MATH 253: HOMEWORK 9.

1. Find the sum of the series $\sum_{n=0}^{\infty} \frac{6^{n}}{n!}$.
2. Find the sum of the series $\sum_{n=0}^{\infty} \frac{(-1)^{n}(2 \pi)^{2 n+1}}{(2 n+1)!}$.
3. Find the sum of the series $\sum_{n=0}^{\infty}(-1)^{n} \frac{x^{4 n}}{n!}$ in terms of standard elementary functions.
4. Find the sum of the series $\sum_{n=0}^{\infty} \frac{(-1)^{n} \pi^{2 n}}{6^{2 n}(2 n)!}$.
5. Find the sum of the series $\sum_{n=1}^{\infty}(-1)^{n-1} \frac{3^{n}}{n \cdot 5^{n}}$.
6. Find the sum of the series $\sum_{n=1}^{\infty} \frac{3^{n}}{5^{n} \cdot n!}$.
7. Find the sum of the series $1-\ln (2)+\frac{[\ln (2)]^{2}}{2!}-\frac{[\ln (2)]^{3}}{3!}+\cdots$.
8. Find the sum of the series $\frac{1}{1 \cdot 2}+\frac{1}{3 \cdot 2^{3}}+\frac{1}{5 \cdot 2^{5}}+\frac{1}{7 \cdot 2^{7}}+\cdots$.
9. Find the terms through degree 4 of the general power series solution to the equation $y^{\prime}=x y+1$ centered at

0 . Then find the terms through degree 4 of the solution which satisfies $y(0)=1$.
10. Find the terms through degree 5 of the general power series solution to the equation $y^{\prime \prime}+x y^{\prime}+y=0$ centered at 0 . Then find the terms through degree 5 of the solution which satisfies $y(0)=2$ and $y^{\prime}(0)=1$.
11. Find the terms through degree 4 of the general power series solution to the equation $(1-x) y^{\prime \prime}+y=0$ centered at 0 .
12. Find the terms through degree 4 of the power series solution to $x y^{\prime \prime}+y^{\prime}+x y=0$ centered at $x=1$, satisfying the initial values $y(1)=0$ and $y^{\prime}(1)=2$.
13. For the differential equation $y^{\prime \prime}+x y^{\prime}+2 y=0$, find the recurrence relation for the coefficients of the power series solutions centered at 0 , and find two independent power series solutions through the terms of degree 3 . Be sure to show your reasoning in mathematically and notationally correct steps.
14. For the differential equation $\left(2+x^{2}\right) y^{\prime \prime}-x y^{\prime}+4 y=0$, find the recurrence relation for the coefficients of the power series solutions centered at 0 .
15. Suppose the function $y=y(x)$ is a solution to the differential equation $y^{\prime \prime}+x y^{\prime}+y=0$, and satisfies $y(0)=1$ and $y^{\prime}(0)=0$. Find $y^{\prime \prime}(0), y^{\prime \prime \prime}(0)$, and $y^{(4)}(0)$.

