair \((i,j) \) such that \(\lambda_i^{(j)} < \lambda_i^{(j+1)} \); the violation \((i,j) \) with the smallest possible \(j \) and with the largest \(i \) for that \(j \) will be called extreme for \(\Lambda \). Let \((i_0,j_0)\) be the extreme violation for the semischeme \(\Lambda \). We define the semischeme \(\sigma \Lambda = (\lambda^{(k)}, \lambda^{(k+1)}, \ldots, \lambda^{(n)}) \) by putting \(\lambda^{(j)} = \lambda^{(j)} \) if \(k \leq j \leq j_0 \), and \(\lambda^{(j)} = (i_0, i_0 + 1) \cdot \lambda^{(j)} \) if \(j_0 < j \leq n \). It is easy to verify that \(\sigma \Lambda \in A_{(i_0, i_0+1)w} \) and that the extreme violation for \(\sigma \Lambda \) is again \((i_0, j_0)\). It follows that \(\sigma \) is the desired involution.

3. PROOF OF THEOREM 2. We fix numbers \(0 \leq k \leq n \) and highest weights \(\lambda \in P_{n}^+, \rho \in P_{k}^+, \mu, \nu \in P_{n-k}^+ \).

PROPOSITION 3. \(c_{\lambda/\rho, \mu, \nu} = \sum_{w \in S_{n-k}} \varepsilon(w) K_{\lambda/\rho, w \cdot \mu - \nu} \).

This proposition is well known; like Proposition 1, it can be deduced from the Kostant-Heckman formula.

For all \(w \in S_{n-k} \) we denote by \(B_w \) the set of all truncated schemes of type \(\lambda/\rho \) and of weight \((w \cdot \mu - \nu) \). It is clear that the sets \(B_w \) are pairwise disjoint; let \(B = \bigcup_{w \in S_{n-k}} B_w \). It is easy to see that the \(\nu \)-bounded schemes \(\Lambda \in B \) can lie only in the subset \(B_e \). Therefore Theorem 2 is a consequence of the following combinatorial result.

THEOREM 4. There exists an involution \(\tau \) on \(B \) with the following properties:

1. \(\tau \Lambda = \Lambda \) for all \(\nu \)-bounded schemes \(\Lambda \in B \).
2. If \(\Lambda \in B_w \) is not \(\nu \)-bounded, then \(\tau \Lambda \in B_{(j,j+1)w} \) for some \(j \).

PROOF. For all \(\nu \)-bounded schemes \(\Lambda \in B \) we put \(\tau \Lambda = \Lambda \). Now suppose \(\Lambda = (\lambda_i^{(j)}) \in B_w \) is a scheme, but is not \(\nu \)-bounded. By a violation (of \(\nu \)-boundedness) of the scheme \(\Lambda \) we mean any pair \((i,j) \) such that \(d_i^{(j)}(\Lambda) > \nu_j - \nu_{j+1} \); the violation \((i,j) \) with the
smallest possible \(i \) and with the largest \(j \) for that \(i \) will be called extreme for \(\Lambda \). Let \((i_0, j_0)\) be the extreme violation for the scheme \(\Lambda \).

Let \(a_i = \max(\lambda_i^{(j_0+1)}, \lambda_i^{(j_0-1)}) \) and \(b_i = \min(\lambda_i^{(j_0+1)}, \lambda_{i-1}^{(j_0-1)}) \); thus if we fix all components \(\lambda^{(j)} \) of \(\Lambda \) with \(j \neq j_0 \), the element \(\lambda_i^{(j_0)} \) can range over the interval \([a_i, b_i]\). We define the scheme \(\tau \Lambda = \{x^{(k)}, \ldots, x^{(n)}\} \) as follows.

1. If \(j \neq j_0 \), or if \(i < i_0 \), then \(\tilde{\lambda}_i^{(j_0)} = \lambda_i^{(j_0)} \).
2. If \(i > j_0 \), then \(\tilde{\lambda}_i^{(j_0)} = a_i + b_i - \lambda_i^{(j_0)} \) is obtained from \(\lambda_i^{(j_0)} \) by reflection with respect to the midpoint of \([a_i, b_i]\).
3. \(\tilde{\lambda}_{i_0}^{(j_0)} = a_{i_0} + \nu_{j_0} - \nu_{j_0+1} + 1 \).

It can be verified directly that \(\tau \Lambda \in B_{(j_0, j_0+1)_w} \). It is also clear that \(d_i^{(j)}(\tau \Lambda) = d_i^{(j)}(\Lambda) \) when \(i < i_0 \) and when \(i = i_0 \) and \(j > j_0 \), and that

\[
d_{i_0}^{(j_0)}(\tau \Lambda) = d_{i_0}^{(j_0)}(\Lambda) + \lambda_{i_0}^{(j_0)} - \tilde{\lambda}_{i_0}^{(j_0)} = (\lambda_{i_0}^{(j_0)} - a_{i_0}) + (\nu_{j_0} - \nu_{j_0+1} + 1) > \nu_{j_0} - \nu_{j_0+1}.
\]

It follows that \((i_0, j_0)\) is the extreme violation of the scheme \(\tau \Lambda \) and that \(\tau(\tau \Lambda) = \Lambda \).

4. REMARK. The involutions we have constructed enable us to give a geometric interpretation of the continuous analogue of the multiplicities \(K_{\lambda/\rho, \gamma} \) and \(c_{\lambda/\rho, \nu}^{(k)} \) (the definition of the continuous analogue of the multiplicities is given in [1], where the term “asymptotic multiplicity function” is used). Namely, if we regard truncated semischemes and Gel’fand-Tsetlin schemes as points of the real vector space with coordinates \((\lambda_i^{(j)} \), where \(1 \leq i \leq j \) and \(k \leq j \leq n \), then the expressions for \(K_{\lambda/\rho, \gamma} \) and \(c_{\lambda/\rho, \nu}^{(k)} \) given by Theorems 1 and 2 can be interpreted naturally as the numbers of lattice points in certain convex polyhedra in this space; to obtain the continuous analogue we need only replace the number of lattice points of the polyhedron by its volume.

Scientific Council on the Complex Problem “Cybernetics”
Academy of Sciences of the USSR
Moscow

BIBLIOGRAPHY

Translated by G. A. KANDALL