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Abstract

We show that braided Cherednik algebras introduced by Bazlov and Berenstein are cocycle twists 
of rational Cherednik algebras of the imprimitive complex reflection groups G(m,p,n), when m is 
even. This gives a new construction of mystic reflection groups which have Artin–Schelter regular 
rings of quantum polynomial invariants. As an application of this result, we show that a braided 
Cherednik algebra has a finite-dimensional representation if and only if its rational counterpart has 
one.
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1. Introduction

Cocycle twists of associative (and Lie) algebras have their origin in physics literature. Situations 
when a parameterized family of isomorphic groups of symmetry have a non-isomorphic group as 
a limit were formalized as ‘contractions’ in Inonu and Wigner [13]: for example, the Galilei group 
of classical mechanics is a limit of relativistic Lorentz groups. Moody and Patera [18] show that 
for graded Lie algebras, contractions are determined by 2-cocycles on the grading group. See also 
Vafa and Witten [20] where twists by cocycles of a finite abelian group are held as examples of 
mirror symmetry. There are various applications of cocycle twists within mathematics, for example 
in non-commutative geometry (see Davies [8]) and colour Lie algebras (see Chen, Silvestrov and 
Oystaeyen [6]). Cocycle twists also find a generalization in the language of Hopf algebras, leading 
to a twist originally due to Drinfeld [9]. The Drinfeld twist has been well-studied, see Majid [17], 
and has also found applications in representation theory, see Giaquinto and Zhang [12] and Jordan 
[14]. To ascribe physical meaning to twists of an algebra, representations of the algebra also need to 
be twisted; but this proves to be more difficult, and there is no general approach to this so far.
We see the main result of this work that rational and braided Cherednik algebras are related via 
a twist, as a stepping stone towards a better understanding of the representation theory of braided 
Cherednik algebras [2], for which very little is currently known. In this work we present one result in 
this direction, showing that finite-dimensional representations of one algebra exist if and only if they 
do for the twisted partner. We also give an example using one-dimensional representations of the 
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2 Y. BAZLOV et al.

Cherednik algebra, to show that twisting can non-trivially permute the characters of the underlying 
reflection group.
The contents of this paper are laid out as follows. Sections 2, 3 and 4 introduce the main definitions 
and objects of the paper, with the only new result being Theorem 2.3, where we give a presentation of 
the mystic reflection groups μ(G(m,p,n)). These groups arose independently in the work of Bazlov 
and Berenstein [2], as the groups over which the braided Cherednik algebras are defined, and of Kirk-
man, Kuzmanovich and Zhang [16] as a class of groups with Artin–Schelter regular rings of quantum 
polynomial invariants. Mystic reflection groups were comprehensively studied in page [4]. The main 
result of the paper is found in Section 5, where the braided Cherednik algebra over μ(G(m,p,n)) is 
shown to be the twist of the rational Cherednik algebra over the imprimitive complex reflection group 
G(m,p,n) by a cocycle (in fact, a quasitriangular (QT-)structure) on a finite abelian group. A key 
step in the proof is to verify that the twist preserves the braid relations between the mystic reflec-
tion generators of μ(G(m,p,n))—this fact turns out to be related to the Clifford Braiding Theorem 
of Kauffman and Lomonaco [15]. Finally in Section 6 we use this twisting construction to obtain 
examples of non-trivial and finite-dimensional representations of a braided Cherednik algebra out of 
representations of a rational Cherednik algebra.
Note added in proof. The subject of this paper is being further developed in the upcoming paper [5] 
by Y. Bazlov and E. Jones-Healey. In [5] we establish, as a corollary of the main result of this paper, 
a non-trivial isomorphism between the rational Cherednik algebra of G(m,p,n) and the negative 
braided Cherednik algebra of μ(G(m,p,n)) in the case m

p  even. Currently we do not believe such 
an isomorphism exists in the case m

p  odd. In [5] we also explore the implications of twisting on the 
representations of these algebras.

2. Reflection groups

2.1. Complex reflection groups

Let V be an n-dimensional ℂ-vector space, with dual space V∗. If y ∈ V∗, x ∈ V , we denote the 
evaluation of y on x by ⟨y,x⟩. If G is a finite subgroup of GL(V), then for g ∈ G, x ∈ V  we denote 
the action of g on x by g(x). Via the contragradient representation we have an action of G on V∗: if 
g ∈ G,v ∈ V∗, then ⟨g(y),x⟩ = ⟨y,g−1(x)⟩ ∀x ∈ V .
A complex reflection on V is an element s ∈ GL(V) that has finite order and satisfies rank(s− id) = 1. 
Equivalently, the characteristic polynomial for s is (t− 1)n−1(t− λ) for some root of unity λ≠ 1. 
Note that in this case s acts on V∗ also as a complex reflection with characteristic polynomial
(t− 1)n−1(t− λ−1). A complex reflection group on V is a finite subgroup of GL(V) generated by 
complex reflections on V.
We fix a basis {x1,… ,xn} for V and dual basis {y1,… ,yn} of V∗. This allows us to identify GL(V)
with the group GLn(ℂ) of n × n-invertible matrices. The groups of permutation matrices and diagonal 
matrices are given respectively as 

We see that 
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TWISTS OF RATIONAL CHEREDNIK ALGEBRAS 3

In particular, 𝕊n acts on 𝕋n by conjugation inside GLn(ℂ); we will write this action as w(t) for 
w ∈ 𝕊n, t ∈ 𝕋n.
For parameters m,p ∈ ℕ with p ∣ m, let C m

p
⊆ Cm ⊂ ℂ× be the finite multiplicative subgroups of ℂ× of 

m
p -th, respectively m-th, roots of unity. Besides the 34 exceptional cases, every irreducible complex 
reflection group belongs to the following family of imprimitive subgroups of 𝕊n ⋉𝕋n, 

where 

is the group of diagonal matrices with diagonal entries in Cm whose product is in C m
p

. The complex 

reflections of G(m,p,n) are given by 

where [n] := {1,2,… ,n}, and for general ϵ ∈ ℂ×, 

Note that the groups G(1,1,n), G(2,1,n), G(2,2,n) correspond to the Coxeter groups of type An−1, 
Bn, Dn respectively, whilst G(p,p,2) corresponds to the dihedral group I2(p).
It will be relevant to the construction of the rational Cherednik algebras in which conjugacy class 
each complex reflection lies in. The reflections s(ϵ)

ij  with ϵ ∈ Cm are involutions and form a single 
conjugacy class in G(m,p,n), unless n = 2 and p is even. Additionally for each ζ ∈ C m

p
\{1}, the 

{t(ζ )
i ∣ i ∈ [n]} forms a separate conjugacy class.

