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TRANSITIVE AND GALLAI COLORINGS

RON M. ADIN, ARKADY BERENSTEIN, JACOB GREENSTEIN, JIAN-RONG LI, AVICHAI MARMOR,
AND YUVAL ROICHMAN

Abstract. A Gallai coloring of the complete graph is an edge-coloring with no rainbow triangle.
This concept first appeared in the study of comparability graphs and anti-Ramsey theory. We
introduce a transitive analogue for acyclic directed graphs, and generalize both notions to Coxeter
systems, matroids and commutative algebras.

It is shown that for any finite matroid (or oriented matroid), the maximal number of colors is
equal to the matroid rank. This generalizes a result of Erdős-Simonovits-Sós for complete graphs.
The number of Gallai (or transitive) colorings of the matroid that use at most k colors is a polyno-
mial in k. Also, for any acyclic oriented matroid, represented over the real numbers, the number of
transitive colorings using at most 2 colors is equal to the number of chambers in the dual hyperplane
arrangement.

We count Gallai and transitive colorings of the root system of type A using the maximal number
of colors, and show that, when equipped with a natural descent set map, the resulting quasisym-
metric function is symmetric and Schur-positive.
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1. Introduction

1.1. Gallai and transitive colorings of matroids. A Gallai coloring of the complete graph Kn

on n vertices is an edge-coloring which has no rainbow triangle, namely a triangle with edges of
(three) different colors. This concept was applied in a seminal paper of Gallai [14] to characterize
comparability graphs. It was named after Gallai by Gyárfás and Simonyi [21]. Various extensions
of the definition to general graphs were offered; see, e.g., [20] and [18]. In this paper we adopt
the definition of Gouge et al. [18], which appeared implicitly already in [22], and extend it to the
context of matroids.

For a positive integer k denote [k] := {1, 2, . . . , k}.

Definition 1.1. Let k be a positive integer, and let M be a matroid on a finite set E. A Gallai
k-coloring of M is a function ε : E → [k] such that, for any circuit X in M ,

|{ε(e) : e ∈ X}| < |X|.

In particular, a Gallai k-coloring of the graphic matroid corresponding to a graph G = (V,E) is an
edge coloring ε : E → [k] with no rainbow cycle.

Gallai colorings were extensively studied; see the survey paper [13] and references therein. For
recent results regarding the combinatorial structure and asymptotic enumeration of maximal Gallai
colorings of the complete graph see [2, 3, 4].

Berenstein, Greenstein and Li [6] introduced, in their study of monomial braidings, the concept
of a (Γ, C)-transitive function for any directed graph Γ and set of colors C, see e.g. Example 1.6
below. Motivated by this work, we define transitive colorings of general oriented matroids.

Definition 1.2. Let k be a positive integer and let M be an oriented matroid on a finite set E. A
transitive k-coloring of M is a function ε : E → [k] such that, for any signed circuit X = (X+,X−)
in M ,

{ε(e) : e ∈ X+} ∩ {ε(e) : e ∈ X−} 6= ∅,

In particular, a transitive k-coloring of the oriented matroid corresponding to a directed graph
G = (V,E) is an edge-coloring ε : E → [k] such that any cycle contains two directed edges with the
same color but opposite orientations.

Observe that the set of transitive k-colorings of an oriented matroid may be identified with a
proper subset of the set of Gallai k-colorings of the underlying (unoriented) matroid.

Here is a reformulation of Definition 1.2 for representable oriented matroids.

Definition 1.3. Let k be a positive integer, and let E be a finite set (or multiset) of vectors in a
vector space over an ordered field (say, the field R of real numbers). A transitive k-coloring of E
is a function ε : E → [k] such that, for any two disjoint subsets S, T ⊆ E,

spanR>0
(S) ∩ spanR>0

(T ) 6= ∅ =⇒ ε(S) ∩ ε(T ) 6= ∅.

Observation 1.4. Every transitive coloring of a set of vectors satisfies the following condition:

u ∈ spanR>0
{v1, . . . , vt} =⇒ ε(u) ∈ {ε(v1), . . . , ε(vt)}.

This condition is equivalent to the one in Definition 1.3 in certain important cases (e.g., tourna-
ments and Coxeter root systems), but not in general.

In particular, every directed graph may be viewed as an oriented matroid represented over (any)
ordered field.

Example 1.5. Consider the two 3-colorings of acyclic directed graphs depicted in Figure 1. The
coloring on the left satisfies the condition in Observation 1.4, but is not transitive. The coloring on
the right is transitive.
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Figure 1. A non-transitive coloring and a transitive coloring

Example 1.6. Let
−→
Kn be the transitive tournament with vertex set {1, . . . , n} and edge set {(i, j) :

i < j}. This is an acyclic orientation of the complete graph. An edge-coloring ε of
−→
Kn is transitive

if and only if

ε(i, k) ∈ {ε(i, j), ε(j, k)} (∀ i < j < k).

The anti-Ramsey problem posed by Erdős, Simonovits and Sós [12] asks for the maximal number
k of colors such that there exists an edge-coloring of the complete graph of order n, Kn, with exactly
k colors and without a rainbow complete subgraphKs. They proved, in particular, that the maximal
number of edge colors of Kn without a rainbow triangle is n− 1. We generalize this result to any
matroid.

Observation 1.7. (Remark 2.1(a) below) A matroid has a Gallai coloring if and only if it is
loopless (i.e., has no circuit of size 1).

For a loopless matroid M , let g(M) be the maximal k such that there exists a Gallai coloring of
M using exactly k colors.

Theorem 1.8. (Theorem 2.3 below) For any loopless matroid M ,

g(M) = rank(M).

The following corollary generalizes the Erdős-Sinonovits-Sós result.

Corollary 1.9. (Corollary 2.7 below) The maximal number of colors in a Gallai coloring of a
graph G on n vertices with c connected components is n− c.

A similar result holds for transitive colorings.

Observation 1.10. An oriented matroid has a transitive coloring if and only if it is acyclic (i.e.,
has no positive circuit). In particular, a nonempty set of vectors E has a transitive coloring (even
with a single color) if and only if for every nonempty subset S ⊆ E,

0 6∈ spanR>0
(S);

equivalently, if and only if 0 is not in the convex hull of E.

For an acyclic oriented matroid M , let t(M) be the maximal k such that there exists a transitive
coloring of M using exactly k colors.

Theorem 1.11. (Theorem 2.9 below) For any acyclic oriented matroid M ,

t(M) = rank(M).

Corollary 1.12. The maximal number of colors in a transitive coloring of the set of positive roots
of a Coxeter group W is equal to its rank.

The concept of Gallai partitions of complete graphs was introduced by Körner, Simonyi and
Tuza [24]. It is naturally generalized to all graphs and matroids.
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Definition 1.13. Let M be a loopless matroid on a nonempty set E. A Gallai k-partition of M
is a partition of E into k disjoint non-empty subsets, also called blocks, B1, . . . , Bk, such that for
any circuit X in M , |X ∩Bi| ≥ 2 for at least one value of i.

There is a transitive analogue.

Definition 1.14. Let M be an acyclic oriented matroid on a nonempty set E. A transitive k-
partition of M is a partition of E into k disjoint non-empty subsets, also called blocks, B1, . . . , Bk,
such that for any signed circuit X = (X+,X−) in M , both X+ ∩Bi 6= ∅ and X− ∩Bi 6= ∅ for at
least one value of i.

The following result resolves [6, Conjecture 3.5] as a special case.

Proposition 1.15. For any loopless (respectively, acyclic oriented) matroid M on a nonempty set
E there exists a polynomial pM (x) ∈ xZ[x] such that, for any positive integer k, the number of
Gallai (respectively, transitive) colorings of M using k colors is equal to pM(k). Specifically,

pM (x) =
∑

j≥1

aj(x)j ,

where (x)j := x(x − 1) · · · (x − j + 1) and aj is the number of Gallai (respectively, transitive)
j-partitions of M .

See Propositions 2.13 and 2.15 below.

While counting Gallai 2-colorings of a loopless matroid is easy (Proposition 2.16), the enumera-
tion of transitive 2-colorings of an acyclic oriented matroid is more involved.

Theorem 1.16. (Theorem 2.18 below) Let M be an acyclic oriented matroid on a nonempty set E.
The number of transitive 2-colorings of M is equal to 2c times the number of acyclic reorientations
of M , where c is the number of connected components of M .

For representable oriented matroids we prove the following.

Theorem 1.17. (Theorem 2.21 below) For any acyclic oriented matroid M represented over R,
the number of transitive 2-colorings of M is equal to the number of chambers in the dual hyperplane
arrangement.

In particular, for any finite Coxeter group W , the number of transitive 2-colorings of the set
Φ+(W ) of positive roots is equal to |W |; see Corollary 2.24 below. Theorem 1.17 is closely related
to a well-known result of Orlik and Terao [26]; see the discussion in Section 5.4.

1.2. Type A: enumeration and Schur-positivity. Gallai and transitive colorings of the root
system of type An−1

Φ+(An−1) = {ei − ej : 1 ≤ i < j ≤ n}

may be interpreted as edge-colorings of the undirected (respectively, directed) complete graph of
order n. Asymptotic results about the number of Gallai edge colorings of complete graphs were
obtained recently [2, 3, 4]. In particular, it was proved that, for any fixed k ≥ 2 and sufficiently
large n, almost all Gallai colorings of Kn using at most k colors actually use only two colors. Some
results regarding precise counting were obtained by Gouge et al. [18].

Recall Definitions 1.13 and 1.14. A Gallai (transitive) partition is maximal if the number of
blocks is maximal, namely (by Theorems 1.8 and 1.11) equal to the rank of the matroid. We prove
the following.

Theorem 1.18. (Theorem 3.4 below) For every n > 1, the number of maximal Gallai partitions
of the set of edges of the complete graph Kn is equal to the double factorial (2n− 3)!!.
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Theorem 1.19. (Theorem 3.19 below) For every n > 1, the number of maximal transitive parti-

tions of the set of edges of the transitive tournament
−→
Kn is equal to the Catalan number Cn−1 :=

1
n

(2n−2
n−1

)
.

For a q-analogue see Proposition 3.22.

We further consider quasisymmetric generating functions (i.e., refined counts with respect to a
certain set-valued function), and prove that they are symmetric and Schur-positive for any number
of colors.

A symmetric function is called Schur-positive if all the coefficients in its expansion in the Schur
basis are nonnegative (or polynomials with nonnegative coefficients). Deciding the Schur-positivity
of a given symmetric function is equivalent, via the characteristic map, to showing that a given
class function is actually a character, and is a frequently encountered problem in contemporary
algebraic combinatorics; see, e.g., [35, Ch. 3].