Recall also that complex reflection groups are characterized in terms of their polynomial invariants. 
If G is a finite subgroup of GL(V), the action of G on V extends naturally to algebra automorphisms 
of the symmetric algebra S(V). The invariant set S(V)G forms a subalgebra of S(V).

Theorem 2.1 (Chevalley–Shephard–Todd). For V and G as above, the invariant ring S(V)G is a 
polynomial algebra if and only if G is a complex reflection group.

2.2. Mystic reflection groups

Each of the complex reflection groups G(m,p,n), for m even, has a so-called ‘mystic partner’, which 
is another subgroup of 𝕊n ⋉𝕋n, defined as follows: 

These are examples of mystic reflection groups, which are defined by generalizing the Chevalley–
Shephard–Todd characterization of complex reflection groups (Theorem 2.1), see [16]. The same 
class of groups was obtained independently in [2], see also [4].
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4 Y. BAZLOV et al.

Definition 2.2 For a matrix q ∈ Matn(ℂ) with qijqji = 1, qii = 1, let Sq(V) be the algebra generated 
by V subject to relations xixj = qijxjxi for i, j ∈ [n]. A finite group G is a mystic reflection group if it has 
a faithful action by degree-preserving automorphisms on Sq(V) such that the invariant subalgebra 
Sq(V)G is isomorphic to Sq′(V) for some q′.

The groups G(m,p,n) are related to their mystic partners in the following ways: 

Even though the groups μ(G(m,p,n)) and G(m,p,n) in some cases coincide as a subgroup of 𝕊n ⋉𝕋n, 
the generating set for μ(G(m,p,n)) relevant for what follows is the set 

where 

We call the elements of S mystic reflections. That S indeed generates μ(G(m,p,n)), for all even m, all 
divisors p of m and all n ≥ 1, follows for example from Theorem 2.3. Notice σ(ϵ)

ij ∈ 𝕊n ⋉𝕋n are of 

order 4, with characteristic polynomial (x− 1)n−2(x2 + 1). Similarly to above, when n ≥ 3, the σ(ϵ)
ij

form a single conjugacy class, whilst for each ζ ∈ C m
p
\{1} the t(ζ )

i  again form separate conjugacy 
classes.

2.3. A presentation of mystic reflection groups

It turns out that for fixed n, each mystic reflection group μ(G(m,p,n)) contains the Tits group of type 
An−1, introduced in [19, Section 4.6]. The Tits group is realized as μ(G(2,2,n)), the mystic partner 
of the Coxeter group of type Dn; it is the group of even elements in the Coxeter group G(2,1,n) of 
type Bn.

Theorem 2.3 (A presentation of μ(G(m,p,n))). For all even m and all divisors p of m, the abstract 
group generated by symbols σ1,… ,σn−1 and the abelian group T(m,p,n), subject to the relations

(i) σ2
i = t(−1)

i t(−1)
i+1 ,

(ii) the braid relations σiσj = σjσi, i− j > 1, σiσi+1σi = σi+1σiσi+1, 1 ≤ i ≤ n− 2 and
(iii) σitσ−1

i = si,i+1(t) for all t ∈ T(m,p,n)

is isomorphic to μ(G(m,p,n)) via the map σi ↦ σ(1)
i,i+1 and the identity map on T(m,p,n).
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TWISTS OF RATIONAL CHEREDNIK ALGEBRAS 5

Proof. Let W be the quotient of the free product of a free group on {σi ∣ i ∈ [n− 1]} with T(m,p,n) by 
relations (i)–(iii). If m = p = 2, then by [1, Lemma 2.1], W is the Tits group 𝒯 ⊂ SLn(ℂ) of type An−1, 
which surjects onto 𝕊n with kernel T(2,2,n). Therefore, for m even, the subgroup of W generated 
by σ1,… ,σn−1 and T(2,2,n) is some quotient 𝒯 of 𝒯. Moreover, by rearranging generators using 
relation (iii) we can write W as 𝒯 ⋅Q where Q is a transversal of T(2,2,n) in T(m,p,n). Hence 

Now observe that relations (i)–(iii) hold in μ(G(m,p,n)): one checks them using the factorization 
σ(1)

i,i+1 = si,i+1t(−1)
i+1  in 𝕊n ⋉𝕋n, the Coxeter relations for the si,i+1 and the semidirect product relations. 

Hence the map W → μ(G(m,p,n)), given in the Theorem, is well-defined. We show that this map 
is surjective, that is, σ(1)

i,i+1, i ∈ [n− 1] and elements of T(m,p,n) generate the group μ(G(m,p,n)). 

The composite homomorphism μ(G(m,p,n)) ↪𝕊n ⋉𝕋n

proj1
−−−→𝕊n carries the σ(1)

i,i+1 to the generators 

si,i+1 of 𝕊n so is surjective with kernel T(m,p,n). Hence the σ(1)
i,i+1 generate μ(G(m,p,n)) modulo 

T(m,p,n), as required. We thus have 

n , , , , ,

so the surjective homomorphism W → μ(G(m,p,n)) is a bijection.