Recall the fundamental quasisymmetric function indexed by a subset J ⊆ [n− 1]:

FJ (x) :=
∑

i1≤i2≤...≤in
ij<ij+1 if j∈J

xi1
xi2

· · ·xin .

For a set A of combinatorial objects, equipped with a map Des : A→ 2[n−1], let

Q(A) :=
∑

a∈A

FDes(a).

The quasisymmetric function Q(A) was introduced by Gessel in [15]. Gessel was motivated by a
well-known conjecture of Stanley [30, III, Ch. 21], which he reformulates as follows: if A is the set
of linear extensions of a labeled poset P , then Q(A) is symmetric if and only if P is isomorphic to
the poset determined by a skew semistandard Young tableau. The following problem was posed by
Gessel and Reutenauer [16] in the context of permutation sets.

Problem 1.20. For which pairs (A,Des) is Q(A) symmetric and Schur-positive?

Definition 1.21. The descent set of a Gallai (respectively, transitive) k-partition p of the complete

graph Kn (respectively, the transitive tournament
−→
Kn) on the set of vertices {1, . . . , n} is

Des(p) := {i : the edge (i, i+ 1) forms a singleton block in p}.

Example 1.22. Figure 2 shows the descent sets of two Gallai partitions of K4, where the edges of
distinct blocks are colored by distinct colors. Note that in the paritition on the right, the edge (1, 3)
forms a singleton block, but is not a descent since its endpoints do not have consecutive labels.

1 3

2

4

1 3

2

4

Des(p) = {1, 3} ∅

Figure 2. Descent sets of Gallai partitions
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Denote the set of Gallai k-partitions of Kn by Gn,k and the set of transitive k-partitions of
−→
Kn

by Tn,k. We prove the following.

Theorem 1.23. For every n > k ≥ 1, the quasisymmetric functions

Q(Gn,k) :=
∑

p∈Gn,k

FDes(p)

and
Q(Tn,k) :=

∑

p∈Tn,k

FDes(p)

are symmetric and Schur-positive.

For maximal transitive and Gallai partitions we have the following explicit descriptions. Here
ch is the Frobenius characteristic map from the ring of class functions on symmetric groups to the
ring of symmetric functions; for a definition see Section 4.2.

Theorem 1.24. For every n > 1,

Q(Tn,n−1) = ch
(
χ(n−1,n−1) ↓

S2n−2

Sn

)
,

where χ(n−1,n−1) is the irreducible S2n−2-character indexed by (n− 1, n− 1).

For the undirected case we have the following.

Theorem 1.25. For every n > 1,

Q(Gn,n−1) = ch

((
n−1∑

r=0

arχ
(n−1+r,n−1−r)

)
↓
S2n−2

Sn

)
,

where ar is the number of perfect matchings of 2r points on a line with no short chords.

Remark 1.26. For the numbers ar, see [29, A000806], [25] and references therein.

It follows that the distribution of singleton blocks of edges of the type {(i, i + 1)} on maxi-

mal transitive edge partitions of the transitive tournament
−→
Kn is equal to the distribution of the

(standard) descent set on indecomposable 321-avoiding permutations in the symmetric group Sn

(Theorem 4.16 below).

The rest of the paper is organized as follows. Gallai and transitive colorings of matroids and
oriented matroids are studied in Section 2. This includes a tight upper bound on the maximal
number of colors, polynomiality, and several interpretations of transitive 2-colorings. In Section 3
we count maximal colorings of directed and undirected complete graphs. In Section 4 we equip
transitive and Gallai partitions of complete graphs with a natural descent map, determined by
singleton blocks. The resulting quasisymmetric functions are shown to be symmetric and Schur-
positive. Section 5 concludes the paper with a brief discussion of maximal transitive partitions of
Coxeter root systems and related algebras.

2. Gallai and transitive colorings of matroids

Let M be a matroid on a ground set E and let C be a set of colors. Let EM (C) be the set of
Gallai colorings of M with colors from C. Consider first what happens for very short circuits.

Remark 2.1. (a) If {e} is a circuit of size 1, then e is called a loop. By Definition 1.1, in
a Gallai coloring a loop can use only 0 colors! This means that EM (C) = ∅ unless M is
loopless. We shall therefore always assume that the matroid M is loopless.

(b) If {e1, e2} is a circuit of size 2, then the elements e1 and e2 are called parallel. In a Gallai
coloring of M , parallel elements always have the same color.
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2.1. Maximal number of colors. By Remark 2.1.1, a matroid has at least one Gallai coloring if
and only if it is loopless.

Definition 2.2. For a loopless matroid M , let g(M) be the maximal number of colors in a Gallai
coloring of M .

Clearly, g(M) = 0 if and only if E = ∅.

Theorem 2.3. For any loopless matroid M ,

g(M) = rank(M).

For the proof we need the following three properties of matroids. The first two are standard;
see, e.g., [27]. The third property is a strengthening of a standard fact, and we therefore provide a
proof.

Lemma 2.4. Let B be a basis in a matroid. For each e ∈ E \ B there exists a unique circuit
containing e and contained in B ∪ {e}.

Lemma 2.5. For any S ⊆ E and e ∈ S, rank(S) = rank(S \ {e}) if and only if e belongs to a
circuit contained in S.

Lemma 2.6. (Strong elimination property) Let X1 and X2 be two distinct circuits in a matroid,
let e ∈ X1 \X2 and let f ∈ X1 ∩X2. Then (X1 ∪X2) \ {f} contains a circuit which contains e.

Proof of Lemma 2.6. Consider the ranks of the sets X1 ∪X2, (X1 ∪X2) \ {e}, (X1 ∪X2) \ {f}, and
(X1 ∪X2) \ {e, f}. The element e belongs to a circuit (X1) contained in X1 ∪X2. Therefore, by
Lemma 2.5,

rank(X1 ∪X2) = rank((X1 ∪X2) \ {e}).

Similarly, the element f belongs to a circuit (X1 or X2) contained in X1 ∪X2, and therefore

rank(X1 ∪X2) = rank((X1 ∪X2) \ {f}).

Finally, the circuit X2 contains f and is contained in (X1 ∪X2) \ {e}, so that

rank((X1 ∪X2) \ {e}) = rank((X1 ∪X2) \ {e, f}).

It follows that all four sets have the same rank, and in particular

rank((X1 ∪X2) \ {f}) = rank((X1 ∪X2) \ {e, f}).

By Lemma 2.5, this implies that e belongs to a circuit contained in (X1∪X2)\{f}, as claimed. �

Proof of Theorem 2.3. Let M be a loopless matroid on a set E. We can assume that rank(M) ≥ 1,
otherwise necessarily E = ∅, since M is loopless, in which case clearly g(M) = 0 = rank(M). By
Observation 1.7, g(M) ≥ 1.

Let C be a set (of colors) of size g(M), and let ε : E → C be a surjective Gallai coloring of
M . Pick a set S ⊆ E of size g(M) which is “ε-rainbow”, namely, all its elements are assigned
distinct colors by ε. Every subset of S is clearly also ε-rainbow and therefore, by Definition 1.1,
S does not contain a circuit. It follows that S is an independent set in M , and in particular
g(M) = |S| ≤ rank(M).

In order to prove the opposite inequality g(M) ≥ rank(M), we now construct a Gallai coloring
of M using exactly r := rank(M) colors. Indeed, let B ⊆ E be a basis of M ; of course, |B| = r.
Map B bijectively onto the set of colors C := [r]. By Lemma 2.4, for any e ∈ E \B there exists a
unique circuit {e} ⊆ Xe ⊆ B∪{e}. The set of colors is totally ordered: 1 < . . . < r; assign to e the
smallest color of an element of Xe \ {e} ⊆ B, noting that this set is nonempty since M is loopless.
The resulting coloring ε : E → C is clearly surjective; we claim that it is also Gallai.

We want to show that no circuit in M is ε-rainbow. Assume, on the contrary, that there is a
rainbow circuit in M . Let X be a circuit with the following two properties;



8 R. M. ADIN, A. BERENSTEIN, J. GREENSTEIN, J.-R. LI, A. MARMOR, AND Y. ROICHMAN

(1) There is a unique element of X having the smallest color (among the elements of X).
(2) |X \B| is minimal, among the circuits having property (1).

Note that property (1) is weaker than being rainbow, but it is exactly what we need for the
forthcoming argument. In any case, the existence of a rainbow circuit implies the existence of X.

Denote k := |X \ B|. Clearly k 6= 0, since the circuit X is not independent. If k = 1 and
X \B = {e}, then e ∈ E \B and X is the unique circuit containing e and contained in B ∪{e}. By
the definition of ε, the color of e is equal to the smallest color of an element of X \{e}, contradicting
property (1). Thus k ≥ 2.

By property (1), there is a unique element e ∈ X having the smallest color. It may or may not
belong to B, but since k = |X \B| ≥ 2 there is at least one other element f ∈ X \B, and its color
is not minimal in X. Let Xf be the unique circuit containing f and contained in B ∪ {f}.

Consider the circuits X and Xf . Clearly f ∈ X ∩ Xf and e ∈ X. Also, e 6∈ Xf since all
the elements of Xf have colors larger or equal to the color of f , while e has a strictly smaller
color. Thus e ∈ X \ Xf , and by Lemma 2.6 there is a circuit X ′ containing e and contained in
(X ∪Xf )\{f}. This circuit has property (1), with e as the unique element with smallest color; and
also |X ′ \B| < |X \B|, since Xf \ {f} ⊆ B while f ∈ X \B and f 6∈ X ′ \B. This contradicts the
choice of X and shows that, indeed, no circuit is ε-rainbow. Thus ε is a surjective Gallai coloring,
completing the proof. �

Corollary 2.7. The maximal number of colors in a Gallai coloring of a graph G on n vertices with
c connected components is n− c.

Proof. The rank of the graphic matroid corresponding to such a graph G, namely the number of
edges in a spanning forest, is n− c. �

The proof of Theorem 2.3 does not extend to oriented matroids. However, the corresponding
statement does hold.

Recall that, by Observation 1.10, an oriented matroid has at least one transitive coloring if and
only if it is acyclic.

Definition 2.8. For an acyclic oriented matroid M , let t(M) be the maximal number of colors in
a transitive coloring of M .

Clearly, t(M) = 0 if and only if E = ∅.

Theorem 2.9. For any acyclic oriented matroid M ,

t(M) = rank(M).

For the proof, let us cite the following definition and basic results regarding orthogonality in an
oriented matroid.

Definition 2.10. [8, inline definition before Proposition 3.4.1] Let M be an oriented matroid on
a set E. Two signed sets X, Y , with supports X,Y ⊆ E, are said to be orthogonal, denoted by
X ⊥ Y , if either X ∩ Y = ∅ or the restrictions of X and Y to their intersection are neither equal
nor opposite, i.e., there exist e, f ∈ X ∩ Y with signs satisfying X(e)Y (e) = −X(f)Y (f).

Lemma 2.11. [8, Theorem 3.4.3] In an oriented matroid, if X is a circuit and Y is a cocircuit
then X ⊥ Y .

Lemma 2.12. [8, Proposition 3.4.8] In an acyclic oriented matroid on a set E, every e ∈ E is
contained in a positive cocircuit.

Proof of Theorem 2.9. Let M be an acyclic oriented matroid on a set E. Let C be a set (of colors)
of size t(M), and let ε : E → C be a surjective transitive coloring of M . Pick a set S ⊆ E of size
t(M) which is “ε-rainbow”, namely, all its elements are assigned distinct colors by ε. Every subset
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of S is clearly also ε-rainbow and therefore, by Definition 1.2, S does not contain (the support of)
a circuit. It follows that S is an independent set in M , and in particular t(M) = |S| ≤ rank(M).

In order to prove the opposite inequality t(M) ≥ rank(M), we now construct a transitive coloring
of M using exactly r := rank(M) colors. The construction is recursive, depending on r. Of course,
r = 0 is possible (for an acyclic, and in particular loopless, oriented matroid) only for E = ∅,
and then indeed we use no colors. Assuming r ≥ 1, Denote Er := E. By Lemma 2.12, each
element of Er is contained in a positive cocircuit. Choose a positive cocircuit Yr in Er, and denote
Er−1 := Er \ Yr. Since Yr is a cocircuit, the restriction of M to Er−1 is acyclic of rank r − 1.
Continue in this fashion to define subsets E = Er ⊃ Er−1 ⊃ . . . ⊃ E0 = ∅ such that Ei \ Ei−1

supports a positive cocircuit Yi in Ei for each 1 ≤ i ≤ r. Finally, color the elements of Yi by color
i, for each 1 ≤ i ≤ r. The resulting coloring ε : E → [r] is clearly surjective, and we claim that it
is also transitive.

Indeed, let X be a signed circuit in M . There is a unique index 1 ≤ i ≤ r such that X ⊆ Ei but
X 6⊆ Ei−1. It follows that X∩Yi = X∩(Ei\Ei−1) 6= ∅. By Lemma 2.11, X ⊥ Yi, and therefore the
restrictions of X and Yi to their (nonempty) intersection are neither equal nor opposite. Since Yi
is positive, it follows that there are e, f ∈ X ∩ Yi such that e ∈ X+ and f ∈ X−. By the definition
of the coloring, ε(e) = ε(f) = i and therefore ε(X+) ∩ ε(X−) 6= ∅. Thus ε is transitive. �

2.2. Polynomiality. Let M be an acyclic oriented matroid M on a nonempty finite ground set
E. For a positive integer k denote

EM (k) := {ε : E −→ [k] : ε is a transitive coloring}

the set of transitive k-colorings of M . Recall Definition 1.14 of a transitive k-partition.

Proposition 2.13. [6, Conjecture 3.5] For any acyclic oriented matroid M on a nonempty finite
ground set E there exists a polynomial pM (x) ∈ xZ[x] — the transitivity polynomial of M — such
that, for any positive integer k

|EM (k)| = pM (k).

Moreover, there exist nonnegative integers aM,j such that

pM (x) =
∑

j≥1

aM,j(x)j

where (x)j := x(x− 1) · · · (x− j + 1) and aM,j is the number of transitive j-partitions of M .

Proof. Each function ε : E → [k] defines a partition Pε of the set E, where e1, e2 ∈ E belong to the
same block if ε(e1) = ε(e2). Let Π(E) be the set of all partitions of E. For each partition P ∈ Π(E)
and positive integer k, define

nP (k) := |{ε ∈ EM (k) : Pε = P}|.

We shall prove that, for each partition P of E into j nonempty parts, either

nP (k) = 0 (∀ k)

or
nP (k) = (k)j (∀ k).

This will clearly complete the proof of the theorem, with the explicit expression

aM,j = number of partitions P of E into j disjoint nonempty blocks such that (∃k)nP (k) 6= 0

= number of transitive j-partitions of M.

Indeed, the partition Pε = P determines, for each e1, e2 ∈ E, whether or not ε(e1) = ε(e2).
Therefore it also determines, for each (X+,X−) ∈ Circ(M), whether or not ε(X+) ∩ ε(X−) 6= ∅.
It therefore determines whether or not ε ∈ EM (k). Thus, given a partition P of E into j parts, if
nP (k) 6= 0 for some positive integer k then there exists a function εj ∈ EM (k) with Pεj = P , and
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consequently, for any positive integer j ≤ k all functions ε : E → C for some subset C ⊆ [k] of
order j, with Pε = P , are in EM (k); their number is clearly (k)j . �

Example 2.14. Let
−→
Kn be the transitive tournament on n vertices. The coefficients ak (1 ≤ k ≤

n− 1) were computed in [6, Section 3] for n ≤ 8. For k = 2 and every n ≥ 2 the following holds:

p−→
Kn

(2) = n!

This follows from a natural bijection between E−→
Kn

(2) and the symmetric group Sn: for ε ∈ EM (2)

let πε ∈ Sn the permutation which satisfies π(i) > π(j) ⇐⇒ ε(i, j) = 1 for all 1 ≤ i < j ≤ n. To
verify that this is a bijection, recall that a set of ordered pairs J ⊆ {(i, j) : 1 ≤ i < j ≤ n} is an
inversion set of a permutation in Sn if and only if both J and its complement are transitive, see
e.g. [19]. This result will be generalized in Subsection 2.3.

Recall Definition 1.13 of a Gallai k-partition.

Proposition 2.15. The number of Gallai k-colorings of a a finite matroid M is a polynomial in
k. Moreover, there exist nonnegative integers bM,j such that

pM (x) =
∑

j≥1

bM,j(x)j

where (x)j := x(x− 1) · · · (x− j + 1) and bM,j is the number of Gallai j-partitions of M .

Proof is similar to the proof of Proposition 2.13 and is omitted.

2.3. 2-colorings. Let M be a loopless matroid on a set E. Two distinct elements e, f ∈ E are
called parallel if {e, f} is a circuit in M . Being parallel (or equal) is an equivalence relation on
E, and the equivalence classes are called parallel classes. In a vector matroid, parallel vectors are
(nonzero) scalar multiples of each other. In a graphic matroid, two edges are parallel if they have
the same endpoints.

Proposition 2.16. The number of Gallai 2-colorings of a loopless matroid M is 2p, where p is the
number of parallel classes of elements of E.

Proof. A 2-coloring of M is Gallai if and only if the number of colors used to color each circuit
is strictly smaller than the size of the circuit. Circuits of size 1 do not exist, since the matroid is
loopless. In circuits of size 2, the two elements of the circuit are required to have the same color.
This means that parallel elements of E must have the same color. For circuits of size greater than
2 there is no restriction on the coloring, since we have only two colors. Therefore a 2-coloring of
M is Gallai if and only if any two parallel elements of E have the same color. �

Recall that a graph is simple if it has no loops or parallel edges.

Corollary 2.17. Any 2-coloring of a simple graph is Gallai. Hence, the number of Gallai 2-
colorings of a simple graph with e edges is 2e.

Let M be an oriented matroid on a set E. Define an equivalence relation on E by: e ∼ f if
either e = f or {e, f} is contained in a circuit of M . The equivalence classes of this relation are
the connected components of M . Note that {e} is a connected component of size 1 if and only if e
is either a loop (forming a circuit of size 1) or an isthmus (not contained in any circuit).

Let M be an oriented matroid on a set E, and let A ⊆ E be an arbitrary subset. For any signed
set X with support X ⊆ E, let −AX be the signed set obtained from X by reversing the signs of
all the elements of A∩X. The set {−AX : X is a circuit in M} is the set of circuits of an oriented
matroid, denoted −AM . A reorientation of M is any of the oriented matroids −AM , for A ⊆ E.
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Theorem 2.18. Let M be an acyclic oriented matroid on a nonempty set E. The number of
transitive 2-colorings of M is equal to 2c times the number of acyclic reorientations of M , where c
is the number of connected components of M .

Proof. There is an obvious bijection between subsets of E and 2-colorings of E with colors from
{0, 1}: for any A ⊆ E, the characteristic function χA : E → {0, 1}, with χA(e) = 1 ⇐⇒ e ∈ A, is
a 2-coloring of E. Similarly, there is a natural mapping from subsets A ⊆ E to reorientations −AM
of M , but it is not a bijection. For example, −EM = −∅M = M , since reversing the signs of all
the elements in every circuit of an oriented matroid yields the same oriented matroid. Similarly,

−AM =M if A ⊆ E is a connected component of M , since the support of each circuit is contained
in a unique connected component of M .

We claim that, for any A,B ⊆ E: −AM = −BM if and only if, for each connected component C
of M , C ∩A is either C ∩B or C ∩ (E \B). Indeed, −AM = −BM if and only if, for every circuit
X of M , −AX is either −BX or −B(−X). Denote Ā := E \A, B̄ := E \B, S1 := (A∩B)∪ (Ā∩ B̄)
and S2 := (A ∩ B̄) ∪ (Ā ∩ B). Thus S2 is the symmetric difference of A and B, and S1 = E \ S2.
Clearly −AX = −BX if and only if X ⊆ S1, and −AX = −B(−X) if and only if X ⊆ S2. Thus, by
the definition of connected components in an oriented matroid, −AX = −B(±X) for all the circuits
X in M if and only if each connected component C of M is contained in either S1 or S2. Finally,
C ⊆ S1 is equivalent to C ∩A = C ∩B, whereas C ⊆ S2 is equivalent to C ∩A = C ∩ B̄.

Denoting by c the number of connected components of M , it follows that there is a 2c : 1 map
from subsets (or 2-colorings) of E to reoerientations of M .

Let us now consider acyclic reorientations. We claim that, for any A ⊆ E, the reorientation

−AM is acyclic if and only if the 2-coloring χA is transitive. Rephrased contrapositively, it suffices
to show that, for any circuit X in M , the circuit −AX in −AM is either positive or negative if
and only if χA(X

+) ∩ χA(X
−) = ∅. Note that X+ 6= ∅ and X− 6= ∅, since M is originally

acyclic. Indeed, the circuit −AX is positive if and only if X+ ⊆ E \ A while X− ⊆ A, and this is
equivalent to χA(X

+) = {0} and χA(X
−) = {1}. Similarly, the circuit −AX is negative if and only

if χA(X
+) = {1} and χA(X

−) = {0}.
We conclude that there is a 2c : 1 map from transitive 2-colorings of E to acyclic reoerientations

of M . This completes the proof. �

Remark 2.19. The factor 2c, which appears in the above result for abstract oriented matroids,
disappears (as we shall soon see) when the matroid is represented (say, over R), and in particular
when it corresponds to a directed graph. This is because multiplying by −1 all the vectors in a
connected component of a represented oriented matroid (or reversing the directions of all the edges
in a connected component of a directed graph) yields a different set of vectors (and a different
graph), but with the same oriented matroid.