3. Rational and braided Cherednik algebras

3.1. Rational Cherednik algebras

For complex reflection group G ⊆ GL(V), let S denote the complex reflections in G. Let 𝔱 ∈ ℂ and 
c : S −→ℂ,s ↦ cs be such that cgsg−1 = cs ∀g ∈ G,s ∈ S. Using 𝔱 and c, we define a bilinear map 

The following algebras were introduced by Etingof and Ginzburg in [11]:

Definition 3.1 The rational Cherednik algebra Hc(G) is generated by V ,ℂG,V∗, subject to the 
relations: ∀x,x′ ∈ V , y,y′ ∈ V∗, g ∈ G,

• xx′ − x′x = yy′ − y′y = 0
• gx = g(x)g, yg = g ⋅ g−1(y)
• yx− xy = κ𝔱,c(y,x)

For brevity, we do not use 𝔱 as an extra subscript in Hc(G). There are two essentially different cases, 
𝔱 ≠ 0 and 𝔱 = 0. The rational Cherednik algebra at 𝔱 = 0 is finite over its centre, whereas at 𝔱 ≠ 0, 
H0(G) = 𝒜(V)#ℂG, the smash product of the Weyl algebra with the group algebra ℂG. Whilst this 
algebra has no finite-dimensional modules, Hc(G) can have finite-dimensional modules for special 
values of c.
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6 Y. BAZLOV et al.

Theorem 3.2 (The Poincaré-Birkhoff-Witt (PBW) theorem for rational Cherednik algebras, [11, 
Theorem 1.3]). Let x1,… ,xn be the basis of V, and y1,… ,yn a dual basis for V∗. As a ℂ-vector 
space, Hc(G) has basis 

In other words, as vector spaces, we have Hc(G) ≅ ℂ[x1,… ,xn]⊗ℂG⊗ℂ[y1,… ,yn].

In the following we restrict to the case G = G(m,p,n) in which m is even, and either n ≥ 3, or p is odd 
and n = 2. This means the s(ϵ)

ij  form a single conjugacy class, and we denote the value of c : S −→ℂ on 
this class as c1. The groups with odd m are excluded because they have no mystic partner. If n = 2 and 
p is even, the algebra defined below is not the most general case of the rational Cherednik algebra 
because it only has a single parameter for the set of complex reflections of the form s(ϵ)

ij , although 
this set is split into two conjugacy classes in G(m,p,2).

Definition 3.3 The rational Cherednik algebra Hc(G(m,p,n)) is the algebra generated by 
x1,… ,xn ∈ V , g ∈ G(m,p,n), y1,… ,yn ∈ V∗, subject to relations: 

where cζ  is the value of c on conjugacy class of t(ζ )
i , for each ζ ∈ C m

p
.

3.2. Braided Cherednik algebras

Consider the mystic reflection group μ(G(m,p,n)), with mystic reflections S as in (2). We require 
m to be even in order for the mystic reflection group μ(G(m,p,n)) to be defined; we also assume 
that n ≥ 3 or p is odd and n = 2 as above, so that the mystic reflections σ(ϵ)

ij  form a single conjugacy 
class. Similarly to above, we consider a function c′ : S −→ℂ that is invariant under conjugation in 
μ(G(m,p,n)), and let x

1
,… ,x

n
 be a basis of V, with y

1
,… ,y

n
 a dual basis for V∗. The following 

algebras were introduced in [2] in the special case 𝔱 = 1:

Definition 3.4 The negative braided Cherednik algebra H
c′

(μ(G(m,p,n))) is the algebra generated 
by x

1
,… ,x

n
∈ V , g ∈ μ(G(m,p,n)), y

1
,… ,y

n
∈ V∗, subject to relations: 

The key property of H
c′

(μ(G(m,p,n)) is the PBW-type theorem, proved in [2, Theorem 0.2] for 
𝔱 = 1. Below we obtain a new proof of this result for all 𝔱, see Remark 5.10. 
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TWISTS OF RATIONAL CHEREDNIK ALGEBRAS 7

4. The cocycle twist

Although we will only use cocycles on a finite abelian group, we will work in a more general Hopf 
algebra setting as it provides the useful language of duality. Our notation generally follows [17]. If 
H is a Hopf algebra over ℂ, △ : H→H⊗H will denote the coproduct of H and ϵ : H →ℂ, the counit. 
An example is the group algebra H = ℂT  of a group T, with △(t)=t⊗t and ϵ(t) = 1, extended from T
to ℂT  by linearity. The action of h ∈ H on a ∈ A where A is an H-module will be written as h ⊳ a. 
Recall that in an H-module algebra A, the product map m : A⊗A → A is a morphism in the category 
H-Mod of H-modules, and h ⊳ 1A = ϵ(h)1A for all h ∈ H.

4.1. Quasitriangular structures and 2-cocycles

We begin with two well-known definitions, see [17, Definition 2.1.1 and Example 2.3.1].

Definition 4.1 A 2-cocycle on a Hopf algebra H is an invertible χ ∈ H ⊗H such that (χ ⊗ 1) ⋅
(△⊗id)(χ)=(1⊗χ)⋅(id⊗△)(χ) and (ϵ⊗ id)(χ) = 1 = (id⊗ ϵ)(χ).

Definition 4.2 A QT-structure on a Hopf algebra H is an invertible element ℛ ∈ H ⊗H satisfying:

(QT1) ℛ ⋅ (△x)=(△op
x)⋅ℛ ∀x∈H,

(QT2) (△⊗id)ℛ=ℛ13⋅ℛ23, (id⊗△)ℛ=ℛ13⋅ℛ12,

where ℛ12 := ℛ⊗ 1, ℛ23 := 1⊗ℛ and ℛ13 similarly has 1 inserted in the middle leg.

QT-structures satisfy the quantum Yang–Baxter equation [17, Lemma 2.1.4] 

(QT2) and (4) imply that a QT-structure is a Hopf algebra 2-cocycle [17, Example 2.3.1]. 

4.2. Twists

It is natural to complement Majid’s description of a twisted H-module algebra [17, Section 2.3] by 
the observation that twisting by χ  is functorial:

Proposition 4.3 A 2-cocycle χ ∈ H ⊗H for a Hopf algebra H gives rise to the functor 

which takes an object (A, m) to (A,mχ = m(χ−1 ⊳ −)), and an arrow (A,m)
ϕ
−→ (B,m′) to (A,mχ )

ϕχ
−→

(B,m′
χ ), where ϕχ = ϕ as H-module morphisms. The twisted Hopf algebra Hχ  is defined as having 

the same algebra structure, and counit, as H, but with coproduct △χ (h)=χ⋅△(h)⋅χ−1 where △ is the 
coproduct on H.

Proof. That (A,mχ ) is in Alg(Hχ -Mod) is [17, Proposition 2.3.8], so we only need to check func-

toriality. Since A⊗A
ϕ⊗ϕ
−−−→ B⊗B is an H ⊗H-module morphism, it commutes with the action of 
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8 Y. BAZLOV et al.

χ−1 ∈ H ⊗H, so ϕ ∘mχ = m ∘ (ϕ⊗ϕ)(χ−1 ⊳) = m(χ−1 ⊳)(ϕ⊗ϕ) shows that ϕχ  is an algebra mor-
phism if ϕ is. Also, ϕχ  is an Hχ -module morphism because the actions of H and of Hχ  are the same. 
Therefore, ϕχ  is indeed an arrow in Alg(Hχ -Mod). 

Remark 4.4 The functor given in Proposition 4.3 is essentially the restriction of the monoidal 
equivalence of categories H-Mod → Hχ -Mod, see [10, Remark 5.14.3], to algebras.

4.3. The cocycle ℱ

We will now define the cocycle ℱ which will be used for twisting in the rest of the paper. Let T be 
the abelian group 

T = ⟨γ1,… ,γn ∣ γ2
i = 1, γiγj = γjγi, i, j ∈ [n]⟩,

isomorphic to T(2,1,n) ≅ (C2)n. Define 

Let a,b be elements of some associative algebra. It is easy to check that 

which implies that the f ij and ℱ are pairwise commuting involutions in ℂT ⊗ℂT . That they are 
cocycles follows from

Lemma 4.5 ℱ and fij for all i, j are QT-structures on ℂT.

Proof. (QT1) is vacuous as ℂT  is a commutative and cocommutative Hopf algebra. Rewriting f ij in 

the form 2−1∑1

a,b=0
(−1)abγa

i ⊗ γb
j , one checks (QT2) for f ij in the same way as in the case n = 2 of 

[17, Example 2.1.6]. Since (QT2) is multiplicative in ℛ, (QT2) also holds for ℱ. 

4.4. ℱ-twisted product of T-eigenvectors

Since T is a finite abelian group, a ℂT-module is the same as a comodule for the dual Hopf algebra 
ℂT̂ , where the dual group T̂  of T is 

A coaction by the group algebra of T̂  manifests itself as a T̂-grading, so for a ℂT-module algebra A
we have A = ⨁

α∈T̂
Aα where Aα := {a ∈ A ∣ ∀γ ∈ T , γ ⊳ a = α(γ)a} is the α-eigenspace of T. Denote 
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TWISTS OF RATIONAL CHEREDNIK ALGEBRAS 9

by ★ the twisted product on A induced by the cocycle ℱ ∈ ℂT ⊗ℂT  as in Proposition 4.3. Then 

Here α,β ∈ T̂  induce an algebra homomorphism α⊗ β : ℂT⊗2 −→ℂ. Observe that 

Every one of the 2n elements of T̂  is of the form 

so (6) and (7) imply the following

Lemma 4.6 Let I,J be subsets of [n]. If a ∈ AαI
 and b ∈ AαJ

, then a★b = (−1)d(I,J)ab where d(I,J) =
|{(i, j) : i ∈ I, j ∈ J, i > j}|.

Remark 4.7 In fact, Lemma 4.6 is a particular case of the construction in [3, Lemma 3.6] where a 
twist Aℱ of a G-graded algebra A by a 2-cocycle ℱ on the group G is realized as the image of the 
coaction A → A⊗ℂG viewed as a subalgebra of A⊗ (ℂG)ℱ. In the case G = T̂  and the cocycle ℱ
given above, the twisted group algebra (ℂT̂)ℱ is isomorphic to the complex Clifford algebra Cln of 
a space with an orthonormal basis α1,… ,αn, [3, Example 1.7]. The calculations done in the next 
section can be interpreted as embedding the negative braided Cherednik algebra H

c
(μ(G(m,p,n)))

in Hc(G(m,p,n))⊗Cln, although we do not explicitly write the Clifford algebra generators.

5. The Main Result

5.1. Statement of the main theorem

To state Main Theorem 5.2, we need to define the action of the abelian group T on the ratio-
nal Cherednik algebra Hc(G(m,p,n)). This will allow us to twist the associative product in 
Hc(G(m,p,n)).

Proposition 5.1 Let m be even and n ≥ 2. The rational Cherednik algebra Hc(G(m,p,n)) is a ℂT-
module algebra with respect to the action ⊳ given by: 

for all i, j ∈ [n], g ∈ G(m,p,n).

Proof. The PBW theorem 3.2 and the defining relations in Definition 3.3 imply that Hc(G(m,p,n))
embeds as a subalgebra in H̃ = H ̃c(G(m,1,n)), where ̃c is defined by ̃c1 = c1, ̃cζ = cζ  for ζ ∈ C m

p
⧵

{1} and ̃cζ = 0 whenever ζ ∈ Cm ⧵C m
p

. This subalgebra is generated by xi, yi for i ∈ [n] and by the 

subgroup G(m,p,n) of G̃ = G(m,1,n). Observe that H̃ is a ℂG̃-module algebra where a ∈ G̃ acts by 
conjugation, carrying u ∈ H̃ to aua−1 ∈ H̃. Since G(m,p,n) is a normal subgroup of G̃, this action of 
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10 Y. BAZLOV et al.