For the next result we need a fundamental fact about linear inequalities, which is a consequence
of Farkas’ lemma. It is sometimes called Gordan’s lemma [9, §1.4].

Lemma 2.20. Let A be a matrix over R. Then exactly one of the following claims is true.

(a) There exists a (column) vector x such that xtA > 0.
(b) There exists a (column) vector y such that y ≥ 0, y 6= 0 and Ay = 0.

All vector-to-zero inequalities here (>,≥) are component-wise.

For acyclic oriented matroids represented over R the following holds.

Theorem 2.21. For any acyclic oriented matroid M represented over R, the number of transitive
2-colorings of M is equal to the number of chambers in the dual hyperplane arrangement.

Proof. Let M be an acyclic oriented matroid, represented by a finite (multi)set of vectors E ⊂ R
n.

Note that 0 6∈ E, since M is acyclic and therefore loopless. View the elements of Rn as column



12 R. M. ADIN, A. BERENSTEIN, J. GREENSTEIN, J.-R. LI, A. MARMOR, AND Y. ROICHMAN

vectors. Given a 2-coloring ε : E → {−1, 1}, define

Cε :=
⋂

e∈E

{x ∈ R
n : sign(xte) = ε(e)}.

This is a (possibly empty) open chamber in the dual hyperplane arrangement, and all chambers
are of this form. We first want to show that Cε is nonempty if and only if ε is transitive.

Let Mε be the reorientation of M corresponding to ε, as in the proof of Theorem 2.18. Let Aε

be the matrix with columns ε(e)e, for e ∈ E. Then, by definition,

Cε = {x ∈ R
n : xtAε > 0},

while a positive circuit in Mε corresponds to a vector y ≥ 0, y 6= 0 with inclusion-minimal support
such that Aεy = 0. Therefore, by Lemma 2.20, Cε 6= ∅ if and only if Mε has no positive circuit,
i.e., Mε is acyclic. By the proof of Theorem 2.18, this happens if and only if ε is transitive.

It follows that the map ϕ, from the set of all transitive 2-colorings of M to the set of all
(nonempty) open chambers in the dual hyperplane arrangement, defined by ϕ(ε) := Cε, is surjective.
It is also clearly injective, since ε can be recovered from Cε: for any e ∈ E, ε(e) is the sign of xte
for at least one, equivalently all, of the vectors x ∈ Cε. This completes the proof. �

Remark 2.22. Theorem 2.21 is related to a well-known theorem of Orlik and Terao [26]; see a
brief discussion in Section 5.4.

Corollary 2.23. For an acyclic oriented matroid M in an n-dimensional real vector space, the
number of transitive 2-colorings of M satisfies

|EM (2)| = (−1)nχA(M)(−1),

where χA(M) is the characteristic polynomial of the hyperplane arrangement dual to M .

Proof. Let A be an hyperplane arrangement in R
n. By Zaslavsky’s Theorem [36, Theorem 2.5],

the number of chambers in A is equal to (−1)nχA(−1). Theorem 2.21 completes the proof. �

Corollary 2.24. For any finite Coxeter group W , the number of transitive 2-colorings of the set
Φ+(W ) of positive roots is equal to |W |.

Proof. By Theorem 2.21, the number of transitive 2-colorings of Φ+(W ) is equal to the number of
chambers in the reflection arrangement associated to W , which, in turn, is equal to the number of
elements in W [7, p. 123]. �

Corollary 2.25. The number of transitive 2-colorings of an acyclic directed graph
−→
G is equal to

the number of acyclic reorientations of G.

Proof. Combine Theorem 2.18 with Remark 2.19. �

Using a well-known result of Stanley, this corollary may be reformulated as follows.

Corollary 2.26. For any acyclic directed graph
−→
G of order n, the number of transitive 2-colorings

of
−→
G is equal to (−1)nfG(−1), where fG(x) is the chromatic polynomial of the underlying undirected

graph G.

Proof. By [31, Corollary 1.3], the number of acyclic orientations of an undirected graph G is equal
to (−1)nfG(−1), where fG(x) is the chromatic polynomial of G. Combining this with Corollary 2.25
completes the proof. �

Remark 2.27. The number of transitive 2-colorings of an acyclic directed graph depends on the
underlying undirected graph, but not on the orientation. This is a unique phenomenon for k = 2
colors. For example, the number of maximal transitive colorings of an n-cycle with 0 < m < n
clockwise edges is m(n−m)(n− 1)!, thus depends on m.
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3. Enumeration of maximal partitions of complete graphs

3.1. Gallai partitions of the complete graph. Let Kn = (V,E) be the (undirected) complete
graph on n vertices. Thus V = [n] := {1, . . . , n} and E = {{i, j} : i, j ∈ V, i < j}.

It is well-known that the graphic matroid of any graph is representable over any field, and that
the rank of the graphic matroid of Kn is n − 1; the bases are exactly the spanning trees of Kn.
Theorem 2.3 thus implies the following result.

Corollary 3.1. For the complete graph Kn, the maximal number of colors in a Gallai coloring is

g(Kn) = n− 1.

Corollary 3.1 was proved in [12, Appendix]; see the discussion preceding [18, Theorem JL].

Definition 3.2. A Gallai coloring of Kn is called maximal if it uses the maximal possible number
of colors, namely n− 1.

Recall the notion of Gallai partition from Definition 1.13. In the special case of complete graphs,
this was introduced in [24]. Each Gallai coloring of Kn gives rise to a partition of the edge set E
into nonempty color sets.

Definition 3.3. A Gallai partition is maximal if it has the maximal possible number of blocks,
namely n− 1.

The main result of the current subsection is the following.

Theorem 3.4. The number of maximal Gallai partitions of Kn (n ≥ 2) is equal to (2n − 3)!!.

Theorem 3.4 will be given two distinct proofs, one using hamiltonian paths and the other using
complete bipartite subgraphs. Both proofs consist of a sequence of lemmas, some of which are of
independent interest.

Remark 3.5. Gouge et al. [18] count Gallai colorings of Kn up to renaming the colors as well as
the vertices. Gallai partitions, as defined above, correspond to renaming only the colors. Renaming
the vertices may result in a different partition.

Definition 3.6. Let ε be a maximal Gallai coloring of Kn. An ε-rainbow hamiltonian path is a
(directed) path of length n − 1, visiting each vertex exactly once, whose edges are assigned n − 1
different colors by ε.

Lemma 3.7. Every maximal Gallai coloring of Kn (n ≥ 2) has an ε-rainbow hamiltonian path.

Proof. Assume that the longest ε-rainbow path P ⊆ E is of length k − 1, namely visits k vertices.
If k = n, then P is an ε-rainbow hamiltonian path, and we are done. Assume that k < n.

Using the assumption that the coloring ε is maximal, extend P to an ε-rainbow set T ⊆ E of size
n− 1 by adding edges of the missing colors. The set T contains no cycle, since it is ε-rainbow and
ε is Gallai. Having size n − 1, it is therefore a spanning tree of Kn; in particular, it is connected.
Therefore there exists an edge e ∈ T \ P which has precisely one vertex in common with the set
of vertices of P . Denote the other vertex of e by v, and the vertices of P , in order, by v1, . . . , vk,
starting from one of the endpoints of the path P .

The edge e connects v with one of v1, . . . , vk and has a new color, namely a color different from
those of the edges of P . Let 1 ≤ i ≤ k be the smallest integer such that the edge {v, vi} has a new
color. If i = 1 then v, v1, . . . , vk is the sequence of vertices of an ε-rainbow path, contradicting the
maximality of k. Otherwise i ≥ 2, and the color of {v, vi−1} is not new. Looking at the triangle
{v, vi−1}, {vi−1, vi}, {v, vi}, the color of {v, vi}, which is new, is necessarily different from the colors
of {v, vi−1} and of {vi−1, vi}. Since ε is Gallai, the colors of {v, vi−1} and of {vi−1, vi} must be
equal, and therefore v1, . . . , vi−1, v, vi, . . . , vk is the sequence of vertices of an ε-rainbow path, again
contradicting the maximality of k. This completes the proof. �
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Lemma 3.8. Let ε be a maximal Gallai coloring of Kn, and let v1, . . . , vn be the sequence of vertices
of an ε-rainbow hamiltonian path. Denote ci := ε({vi, vi+1}) (1 ≤ i ≤ n− 1). Then:

(a) For any 1 ≤ i < j ≤ n,
ε({vi, vj}) ∈ {ci, . . . , cj−1}.

(b) If ε({v1, vn}) = ck then, for any 1 ≤ i ≤ k and k + 1 ≤ j ≤ n,

ε({vi, vj}) = ck.

Proof. (a) Fix 1 ≤ i < j ≤ n. If j − i = 1 then, by definition, ε({vi, vi+1}) = ci. Assume that
j − i ≥ 2. Since ε is Gallai, it assigns the same color to at least two of the edges in the cycle
{vi, vi+1}, . . ., {vj−1, vj}, {vj , vi}. The edges {vi, vi+1}, . . . , {vj−1, vj} are assigned distinct colors,
since they belong to an ε-rainbow path. Therefore {vj , vi} has the same color as one of the other
edges, namely ε({vi, vj}) ∈ {ci, . . . , cj−1}.

(b) Fix 1 ≤ i ≤ k and k + 1 ≤ j ≤ n, and denote c := ε({vi, vj}). Consider the cycle {v1, v2},
. . ., {vi−1, vi}, {vi, vj}, {vj , vj+1}, . . ., {vn−1, vn}, {vn, v1}. The colors assigned to the edges are,
respectively, c1, . . . , ci−1, c, cj , . . . , cn−1, ck. By (a) above, c ∈ {ci, . . . , cj−1}. Since ε is Gallai, at
least two of the edges in the cycle are assigned the same color. It follows that ck is equal to one
of the other colors, but since i ≤ k ≤ j − 1 the only option is ck = c. Thus ε({vi, vj}) = ck, as
claimed. �

Definition 3.9. Let ε : E → C be a coloring of the edge set E of Kn. A color c ∈ C is called
singleton if there is a unique edge with that color.

Lemma 3.10. Every maximal Gallai coloring of Kn (n ≥ 2) has a singleton color.

Proof. By induction on n. The claim clearly holds for n = 2. Let n > 2, and assume that the claim
holds for Km for all 2 ≤ m < n. Let ε be a maximal Gallai coloring of Kn, and let v1, . . . , vn be the
sequence of vertices of an ε-rainbow hamiltonian path, which exists according to Lemma 3.7. Denote
ci := ε({vi, vi+1}) (1 ≤ i ≤ n− 1) and assume, following Lemma 3.8(a), that v({v1, vn}) = ck.