G̃ preserves the subalgebra Hc(G(m,p,n)) of H̃. Now the embedding of T in G̃ via γi ↦ t(−1)
i  defines 

the T-action on Hc(G(m,p,n)) given in the Proposition.

We now twist the rational Cherednik algebra by the cocycle ℱ ∈ ℂT ⊗ℂT  from Section 4 and denote 
the result (Hc(G(m,p,n)),★).

Theorem 5.2 There exists an isomorphism 

of associative algebras, where c : S −→ℂ is defined by c
1

:= −c1, cζ := −cζ ∀ζ ∈ C m
p
\{1}, and 

for all i ∈ [n− 1], j ∈ [n], σi := σ(1)
i,i+1, s̄i := s(−1)

i,i+1 , t ∈ T(m,p,n).

5.2. Outline of the proof of the theorem

We fix the triple (m,p,n) and denote G = G(m,p,n), Hc = Hc(G), H
c

= H
c
(μ(G)). The theorem 

defines the algebra homomorphism ϕ on generators of H
c
, and so ϕ, if exists, is unique. We first 

extend ϕ from the generators σi and t of μ(G) to a homomorphism from μ(G) to a subgroup of the 
twisted group algebra (ℂG,★). Then, by checking that the defining relations of H

c
 from Defini-

tion 3.4 are satisfied by the elements ϕ(x
i
), ϕ(y

i
) and ϕ(g), g ∈ μ(G) of the algebra (Hc,★), we 

show that ϕ extends from the generators to the whole algebra H
c
. We then use the PBW theorem for 

Hc to argue that ϕ is bijective.

5.3. ★-multiplication by simple generators

We need several lemmas where we express the new, ℱ-twisted associative product ★ of certain 
elements of Hc in terms of the usual product (written as ⋅ or omitted).

Lemma 5.3 For all t ∈ T(m,p,n), u ∈ Hc, t★u = tu and u★t = ut.

Proof. As t is invariant under the action of T, that is, is a T-eigenvector with eigencharacter 
1 = α∅, by Lemma 4.6, t★u = tu and u★t = ut for all T-eigenvectors u, and so by linearity
for all u in Hc. 

We denote 

and let 
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TWISTS OF RATIONAL CHEREDNIK ALGEBRAS 11

Observe that γa ⊳ si = si if a ∉ {i, i + 1}, so s+
i  is T-invariant, and s−i ∈ (Hc)αiαi+1

.

Lemma 5.4 For all i ∈ [n− 1], u ∈ Hc, 

si★u = si ⋅ (pi ⊳ u) + s̄i ⋅ (qi ⊳ u) and u★si = (pi+1 ⊳ u)si + (qi+1 ⊳ u)s̄i.

Proof. Since the expressions are linear in u, we may assume that u is a T-eigenvector with 
eigencharacter αJ , J ⊆ [n]. Apply Lemma 4.6 to s−i ∈ (Hc)αiαi+1

 and u. In the string i, i + 1,J, the 
pair i, i + 1 forms zero or two inversions with every element of J except possibly i and forms 
exactly one inversion with i if i ∈ J, so s−i ★u = s−i u if i ∉ J, and s−i ★u = −s−i u if i ∈ J. That is,
s−i ★u = s−i ⋅ (γi ⊳ u).

Also by Lemma 4.6, s+
i ★u = s+

i u. The formula for si★u = (s+
i + s−i )★u follows. The proof for 

u★si is similar.

Lemma 5.5 The simple transpositions si, i ∈ [n− 1], obey the relations si★si = ri,i+1 and the braid 
relations with respect to the ★-product on the group algebra of G(m,p,n).

Proof. By Lemma 5.4, si★si = sis
+
i + s̄is

−
i = 1

2 (1 + ri,i+1) + 1
2 ri,i+1(1− ri,i+1) = ri,i+1.

If |i− j| > 1, then sj is γi-invariant, hence qi ⊳ sj = 0. Then by Lemma 5.4, si★sj = sisj. This is 
symmetric in i, j, so si and sj ★-commute.

To check the braid relation for si and si+1, we can assume i = 1. We calculate the product 

s2★s1,3★s1 = (s2★s2s1s2)★s1 = s2★(s1s2s1★s1) (8)

in two ways. First, since the transposition s1,3 = s2s1s2 is γ2-invariant, by Lemma 5.4 s2★s2s1s2 =
s2s2s1s2 = s1s2. This is the same as s1★s2 because s1 is γ3-invariant, so  (8) equals s1★s2★s1.

On the other hand, by γ2-invariance of s1,3 = s1s2s1 and the second part of Lemma 5.4, s1s2s1★s1 =
s1s2s1s1 = s1s2 = s1★s2, so  (8) equals s2★s1★s2. The ★-braid relations are proved.

Remark 5.6 If (Hc,★) is embedded in Hc ⊗Cln as in Remark 4.7, the simple transposition si
becomes s+

i ⊗ 1 + s−i ⊗αiαi+1. The calculation to prove Lemma 5.5 is then equivalent to verify-
ing part of the Clifford Braiding Theorem of Kauffman and Lomonaco [15] which states that the 
ei := 1+αiαi+1√

2
, i ∈ [n− 1], obey the braid relations in Cln. The Clifford Braiding Theorem goes further 

to assert the circular braid relations involving en := 1 +αnα1, but these do not arise from Lemma 5.5.

5.4. The extension of ϕ from the generators to the group algebra ℂμ(G)

To prove that the assignment ϕ(σi) = s̄i, ϕ(t) = t extends to a homomorphism ϕ : ℂμ(G) → (ℂG,★)
of algebras, we check relations (i)–(iii) from the presentation of μ(G) given in Theorem 2.3.

(i) σiσi = ri,i+1. We check that the relation ϕ(σi)★ϕ(σi) = ϕ(ri,i+1) holds in (Hc,★). The left-
hand side is s̄i★s̄i = (siri,i+1)★(siri,i+1), which by Lemma 5.3 is si★si. By Lemma 5.5, this 
is ri,i+1, the same as ϕ(ri,i+1).

(ii) σiσj = σjσi for i− j > 1. We need to check that ϕ(σi) = s̄i and ϕ(σj) = s̄j ★-commute. This 
follows from Lemma 5.3 and Lemma 5.5.
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σiσi+1σi = σi+1σiσi+1. By Lemma 5.5, si★si+1★si = si+1★si★si+1, and by Proposition 4.3, 
(Hc,★) is a T-module algebra. Acting by γi+1 on both sides gives the required relation 
s̄i★s̄i+1★s̄i = s̄i+1★s̄i★s̄i+1.

(iii) σitσ−1
i = si(t). We need to check that s̄i★t★si = si(t). The left-hand side rewrites by 

Lemma 5.3 as (s̄i★si)si(t) = ri,i+1(s̄i★s̄i)si(t), which simplifies to si(t) by (i).

We can now describe the map ϕ on the whole of ℂμ(G) using a special basis of ℂμ(G):

Proposition 5.7 There exist involutions θw ∈ ℂT(2,1,n), indexed by w ∈ 𝕊n, such that {wθwt : w ∈
𝕊n, t ∈ T(m,p,n)} is a basis of ℂμ(G). In this basis, 

Proof. First of all, we observe that, for each i ∈ [n− 1] and w ∈ 𝕊n, 

s̄i★w = siw ⋅ ηi(w)

for some involution ηi(w) ∈ ℂT(2,2,n). Indeed, denote t(−1)
i ⋅w−1(t(−1)

i ) by r so that γi ⊳ w = wr. 
By Lemma 5.3 and Lemma 5.4, 

with r′ = w−1(ri,i+1). Thus, ηi(w) = 1
2 (1 + r + r′ − rr′), which is an involution by  (5).

Factorize w into simple transpositions as w = sik
…si2

si1
, and let σw = σik

…σi2
σi1

. Since σi = siti+1
and detσi = 1, in the group 𝕊n ⋉T(2,1,n) one has σw = wtw with tw ∈ T(2,1,n) such that det(tw) =
det(w). Therefore, 

so (9) holds with θw = ηi2
(si1

)…ηik
(sik−1

…si1
)tw. Note that wtw and ηij

(s), hence wθw, lie in 
ℂG(2,2,n) and so {wθwt : w ∈ 𝕊n, t ∈ T(m,p,n)} is a subset of ℂμ(G). It is a basis of the space 
ℂμ(G), because this set is carried by the linear map ϕ to the basis {wt} of the space ℂG of the same 
dimension.

5.5. Commutation relations between the x
i
 and between the y

j

We need to show that ϕ(x
i
)★ϕ(x

j
) = −ϕ(x

j
)★ϕ(x

i
),ϕ(y

i
)★ϕ(y

j
) = −ϕ(y

j
)★ϕ(y

i
) whenever 1 ≤ i <

j ≤ n. This is immediate by the following

Corollary 5.8 For all i, j ∈ [n], i < j, 

The same holds where the letters x and y are swapped.

Proof. Since the xi and yi are T-eigenvectors with eigencharacter αi this follows by Lemma 4.6. 
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5.6. The main commutator relation between x
i
 and y

j

We will now check the relation obtained by applying ϕ to both sides of the main commutator relation 
in H

c
 for i ≠ j: 

To calculate the right-hand side, we need

Lemma 5.9 ϕ(σ(ϵ)
ij ) = s(−ϵ)

ij  if i < j, and ϕ(σ(ϵ)
ij ) = s(ϵ)

ij  if i > j.

Proof. Since σ(ϵ)
ij = σ(1)

ij t(ϵ−1)
i t(ϵ)

j , s(±ϵ)
ij = s(±1)

ij ★t(ϵ−1)
i t(ϵ)

j  and ϕ(t(ϵ−1)
i t(ϵ)

j ) = t(ϵ−1)
i t(ϵ)

j , it is enough to 
prove the Lemma for ϵ = 1.

The case i < j: if j = i + 1, the statement becomes ϕ(σi) = s̄i which is true by definition of ϕ. To 

proceed by induction in j, we consider the identity sjs
(−1)
i,j+1 = s(−1)

ij sj. Since s(−1)
i,j+1  is γj-invariant, and 

s(−1)
ij  is γj+1-invariant, this rewrites by Lemma 5.4 as sj★s(−1)

i,j+1 = s(−1)
ij ★sj. Using s̄j★sj = 1, 

s(−1)
i,j+1 = s̄j★s(−1)

ij ★sj = ϕ(σjσ
(1)
ij σ−1

j ) = ϕ(σ(1)
i,j+1),

so the inductive step is done, and the case i < j follows.

The case i > j: ϕ(σ(ϵ)
ij ) = ϕ(σ(−ϵ−1)

ji ), which by the first part of the Lemma is s(ϵ−1)
ji = s(ϵ)

ij . 

Now, by Corollary 5.8 and Lemma 5.9 relation (10) for i < j is rewritten as 

yixj − xjyi = c
1
∑
ϵ∈Cm

ϵs(−ϵ)
ij .

Substituting c
1

= −c1 and recalling that −1 ∈ Cm, and so −ϵ ∈ Cm iff ϵ ∈ Cm, transforms this 
equation into the relation between yi and xj in Definition 3.3. If i > j, (10) becomes −(yixj − xjyi) =

−c1∑ϵ∈Cm
ϵs(ϵ)

ij , which is again true by Definition 3.3. Thus, (10) is proved.