By Lemma 3.8(b), ε({vi, vj}) = ck for any 1 ≤ i ≤ k and k + 1 ≤ j ≤ n. By Lemma 3.8(a),
ε({vi, vj}) ∈ {c1, . . . , ck−1} for any 1 ≤ i < j ≤ k, and ε({vi, vj}) ∈ {ck+1, . . . , cn−1} for any
k + 1 ≤ i < j ≤ n. Since n > 2, at least one of k and n − k is larger than 1. If k ≥ 2 then the
restriction of ε to the complete graph Kk on the vertices v1, . . . , vk is a Gallai coloring that uses
exactly the colors c1, . . . , ck−1, and is therefore maximal. Since k ≤ n− 1, the induction hypothesis
implies that this restriction has a singleton color. This color is not used outside Kk, and is therefore
a singleton color of ε, as required. Similarly, if n− k ≥ 2 then the restriction of ε to the complete
graph Kn−k on the vertices vk+1, . . . , vn is maximal Gallai, and has a singleton color which is also
singleton for ε itself. This completes the proof. �

Lemma 3.8(b) also implies the following well-known result, which will be used in the proof of
Lemma 3.15 and in a bijective proof of Lemma 4.12.

Lemma 3.11. [18, Corollary 2.5] Any maximal Gallai coloring of Kn (n ≥ 2) has a unique color c
such that the edges colored by c span a complete bipartite graph on n vertices. This is the only color
that “touches” every vertex of Kn. On each of the two parts, the induced coloring is also maximal
Gallai.

Surprisingly, the number of ε-rainbow hamiltonian paths is independent of ε.

Lemma 3.12. Every maximal Gallai coloring of Kn (n ≥ 2) has exactly 2n−1 (directed) rainbow
hamiltonian paths.

Proof. By induction on n. The claim clearly holds for n = 2: K2 has two directed hamiltonian
paths. Let n > 2, and assume that the claim holds for n − 1. Let ε be a maximal Gallai coloring
of Kn, let v1, . . . , vn be the sequence of vertices of an ε-rainbow hamiltonian path, and denote
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ci := ε({vi, vi+1}) (1 ≤ i ≤ n − 1). Assume that ck is a singleton color of ε; its existence is
guaranteed by Lemma 3.10.

Let 1 ≤ i ≤ k−1, and consider the triangle {vi, vk}, {vk, vk+1}, {vi, vk+1}. The color ε({vk, vk+1})
= ck is singleton, and is therefore distinct from ε({vi, vk}) and ε({vi, vk+1}). The coloring ε is Gallai,
and therefore ε({vi, vk}) = ε({vi, vk+1}). We can similarly show that ε({vk, vj}) = ε({vk+1, vj}) for
any k + 2 ≤ j ≤ n. If we contract the edge {vk, vk+1} to a single vertex, the coloring ε therefore
induces a well-defined coloring ε′ of the resulting graph Kn−1. This is clearly a maximal Gallai
coloring, which does not use the color ck. By the induction hypothesis, Kn−1 has 2n−2 (directed)
ε′-rainbow hamiltonian paths.

Every ε-rainbow hamiltonian path in Kn must contain the edge {vk, vk+1}, which has a singleton
color; it therefore restricts to a ε′-rainbow hamiltonian path in Kn−1. Conversely, every ε

′-rainbow
hamiltonian path can be extended to an ε-rainbow hamiltonian path by blowing the vertex vk =
vk+1 to an edge, and this can be done in exactly two ways: the vertex vk = vk+1 cuts the path
in Kn−1 into two sub-paths, each having this vertex as an end-point, and there is a choice which
of them to connect (in Kn) to vk, while connecting the other one to vk+1. Note that at least one
of the two sub-paths contains more than one vertex, since n > 2. It follows that there are 2n−1

ε-rainbow hamiltonian paths in Kn, as claimed. �

We are now nearly at a position to give two proofs of Theorem 3.4. In fact, each proof will
require only one additional lemma.

Lemma 3.13. The number of maximal Gallai partitions of Kn (n ≥ 2) for which a given hamil-

tonian path is rainbow, is the Catalan number Cn−1 =
1
n

(
2n−2
n−1

)
.

Proof. Let v1, . . . , vn be the sequence of vertices of some hamiltonian path in Kn, and fix a sequence
of distinct colors c1, . . . , cn−1. Maximal Gallai partitions for which this specific path is rainbow
correspond bijectively to maximal Gallai colorings ε for which ε({vi, vi+1}) = ci (1 ≤ i ≤ n − 1).
Let an be the number of such colorings.

Let ε be a maximal Gallai coloring of Kn for which this hamiltonisn path is rainbow, and assume
that ε({v1, vn}) = ck, for some 1 ≤ k ≤ n − 1. By Lemma 3.8(b), ε({vi, vj}) = ck whenever
1 ≤ i ≤ k and k+1 ≤ j ≤ n. Also, by Lemma 3.8(a), the restriction of ε to the complete graph Kk

on the vertices v1, . . . , vk uses only the colors c1, . . . , ck−1, and is maximal Gallai with the obvious
rainbow hamiltonian path. Similarly for the restriction of ε to the complete graph Kn−k on the
vertices vk+1, . . . , vn, using the colors ck+1, . . . , cn−1. It follows that

an =
n−1∑

k=1

akan−k (n ≥ 2).

This recurrence, together with the initial value a1 = 1, show that an = Cn−1 for all n ≥ 2, as
claimed. �

Remark 3.14. A result closely related to Lemma 3.13 is proved in [18, Corollary 2.7].

First proof of Theorem 3.4. Let pn be the number of maximal Gallai partitions of Kn (n ≥ 2).
Consider the pairs (π, P ), where π is a maximal Gallai partition of Kn and P is a (directed) π-
rainbow hamiltonian path. By Lemma 3.12, the number of such pairs is 2n−1pn. On the other
hand, the total number of (directed) hamiltonian paths in Kn is n!. Therefore, by Lemma 3.13,

the number of such pairs is n! · Cn−1 =
(2n−2)!
(n−1)! . It follows that

pn =
(2n − 2)!

2n−1(n − 1)!
=

1 · 2 · · · (2n− 3) · (2n− 2)

2 · 4 · · · (2n − 2)
= (2n − 3)!!,

as claimed. �
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Lemma 3.15. For n ≥ 2, fix a complete subgraph Kn−1 of Kn. Then there are exactly 2n − 3
maximal Gallai partitions of Kn which extend any specified maximal Gallai partition of Kn−1.

Proof. The proof is by induction on n. The claim is obvious for n = 2. Let n > 2, and assume
that the claim holds for any 1 ≤ k ≤ n− 1. Fix a complete subgraph Kn−1 of Kn and a maximal
Gallai partition of Kn−1. Fixing colors for each of the n− 2 blocks of the partition, as well as one
additional color to be used outside Kn−1, defines a bijection between maximal Gallai partitions
and maximal Gallai colorings, of both Kn and Kn−1. For convenience we shall use, from now on,
the language of colorings.

Let ε be a maximal Gallai coloring of Kn−1. By Lemma 3.11, there is a unique color c such that
the edges colored by c in ε span a complete bipartite graph on n vertices; call c the base color of ε.

Let ε′ be a maximal Gallai coloring of Kn which extends ε. It has all the old colors of ε, plus
one additional new color. We claim that the base color of ε′ is either this new color, or the same as
the base color of ε. Indeed, assume that the base color c′ of ε′ is an old color which is not the base
color c of ε. By Lemma 3.11, since c′ 6= c, there is at least one vertex v of Kn−1 which the color
c′ doesn’t touch (in Kn−1). Also, since c

′ is an old color, there is at least one old edge e with this
color. The two endpoints of e are on distinct sides of the complete bipartite graph on n vertices
colored by c′; therefore one of them is not on the same side as v. The edge connecting this vertex
to v is therefore also colored c′, contradicting the choice of v. Therefore, indeed, c′ is either c, the
base color of Kn−1, or the new color.

If the base color c′ is the new color, then all the old vertices are on one side of the bipartite graph
that c′ defines, and the new vertex constitutes the other side. It follows that all the new edges are
colored c′. This indeed yields a (unique) maximal Gallai partition of Kn extending the old one.

On the other hand, if c′ = c then the new vertex of Kn joins one of the two (nonempty) sides of
the complete bipartite subgraph of the old Kn−1. Assume that the sizes of these sides are k and
n− k − 1 (1 ≤ k ≤ n− 2). If the new vertex joins the side of size k, then all the edges connecting
it to the other side are colored c. The (old) coloring of the complete subgraph Kk is maximal
Gallai, by Lemma 3.11, and so is the (new) coloring of Kk+1 (on this side plus the new vertex).
By the induction hypothesis, there are 2k − 1 ways to obtain such a new coloring of Kk+1. A
similar argument holds if the new vertex belongs to the other side of Kn−1, yielding 2(n−k−1)−1
extensions.

It is easy to see that the above extended colorings yield distinct maximal Gallai partitions. Their
number is 1 + (2k − 1) + (2(n − k − 1)− 1) = 2n− 3, as claimed. �

Second proof of Theorem 3.4. Since there is a unique (empty) maximal Gallai partition of K1, the
claim follows immediately from Lemma 3.15, by induction on n. �

3.2. Transitive partitions of the tournament. Let
−→
Kn = (V,E) be the transitive tournament

on n vertices. This is a directed graph, with set of vertices V = {v1, . . . , vn} and set of directed
edges E = {(vi, vj) : 1 ≤ i < j ≤ n}. This directed graph has no loops, and has a unique directed
edge between any two distinct vertices, pointing from the vertex with smaller index to the vertex
with a larger index.

Recall Theorem 2.9. The rank of the oriented graphic matroid of
−→
Kn is n − 1, with (signed)

bases corresponding to spanning trees of the underlying complete graph.

Corollary 3.16. For the transitive tournament
−→
Kn, the maximal number of colors in a transitive

coloring is

t(
−→
Kn) = n− 1.

The following lemma is the transitive ananlogue of [18, Proposition 1.1].

Lemma 3.17. For a coloring ε of an acyclic directed graph, whose underlying graph is chordal, the
following are equivalent:
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(a) ε is transitive.
(b) For every triangle with directed edges (u, v), (v,w) and (u,w),

ε(u,w) ∈ {ε(u, v), ε(v,w)}.

Proof. Assume that (a) holds, namely that ε is transitive. Thus each cycle contains two edges of
the same color but opposite orientations. In a triangle with directed edges (u, v), (v,w) and (u,w),
the edge (v,w) has orientation opposite to that of the other two. Therefore, by transitivity, the
color of (v,w) is equal to the color of (at least) one of the others. This is exactly (b).