5.7. The main commutator relation between x
i
 and y

i

We need to show that 

where the left-hand side is yixi − xiyi by Corollary 5.8. Apply Lemma 5.9, note that ∑ϵ∈Cm
s(−ϵ)

ij  is the 

same as ∑ϵ∈Cm
s(ϵ)

ij  because −1 ∈ Cm, and substitute ϕ(t(ζ )
i ) = t(ζ )

i , cζ = −cζ  to rewrite the right-hand 

side of  (11) as 𝔱 − c1∑j≠i
∑ϵ∈Cm

s(ϵ)
ij −∑ζ∈C m

p
⧵{1} cζ t

(ζ )
i . This shows that (11) is true by the relation 

for yixi − xiyi in Definition 3.3.

D
ow

nloaded from
 https://academ

ic.oup.com
/qjm

ath/advance-article/doi/10.1093/qm
ath/haac033/6825591 by guest on 17 N

ovem
ber 2022
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5.8. The semidirect product relations

We need to prove 

for all g ∈ μ(G) and all i ∈ [n]. We will prove this only for xi, as the proof for yi will be similar. 
Moreover, observe that if (12) holds for g = g1 and for g = g2, then it holds for g = g1g2 ∈ μ(G): 

ϕ(g)★xi = ϕ(g1)★ϕ(g2)★xi = ϕ(g1)★g2(xi)★ϕ(g2) = g1(g2(xi))★ϕ(g1)★ϕ(g2) = g(xi)★ϕ(g).

By Theorem 2.3, every element of μ(G) is a product of some generators σj, j ∈ [n− 1], and of some 
t ∈ T(m,p,n). If g = t ∈ T(m,p,n), one can omit ϕ and ★ in (12) by Lemma 5.3, and then (12) clearly 
holds by the semidirect product relations in Hc. Hence it is enough to prove (12) when g = σj: 

If i ∉ {j, j + 1}, then xi = σj(xi) is both γj and γj+1-invariant, so by Lemma 5.4, (13) is rewritten as 
s̄jxi = xi s̄j.
If i = j + 1, xj+1 is γj-invariant and σj(xj+1) = −xj is γj+1-invariant, so by Lemma 5.4, (13) is s̄jxj+1 =
−xj s̄j.
If i = j, xj is a T-eigenvector with eigencharacter αj and σj(xj) = xj+1, with αj+1, so by Lemma 5.4 (13) 
is sjxj = xj+1sj. In all three cases, (13) is true by the semidirect product relations in Hc. 

5.9. Bijectivity of ϕ.

Hence all the relations are satisfied and ϕ is a well-defined algebra homomorphism. We are left to 
prove that ϕ is bijective. It is enough to construct a spanning set of H

c
 which is carried by ϕ to a 

basis of Hc.
Let w ∈ 𝕊n. Consider the coset wT(m,p,n) of T(m,p,n) inside G and let ⟨wT(m,p,n)⟩ denote 
the span of this coset, a subspace of ℂG. Observe that ⟨wT(m,p,n)⟩ is a T-submodule of 
ℂG, because, if i ∈ [n], t ∈ T(m,p,n), γi ⊳ (wt) = wrt where r = t(−1)

i ⋅w−1(t(−1)
i ) ∈ T(2,2,n) ⊂

T(m,p,n). Therefore, ⟨wT(m,p,n)⟩ has T-eigenbasis wb1(w),… ,wbN(w) where N = |T(m,p,n)|
and b1(w),… ,bN(w) ∈ ℂT(m,p,n). It follows that {wbm(w) : w ∈ 𝕊n,m ∈ [N]} is a basis of the 
group algebra ℂG = ⊕w∈𝕊n

⟨wT(m,p,n)⟩. The PBW-type tensor product factorization of Hc, see 
Theorem 3.2, implies that 

is a basis of Hc.
We replace the basis {wθwt} of ℂμ(G), given by Proposition 5.7, by the following alternative basis: 
{wθwbm(w) : w ∈ 𝕊n,m ∈ [N]}. It is a basis of ℂμ(G) because by Proposition 5.7, it is carried by ϕ
to the basis {wbm(w)} of ℂG, and dimℂμ(G) = dimℂG. It then follows from the defining relations 
in H

c
 that the set 

spans H
c
.
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It is immediate from Corollary 5.8 that ϕ(xk1
1 …xkn

n
) = xk1

1 …xkn
n  and ϕ(yl1

1
…yln

n
) = yk1

1 …yln
n . We can 

now view how a general basis element of (15) is mapped under ϕ, 

where the second equality follows by Lemma 4.6, since xk1
1 …xkn

n , wbm(w) and yl1
1 …yln

n  are T-
eigenvectors. On noting that a spanning set of H

c
 has been mapped (up to a scalar multiple of ±1) to 

the basis of Hc given in (14), we conclude that ℬ is a basis of H
c
 and that ϕ is bijective, as required.

Remark 5.10 The above argument showing that ℬ is a basis of H
c
 is a new proof of the PBW-

type theorem for negative braided Cherednik algebras, extending the result obtained earlier in [2] to 
arbitrary 𝔱 ∈ ℂ.

6. Twists of representations

From Theorem 5.2 we know rational Cherednik algebras can be twisted, and the result is isomorphic 
to a negative braided Cherednik algebra. Next we show that representations of rational Chered-
nik algebras can also be twisted, generating a representation of the corresponding negative braided 
Cherednik algebra. A systematic approach to twists of representations, going beyond the examples 
considered in this section, will be explored in the upcoming paper [5].