In the other direction, assume that (b) holds. If ε is not transitive, there is a cycle with no
two edges of the same color but opposite orientations. Consider such a cycle c, of minimal length
ℓ. Because of (b) and the assumption that the directed graph is acyclic, necessarily ℓ ≥ 4. The
underlying undirected graph is assumed to be chordal; thus the cycle c has a chord e. Edges of c,
together with e, form two cycles, c1 and c2, each of length at least 3 but less than ℓ. By minimality
of ℓ, in each of the two cycles there are two edges of the same color and opposite orientations. By
the assumption on c, one of these edges must always be e. Let e1 (e2) be an edge in c1 (c2) with
the same color as e but opposite orientation. Then e1, e2 ∈ c have the same color and opposite
orientations, contradicting the choice of c. This proves that (a) holds. �

Lemma 3.18. Maximal transitive colorings of
−→
Kn correspond bijectively to the maximal Gallai

colorings of Kn for which the path {v1, v2}, . . . , {vn−1, vn} is rainbow.

Proof. Clearly, every transitive coloring of a directed graph yields a Gallai coloring of the underlying

undirected graph. Also, in a maximal transitive coloring ε of
−→
Kn, the path (v1, v2), . . . , (vn−1, vn)

is rainbow. Indeed, in the cycle (vi, vi+1), . . . , (vj−1, vj), (vi, vj), the edge (vi, vj) has an opposite
orientation to all other edges. Hence, by transitivity,

ε(vi, vj) ∈ {ε(vi, vi+1), . . . , ε(vj−1, vj)} ⊆ {ε(v1, v2), . . . , ε(vn−1, vn)} (∀ i < j).

Maximality means that the number of colors used is n−1, hence |{ε(v1, v2), . . . , ε(vn−1, vn)}| = n−1.
Thus the path (v1, v2), . . . , (vn−1, vn) is rainbow.

To complete the proof we need to show that every Gallai coloring ε̃ of Kn for which the path

{v1, v2},. . . ,{vn−1, vn} is rainbow yields a transitive coloring of
−→
Kn. By Lemma 3.8(a),

ε̃(vi, vj) ∈ {ε̃(vi, vi+1), . . . , ε̃(vj−1, vj)} (∀ i < j).

Hence for every i < j < k, ε̃(vi, vj) 6= ε̃(vj, vk). It follows that

ε̃(vi, vk) ∈ {ε̃(vi, vj), ε̃(vj , vk)} (∀ i < j < k).

By Lemma 3.17, this condition implies transitivity. �

The following theorem is the directed analogue of Lemma 3.13.

Theorem 3.19. The number of maximal transitive partitions of
−→
Kn (n ≥ 2) is equal to the Catalan

number Cn−1 :=
1
n

(2n−2
n−1

)
.

Proof. Combine Lemma 3.13 with Lemma 3.18. �

Corollary 3.20. Let n ≥ 2.

(a) For every maximal transitive coloring of
−→
Kn there exists a unique color c, for which the

edges colored by c span a complete bipartite graph on n vertices.
(b) There exists 1 ≤ k < n, such that the sides of this bipartite graph are {vi : 1 ≤ i ≤ k} and

{vi : k < i ≤ n}.

Proof. (a) Combine Lemma 3.11 with Lemma 3.18.
(b) Combine the proof of Lemma 3.13 with Lemma 3.18. �
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We further prove the following refinement.

Denote by Tn,n−1 the set of all maximal transitive partitions of the transitive tournament
−→
Kn.

Definition 3.21. (a) Consider a maximal transitive partition of
−→
Kn p ∈ Tn,n−1. A directed

edge (vi, vj), i < j, is a minimal edge in p if every edge (va, vb), a < b, in the block of
(vi, vj) satisfies i ≤ a.

(b) Let minimal(p) be the number of minimal edges in p.

Carlitz and Riordan [10] defined a q-Catalan number Cn(q) using the recursion

Cn+1(q) :=

n∑

k=0

q(k+1)(n−k)Ck(q)Cn−k(q) (n ≥ 0)

with C0(q) := 1.

Proposition 3.22. For every n > 1
∑

p∈Tn,n−1

qminimal(p) = q(
n

2)Cn−1(q
−1).

Proof. Denote the number of non-minimal edges in a transitive partition p by non-minimal(p). It
suffices to prove that for every n ≥ 2

∑

p∈Tn,n−1

qnon−minimal(p) = Cn−1(q).

The proof is by induction on n. For n = 2 there are one edge in
−→
K2 and statement clearly holds.

Assume that the statement is correct for all k ≤ n. Consider a transitive partition of
−→
Kn+1.

By Corollary 3.20, there exists a unique 1 ≤ t < n, such that the edges in the block containing
(v1, vn+1) are {(vi, vj) : i ≤ t < j}. Thus there are (t − 1)(n + 1 − t) non-minimal edges in this

block. All other blocks are either in the tournament
−→
K t spanned by the first t vertices, or in the

tournament
−→
Kn+1−t spanned by the last n+ 1− t vertices. By the induction hypothesis,

∑

p∈Tn+1,n

qnon−minimal(p) =
n∑

t=1

q(t−1)(n+1−t)Ct−1(q)Cn−t(q).

Letting k := n− t the RHS is equal to

n−1∑

k=0

q(n−1−k)(k+1)Cn−1−k(q)Ck(q) = Cn(q).

�

4. Schur-positivity

Recall from Section 1.2 the definition of a descent set map on transitive and Gallai partitions
and the resulting quasisymmetric generating functions Q(Tn,k) and Q(Gn,k). In this section we
prove Theorems 1.23, 1.24 and 1.25. In Subsection 4.1, it is shown that for every positive integers
n and k, both quasisymmetric functions Q(Tn,k) and Q(Gn,k) are symmetric and Schur-positive.
In Subsection 4.2, the symmetric group characters corresponding to Q(Tn,n−1) and Q(Gn,n−1) are
explicitely described. A bijection which relates maximal Gallai partitions to perfect matchings is
described in Subsection 4.3. In Subsection 4.4, it is shown that the distribution of the descent

set on transitive colorings of the tournament
−→
Kn is equal to its distribution on indecomposable

321-avoiding permutations in the symmetric group Sn.
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4.1. Proof of Theorem 1.23.

Definition 4.1. A subset J ⊆ [n − 1] is sparse if it does not contain any consecutive pair of
elements.

Observation 4.2. For every transitive (or Gallai) partition p of the complete directed (or undi-
rected) graph, Des(p) is sparse.

Proof. If Des(p) is not sparse then there exists an i such that i, i + 1 ∈ Des(p). By the definition
of the descent set, it follows that the edges (i, i+ 1) and (i+ 1, i+ 2) form singleton blocks. Thus
(i, i + 1), (i, i + 2) and (i, i + 2) belong to three different blocks, and therefore form a rainbow
triangle. This contradicts the assumption of p being a transitive (or Gallai) partition. �

Denote g(n, k) := |Gn,k| and t(n, k) := |Tn,k|.

Lemma 4.3. For every n > k ≥ 1 and a sparse subset ∅ 6= J ⊆ [n− 1]

|{p ∈ Gn,k : J ⊆ Des(p)}| = g(n − |J |, k − |J |)

and
|{p ∈ Tn,k : J ⊆ Des(p)}| = t(n− |J |, k − |J |).

Proof. We prove the lemma for Gallai partitions. The proof for transitive partitions is similar.
Let p be a Gallai partition. For every i ∈ Des(p), (i, i+1) is a singleton block. Since p is a Gallai

partition, it contains no rainbow triangle. Hence, for every j 6= i, i+1 the edges (i, j) and (i+1, j)
belong to the same block. It follows that the set of Gallai k-partitions of Kn with a descent at i
is in bijection with the set of Gallai (k − 1)-partitions of Kn/(i, i+ 1) (edge contraction), which is
isomorphic to Kn−1. This proves the lemma for |J | = 1. Proceed by induction on the size of J . �

The following is a weak version of a new criterion of Marmor for Schur-positivity.

Lemma 4.4. [25, Theorem 1.8] Let A be a set equipped with a descent set map, and assume that
for every a ∈ A, Des(a) is sparse. If for every sparse J ⊆ [n − 1], the cardinality of the set
{a ∈ A : J ⊆ Des(a)} depends only on the size of J , then Q(A) is symmetric and Schur-positive.

Proof of Theorem 1.23. Combine Lemma 4.4 with Lemma 4.3. �

4.2. Proofs of Theorems 1.24 and 1.25. We begin with some necessary background. A partition
of a positive integer n is a weakly decreasing sequence λ = (λ1, . . . , λt) of positive integers whose
sum is n. We denote λ ⊢ n. For a partition λ ⊢ n let SYT(λ) be the set of standard Young tableaux
of shape λ. We use the English convention, according to which row indices increase from top to
bottom. See [34, p. 312] for definition and examples.

Recall the descent set of a standard Young tableau T of size n

Des(T ) := {i ∈ [n− 1] : i+ 1 appears in a lower row than i}.

Let sλ be the Schur function indexed by the partition λ. The following key theorem is due to
Gessel.

Theorem 4.5. [34, Theorem 7.19.7] For every integer parition λ ⊢ n,

Q(SYT(λ)) = sλ.

There is a dictionary relating symmetric functions to class functions on the symmetric group.
The irreducible characters of Sn are indexed by partitions λ ⊢ n and denoted χλ. The Frobenius
characteristic map ch from class functions on Sn to symmetric functions is defined by ch(χλ) = sλ,
and extended by linearity. Theorem 4.5 may then be restated as follows:

ch(χλ) =
∑

T∈SY T (λ)

Fn,Des(T ).
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A combinatorial rule for the restriction of irreducible Sn-characters was given by Young [23, The-
orem 9.2]:

Theorem 4.6. (The Branching Rule) For λ ⊢ n

χλ ↓Sn

Sn−1
=

∑

µ⊢n−1
|λ/µ|=1

χµ.

Viewing tableaux of shape µ as tableaux of shape λ with the entry n “forgotten”, the Branching
Rule may be restated as

ch(χλ ↓Sn

Sn−1
) =

∑

T∈SY T (λ)

Fn−1,Des(T )∩[n−2].

Iteration immediately gives the following.

Corollary 4.7. For every λ ⊢ n and m ≤ n

ch(χλ ↓Sn

Sm
) =

∑

T∈SYT(λ)

Fm,Des(T )∩[m−1].

The following lemma is folklore.

Lemma 4.8. Let J ⊆ [2n − 3] be a subset of size m. Then

|{T ∈ SYT((n− 1, n − 1)) : J ⊆ Des(T )}| = Cn−m−1

(the Catalan number) if J is sparse, and is zero otherwise.

Proof. First, the descent set of a standard Young table of two row shape has no consecutive entries.
Thus

|{T ∈ SYT((n− 1, n − 1)) : J ⊆ Des(T )}| = 0

if J is not sparse.
To prove the statement for sparse subsets, recall that a Dyck path of length 2n is a series of steps

from (0, 0) to (2n, 0), starting at the origin t0 := (0, 0), where the i-th step is either ti := (1, 1)+ti−1

(upper step) or ti := (1,−1) + ti−1 (lower step), provided that ti is not below the x-axis. Denote
by D2n the set of Dyck paths of length 2n, and by

Peak(d) := {i : ti is an upper step and ti+1 is a lower step}

the set of peaks of d ∈ D2n.
Recall the bijection from SYT(n − 1, n − 1) to Dyck path from (0, 0) to (2n − 2, 0), determined

as follows: the i-th step is upper if i is in the first row of T and lower if i is in the second row.
Let J ⊆ [2n − 3] be a subset of order m. Assume that J is a subset the peak set of a given Dyck
path. Deleting the j-th and j+1-st steps for every j ∈ J yields a Dyck path of length 2n− 2− 2m,
while re-adding these steps recovers the original Dyck path. It follows that the set of Dyck paths
of length 2n− 2 with peak set containing J is in bijection with Dyck paths of length 2n− 2− 2m,
whose number is Cn−m−1. We conclude that

|{T ∈ SYT(n− 1, n− 1) : J ⊆ Des(T )}| = |{d ∈ D2n−2 : J ⊆ Peak(d)}| = |D2n−2−2m| = Cn−m−1.

�

Lemma 4.9. Let J ⊆ [n− 1] be a subset of size m. Then

|{p ∈ Tn,n−1 : J ⊆ Des(p)}| = Cn−m−1

if J is sparse, and is zero otherwise.
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Proof. Combining Lemma 4.3 with Theorem 3.19 we obtain that if J is sparse then

|{p ∈ Tn,n−1 : J ⊆ Des(p)}| = tn−m,n−m−1 = Cn−m−1.

If J is not sparse then, by Observation 4.2, there are no transitive partitions of
−→
Kn with descent

set J , completing the proof. �

Proof of Theorem 1.24. Combining Lemma 4.9 with Lemma 4.8 one obtains

|{p ∈ Tn,n−1 : J ⊆ Des(p)}| = |{T ∈ SYT(n− 1, n − 1) : J ⊆ Des(T )}| (∀ J ⊆ [n− 1]).

Hence ∑

p∈Tn,n−1

xDes(p) =
∑

T∈SYT(n−1,n−1)

xDes(T )∩[n−1],

where xJ :=
∏

i∈J xi. Equivalently

Q(Tn,n−1) =
∑

p∈Tn,n−1

FDes(p) =
∑

T∈SYT(n−1,n−1)

FDes(T )∩[n−1].

By Theorem 4.5 together with Corollary 4.7, the RHS is equal to ch(χn−1,n−1 ↓
S2n−2

Sn
), completing

the proof. �

A similar proof implies the undirected analogue.

Lemma 4.10. Let J ⊆ [n− 1] be a subset of size k. Then

|{p ∈ Gn,n−1 : J ⊆ Des(p)}| = (2n − 2k − 3)!!

if J is sparse, and is zero otherwise.

Proof. The proof is the same as the proof of Lemma 4.9, with Theorem 3.19 replaced by Theo-
rem 3.4. �

Denote by M2n the set of perfect matchings of 2n points on a line, labeled by 1, . . . , 2n. For
m ∈M2n define the Short match set

Short(m) := {i : (i, i+ 1) ∈ m}.

Observation 4.11. For every subset J ⊆ [2n − 1] of size k,

|{m ∈M2n : J ⊆ Short(m)}| = (2n− 2k − 1)!!

if J is sparse, and is zero otherwise.

We deduce the following.

Lemma 4.12. For every n ≥ 2

Q(Gn,n−1) =
∑

p∈Gn,n−1

Fn,Des(p) =
∑

m∈M2n−2

Fn,Short(m)∩[n−1].

Proof. Comparing Observation 4.11 with Lemma 4.10, one deduces that the descent set distribution
on Gn,n−1 is equal to the distribution of short matches in [n − 1] on perfect matching in M2n−2,
implying the claim of the lemma. �

The following theorem is due to Marmor.

Theorem 4.13. [25, Theorem 1.6] The set M2n is symmetric and Schur-positive with respect to
Short. Furthermore, its Schur expansion is given by the following formula:

∑

m∈M2n

F2n,Short(f) =
n∑

k=0

|{m ∈M2n−2k : Short(m) = ∅}|s2n−k,k.
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Proof of Theorem 1.25. Combining Lemma 4.12 with Theorem 4.13, Theorem 4.5 and Corollary 4.7,
we obtain

ch(Q(Gn,n−1)) = ch


 ∑

m∈M2n−2

Fn,Short(f)∩[n−1]




=

n−1∑

k=0

|{m ∈M2n−2−2k : Short(m) = ∅}|χ2n−2−k,k ↓
S2n−2

Sn
.

�

4.3. A bijection from maximal Gallai partitions to perfect matchings.

A bijective proof of Lemma 4.12. We describe a bijection

ϕ : Gn,n−1 →M2n−2

from the set Gn,n−1 of maximal Gallai partitions of Kn to the set M2n−2 of perfect matchings of
2n− 2 points labeled by 1, . . . , 2n − 2, under which

Des(p) = Short(ϕ(p)) ∩ [n− 1] (∀ p ∈ Gn,n−1).

A binary total partition tree of [n] is a rooted complete binary tree with n leaves whose vertices
are labeled by subsets of [n], as follows: the leaves are labeled by all distinct singletons, and every
internal vertex (father) is labeled by the disjoint union of the sets labeling its two sons. These trees
are studied in [34, §5.2]. Denote the set of binary total partition trees of [n] by BTPTn.

Define a bijection
ψ : Gn,n−1 → BTPTn

from maximal Gallai partitions to binary total partition trees of [n], as follows. By Lemma 3.11,
translated from the language of Gallai colorings to the language of Gallai partitions, in any maximal
Gallai partition of Kn (n ≥ 2) there is a unique block such that the edges in the block span a
complete bipartite graph on n vertices, and the induced partition on the edges in each side of this
bipartite graph is also maximal Gallai. Label the root of the tree by the set [n]. Label the two sons
of the root by the two sides of the bipartition of [n] corresponding to the bipartite graph. Continue
labeling the sons of any labeled father, by induction; see Figures 3 and 4.

The map ψ is a bijection, since the Gallai partition p can be recovered from the labeling of the
tree ψ(p), as follows. For every edge e = (vi, vj) in Kn there exists a unique pair of brothers (two
sons with common father), such that i belong to one of the brothers and j to the other. This pair
is called the separating pair of e. Two edges belong to the same block if and only if they have the
same separating pair of brothers.

A bijection
φ : BTPTn →M2n−2

from binary total partition trees of [n] to perfect matchings of 2n − 2 points is described in [34,
Example 5.2.6]: Let T ∈ BTPTn. First inductively relabel the inner vertices (that is, vertices which
are not leaves) excluding the root as follows. If labels 1, . . . ,m have been used then label by m+1
the vertex v satisfying the following condition: among all unlabeled vertices with both sons labeled
the vertex v has a son with minimal labeling. We get a complete binary tree T̂ whose vertices
(excluding the root) are labeled by {1, . . . , 2n − 2} . The matched pairs in the perfect matching

φ(T ) are the pairs of brothers in T̂ . For an example see Figure 5.
Finally, let

ϕ := φ ◦ ψ.

The map ϕ is a bijection, since both ψ and φ are. Also, the pair (i, i + 1) is a (short) match in

ϕ(p) if and only if i and i+ 1 are brothers in φ̂(p). For 1 ≤ i < n this happens if and only if i and
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i+1 are leaves and brothers in φ(p). Then the father of the leaves labeled by i and i+1 is labeled
by {i, i + 1} in φ(p). This is equivalent to the edge (i, i + 1) being a singleton block in p, namely,
i ∈ Des(p). �

Example 4.14. See Figures 3, 4 and 5.
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Figure 3. A maximal Gallai coloring and its bipartitions
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Figure 4. The corresponding binary partition tree:
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Figure 5. The relabeld tree.
The resulting perfect matching is (1, 2), (4, 5), (3, 6).

4.4. Indecomposable 321-avoiding permutations. A permutation π in the symmetric group
Sn is indecomposable if there is no 1 ≤ r < n, for which π(i) < π(j) for all i ≤ r < j.

Example 4.15. The permutation π = [31254] ∈ S5 is decomposable, since for r = 3, π(i) < π(j)
for every i ≤ 3 < j. This may be viewed as a non-trivial principle block decomposition of the
corresponding permutation matrix. The permutation σ = [43152] is indecompsable; indeed, there is
no non-trivial principle block decomposition of its corresponding permutation matrix.

π =




0 1 0 0 0
0 0 1 0 0
1 0 0 0 0
0 0 0 0 1
0 0 0 1 0




, σ =




0 0 1 0 0
0 0 0 0 1
0 1 0 0 0
1 0 0 0 0
0 0 0 1 0




Denote byS∗
n(321) the set of indecomposable permutations inSn with no decreasing subsequence

of length 3. Recall the descent set of a permutation π in the symmetric group Sn,

Des(π) := {i : π(i) > π(i+ 1)}.
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Theorem 4.16. For every n ≥ 2,
∑

p∈Tn,n−1

xDes(p) =
∑

π∈S∗

n(321)

xDes(π),

where xJ :=
∏
j∈J

xj. Equivalently,

Q(Tn,n−1) = Q(S∗
n(321)).

Proof. By [1, Theorem 1.2],

Q(S∗
n(321)) = ch

(
χ(n−1,n−1) ↓

S2n−2

Sn

)
.

Comparing this result with Theorem 1.24 gives

Q(Tn,n−1) = ch
(
χ(n−1,n−1) ↓

S2n−2

Sn

)
= Q(S∗

n(321)).

�

5. Final remarks and open problems

5.1. Maximal partitions of Coxeter root systems. Gallai and transitive colorings of abstract
and vector matroids were discussed in Section 2. Of special interest are the sets of positive roots
of Coxeter systems.

Problem 5.1. Given a finite Coxeter group W , find the number of maximal transitive and Gallai
partitions of the set Φ+(W ) of positive roots of W .

For the dihedral group of order 2n, W = I2(n), the following holds.

Corollary 5.2. For every integer n > 1:

(a) The number of maximal transitive partitions of Φ+(I2(n)) is n− 1.
(b) The number of maximal Gallai partitions of Φ+(I2(n)) is 2n−1 − 1.

Proof. (a) By Theorem 2.9, a maximal transitive coloring of Φ+(I2(n)) is a 2-coloring. By Corol-
lary 2.24, the number of transitive 2-colorings of Φ+(I2(n)) is |I2(n)| = 2n. The number of transitive
2-partitions is obtained by ignoring the two monochromatic colorings and forgetting the names of
the colors. Thus the number of maximal transitive partitions is equal to (2n − 2)/2 = n− 1.