6.1. Twisting and finite-dimensional representations

For the purposes of this section, we assume m
p  to be even. Recall that by Proposition 5.1, 

Hc(G(m,p,n)) is a ℂT-module algebra under the conjugation action of T = (C2)n. When m
p  is even, 

T is embedded as the subgroup T(2,1,n) in G(m,p,n), so a representation 

ρ : Hc(G(m,p,n)) −→ End(V)

of Hc(G(m,p,n)) induces a T-action on End(V) via t▶f =ρ(t)f ρ(t)−1 for all t ∈ T , f ∈ End(V). With this, 
ρ becomes a ℂT-module algebra homomorphism. Denote by End(V)ℱ the twist of the ℂT-module 
algebra End(V) by the cocycle ℱ defined in Section 4.3.
Recall that the underlying vector space is unchanged by twisting, therefore ρ can be viewed as a 
linear map ρ : Hc(G(m,p,n))ℱ −→ End(V)ℱ.

Proposition 6.1 The linear map ρ : Hc(G(m,p,n))ℱ −→ End(V)ℱ is an algebra homomorphism.

Proof. Let m denote the product on Hc(G(m,p,n)) and m′ be the product on End(V), so that 
ρ ∘m = m′ ∘ (ρ⊗ ρ) because ρ is a homomorphism between the untwisted algebras. The twisted 
product maps are mℱ = m ∘ (ℱ−1 ⊳) and m′

ℱ = m′ ∘ (ℱ−1▶), and since ρ is a ℂT-module alge-
bra morphism, so that (ρ⊗ ρ)(ℱ−1 ⊳) = (ℱ−1▶)(ρ⊗ρ), we conclude that ρ ∘mℱ = m′

ℱ ∘ (ρ⊗ ρ), as
required.
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We use this to deduce the following:

Theorem 6.2 For m
p  even, if Hc(G(m,p,n)) has finite-dimensional representations, then so does the 

negative braided Cherednik algebra H
c
(μ(G(m,p,n))).

Proof. If ρ : Hc(G(m,p,n)) −→ End(V) is a finite-dimensional representation, the algebra End(V)ℱ
is finite-dimensional, so it has finite-dimensional modules on which H

c
(μ(G(m,p,n))) ≅

Hc(G(m,p,n))ℱ acts via the algebra homomorphism ρ : Hc(G(m,p,n))ℱ −→ End(V)ℱ. 

6.2. Finite-dimensional representations at 𝔱 = 1: a general construction

Let W be an irreducible complex reflection group with reflection representation V, and Hc(W) be a 
rational Cherednik algebra over W. In the rest of the paper, we assume that 𝔱 = 1.
We recall a general approach which produces finite-dimensional representations of Hc(W). Start with 
a simple ℂW-module τ and extend τ to an S(V)#ℂW-module where V acts by zero. The standard 
Hc(W)-module Mc(τ) is defined as 

The underlying vector space of Mc(τ) is S(V∗)⊗ τ, hence these are infinite-dimensional representa-
tions of Hc(W). The standard module Mc(ℂ) given by τ = ℂ, the trivial ℂW-module, is the famous 
Dunkl (or polynomial) representation of Hc(W). Every Mc(τ) has a unique simple quotient, denoted 
Lc(τ). For some τ and some values of c, Lc(τ) are finite-dimensional.
If xi is a basis of V and yi the dual basis of V∗, one has the following important element of Hc(W): 

where n = dim(V), S is the set of complex reflections in W and λs is the non-trivial eigenvalue of s
in the dual reflection representation. By [7, Section 2.1], h satisfies the commutator relations 

6.3. Twisting one-dimensional representations of Hc(G(2,1,n))

We restrict the discussion above to the group G = G(2,1,n) ≅ 𝕊n ⋉ (C2)n, the Coxeter group of type 
Bn, and consider the modules Lc(τ) over Hc = Hc(G) which are one-dimensional. Such modules 
correspond to the four linear characters triv,κ,det and κdet of G; each character is determined by its 
values on s = si and t = t(−1)

i  as follows: 

To find the parameters c where dimLc(τ) = 1, we note that commutators must act on a 1-dimensional 
module by zero, so (17) implies that the generators xi and yi, i ∈ [n], act by 0. Most relations in
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Definition 3.3 are satisfied by xi = yi = 0 automatically: the relation yixj − xjyi = c1∑ϵ∈{±1} ϵs
(ϵ)
ij  holds 

because sij and s(−1)
ij  act on Lc(τ) by the same scalar. The only constraint on the parameter c = (c1,c−1)

arises from the last relation which reads 

Let τ be one of the four characters of G given in (18), and assume that c satisfies (19) so that Lc(τ)
is 1-dimensional. We apply the twisting procedure from Section 6.1 to the Hc-module Lc(τ). The 
action of the group T on End(Lc(τ)) is via conjugation; however, End(Lc(τ)) ≅ ℂ is commutative. 
Hence T acts trivially, and End(Lc(τ))ℱ = End(Lc(τ)).
We obtain the following 1-dimensional representation of the negative braided Cherednik algebra 
H

c
= H

c
(μ(G)), 

Here ρτ  is the algebra homomorphism we arrive at from Proposition 6.1. Denote the 1-dimensional 
H

c
-module given by (20) by Lc(τ)ℱ.

Recall from (1) that the group μ(G) is the same as the group G. To characters τ of μ(G) = G there 
correspond 1-dimensional representations L

c
(τ) of the negative braided Cherednik algebra H

c
(G)

where the x
i
 and y

i
 act by 0 and elements of G act via τ. We can now identify the twists Lc(τ)ℱ as 

certain representations L
c
(τ′) of H

c
(G), as follows: 

τ′(σi) = ρτ(ϕ(σi)) = ρτ(s̄i) = ρτ(σiti) = τ(σi)τ(ti), τ′(ti) = ρτ(ϕ(ti)) = ρτ(ti) = τ(ti).

This means that twisting induces a non-trivial permutation of linear characters of the group G(2,1,n), 
resulting in the following theorem which concludes the paper:

Theorem 6.3 (Twists of 1-dimensional representations of Hc(G(2,1,n))). The twisting procedure 
outlined above maps 1-dimensional representations of Hc(G(2,1,n)) to 1-dimensional representa-
tions of H

c
(G(2,1,n)) as follows, 
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