(b) The proof is similar to the proof of (a), with Theorem 2.9 replaced by Theorem 2.3, and
Corollary 2.24 by Proposition 2.16. �

For the symmetric group Sn, namely the Coxeter group of type An−1, Theorems 1.24 and 1.25
may be reformulated as follows.

Theorem 5.3. For every integer n > 1:

(a) The number of maximal transitive partitions of Φ+(An−1) is the Catalan number Cn−1.
(b) The number of maximal Gallai partitions of Φ+(An−1) is (2n− 3)!!.

Proof. Note that transitive (Gallai) partitions of the set of positive roots of type An−1,

Φ+(An−1) = {ei − ej : 1 ≤ i < j ≤ n},

may be interpreted as transitive (Gallai) partitions of the directed (undirected) complete graph on
n vertices. Theorems 1.24 and 1.25 complete the proof. �

Regarding the Coxeter group of type Bn, we conjecture the following.
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Conjecture 5.4. The number of maximal transitive partitions of the set Φ+(Bn) of positive roots
of type Bn is

CB
n :=

n∑

k=0

3k + 1

n+ k + 1

(
2n − k

n− 2k

)
.

Conjecture 5.4 was checked for n ≤ 6.

Remark 5.5. The type B Catalan number CB
n−1 from Conjecture 5.4 is equal to the number of

ordered pairs (α, β) of compositions of n with the same number of parts, such that
r∑

i=1
αi 6=

r∑
i=1

βi

(∀ r < #parts); see [29, A081696] and [5, Theorem 1.1]. Note that the number of maximal transitive
partitions of type An−1 is equal to the (type A) Catalan number Cn−1, which counts pairs (α, β) of

compositions of n with the same number of parts, such that
r∑

i=1
αi ≥

r∑
i=1

βi (∀ r); see [28, 37].

5.2. Quasisymmetric functions. Let Pk(G) be the set of Gallai (respectively, transitive) k-
partitions of the edge set of a loopless undirected (respectively, acyclic directed) graph G.

Definition 5.6. The descent set of a Gallai (respectively, transitive) k-partition p of the edge set
of a loopless graph (respectively, an acyclic directed graph) G on the set of vertices {1, . . . , n} is

Des(p) := {i : the edge (i, i+ 1) forms a singleton block in p}.

An undirected (directed) graph G is k-Gallai (respectively, k-transitive) Schur-positive if the qua-
sisymmetric function

Q(Pk(G)) :=
∑

p∈Pk(G)

FDes(p)

is symmetric and Schur-positive.

By Theorem 1.23, for any positive integers n > k ≥ 1, the complete graph Kn is k-Gallai

Schur-positive and the transitive tournament
−→
Kn is k-transitive Schur-positive.

Another family of Schur-positive graphs consist of cycles. Let
−→
C n be the acyclic directed cycle

with vertex set [n] and edge set {(i, i + 1) : 1 ≤ i < n} ⊔ {(1, n)}, and let Cn be the underlying
undirected cycle.

Proposition 5.7. For any n ≥ 3 and k ≥ 1, the undirected cycle Cn is k-Gallai Schur-positive,

and the acyclic directed cycle
−→
C n is k-transitive Schur-positive.

Proof. We will prove the result for the directed cycle
−→
C n. The proof for Cn is similar.

First, notice that, for any fixed i ∈ [n−1], the set of transitive k-partitions of
−→
C n with i ∈ Des(p)

is in bijection with the set of transitive (k− 1)-partitions of
−→
C n/(i, i+1) (edge contraction), which

is isomorphic to
−→
C n−1. This implies that for every n ≥ 3 and J ⊆ [n− 1],

|{p ∈ Pk(
−→
C n) : J ⊆ Des(p)}| = |Pk−|J |(

−→
C n−|J |)|.

Note that in this case, the descent set of p is not necessarily sparse. Moreover, all subsets of
the same cardinality have the same fiber size. This implies that there exist nonnegative integers
{mn,k,j}

n−1
j=0 , such that

Q(Pk(
−→
C n)) :=

∑

p∈Pk(
−→
C n)

FDes(p) =

n−1∑

j=0

mn,k,j

∑

J⊆[n−1]
|J |=j

FJ =

n−1∑

j=0

mn,k,js(n−j,1j).

The last equality follows from Theorem 4.5. �

In view of Theorem 1.23 and Proposition 5.7, we pose the following problem.
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Problem 5.8. Characterize the k-Gallai Schur-positive loopless graphs and k-transitive Schur-
positive acyclic directed graphs.

A more general problem is the following.

Problem 5.9. Let M be a finite loopless matroid (or acyclic oriented matroid), and let Pk(M)
be the set of its Gallai (respectively, transitive) k-colorings. For which set-valued functions Des :

Pk(M) → 2[rank(M)] is the quasisymmetric function
∑

p∈Pk(M)

FDes(p)

symmetric and Schur-positive?

5.3. Algebras and Hilbert series. In this subsection we introduce two families of algebras,
intimately related to transitive and Gallai colorings.

Definition 5.10. Let k be a positive integer, and let M be an oriented matroid on a finite set E,
with set of signed circuits Γ(M). The transitive k-algebra of M , denoted TM,k, is the commutative
algebra over C generated by {xe : e ∈ E} subject to the relations

∏

e1∈X+,e2∈X−

(xe1 − xe2) = 0 (∀ (X+,X−) ∈ Γ(M))

and

xke = 1 (∀ e ∈ E).

Definition 5.11. Let k be a positive integer, and let M be a matroid on a finite set E, with set
of circuits Γ(M). Let < be an arbitrary linear order on E. The Gallai k-algebra of M , denoted
GM,k, is the commutative algebra over C generated by {xe : e ∈ E} subject to the relations:

∏

e1,e2∈X
e1<e2

(xe1 − xe2) = 0 (∀X ∈ Γ(M))

and
xke = 1 (∀ e ∈ E).

Theorem 5.12. Let k be a positive integer. Then, for any finite oriented matroid M ,

dim TM,k = #{transitive k-colorings of M}

and, for any finite matroid M ,

dimGM,k = #{Gallai k-colorings of M}.

Proof. Consider the set Vk of all families {xe}e∈E of points in C
E which satisfy the defining relations

of TM,k. Clearly, Vk is finite and Zariski closed in C
E . Therefore TM,k

∼= C[Vk], the algebra of
complex-valued functions on Vk. We claim that Vk is in bijection with the set of transitive k-
colorings of M . Indeed, let ζ be a fixed primitive complex k-th root of unity. For each transitive
k-coloring ε of M , define xe := ζε(e) (∀e ∈ E). It is easy to verify that {xe}e∈E ∈ Vk, and that
the mapping (from transitive k-colorings to elements of Vk) is a bijection. Since dim(TM,k) =
dimC[Vk] = |Vk|, we conclude that

dim(TM,k) = #{transitive k-colorings of M} (∀k ≥ 1).

The proof for the Gallai algebra GM,k is similar. �

Of special interest are the Gallai and transitive algebras of the set of positive roots of type An−1.

Definition 5.13. Let n and k be positive integers.
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(a) The transitive algebra Tn,k := T−→
Kn,k

is the commutative algebra over C generated by {xij :

1 ≤ i < j ≤ n} subject to the relations

(xim − xij)(xim − xjm) = 0 (∀ i < j < m),

xkij = 1 (∀ i < j).

(b) The Gallai algebra Gn,k := GKn,k is the commutative algebra over C generated by {xij : 1 ≤
i < j ≤ n} subject to the relations

(xij − xim)(xij − xjm)(xim − xjm) = 0 (∀ i < j < m),

xkij = 1 (∀ i < j).

Corollary 5.14. For all n > 1,

dim Tn,2 = n!, dimGn,2 = 2(
n

2),

dimTn,n−1 = Cn−1, and dimGn,n−1 = (2n − 3)!!.

Proof. All the claims follow from Theorem 5.12 combined with specific enumeration results: Corol-
lary 2.24 (see also Example 2.14), Corollary 2.17, Theorem 1.19, and Theorem 1.18. �

Recall now the Hilbert series of a finitely generated algebra B

Hilb(B, q) :=
∑

k≥0

(dim(B≤j)− dim(B≤j−1))q
j .

Here B≤j is the degree j filtered component of B, where the filtered degree of each generator is 1.

Conjecture 5.15. Let [k]j :=
∏j−1

i=0
qk−i−1
q−1 (k, j ≥ 1).

(a) For all n > 1 and k ≥ 1,

Hilb(Tn,k, q) =
n−1∑

j=1

Pn,j(q) · [k]j ,

where Pn,1(q), . . . , Pn,n−1(q) ∈ Z≥0[q]. The leading coefficient satisfies Pn,n−1(q) = q(
n−1

2 )Cn−1,
where Cn−1 is the Catalan number.

(b) For all n > 1 and k ≥ 1,

Hilb(Gn,k, q) =
n−1∑

j=1

Qn,j(q) · [k]j ,

where Qn,1(q), . . . , Qn,n−1(q) ∈ Z≥0[q].

Part (a) was checked for n ≤ 8. Part (b) was checked for n ≤ 5.

Remark 5.16. For all j, Pn,j(1) is equal to the number of transitive partitions with j blocks of the

edge set of
−→
Kn, and Qn,j(1) is equal to the number of Gallai partitions with j blocks of the edge set

of Kn.

A Stirling permutation of order n is a permutation of the multiset {1, 1, 2, 2, ..., n, n} such that,
for all m, all entries between two copies of m are larger than m. The second-order Eulerian number
E(n, j) counts the number of Stirling permutations of order n with j descents, see [17].

Conjecture 5.17. For any n > 1,

Qn,n−1(q) = q(
n

2)−1
n−1∑

j=0

E(n− 1, j)q−j .
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5.4. Transitive 2-colorings and Orlik-Terao algebras. The Orlik-Terao algebra of an hyper-
plane arrangement was introduced in [26]. For the sake of simplicity, we will only discuss the case
of the reflection hyperplane arrangement of type An−1.

The following definition is for a general simple directed graph.

Definition 5.18. Let G be a simple directed graph with vertex set V = [n] and edge set E ⊆ {(i, j) :
1 ≤ i < j ≤ n}. The Orlik-Terao algebra of G, denoted OT (G), is the commutative algebra over
C, generated by {xi,j = −xj,i : (i, j) ∈ E} subject to the following relations:

(a) For every directed cycle (e1, . . . , et) in G,

t∑

j=1

∏

k 6=j

xek = 0.

(b) For every e ∈ E,

x2e = 0.

Theorem 5.19. [26] The dimension of the Orlik-Terao algebra of a simple directed graph G is
equal to the number of chambers in its dual hyperplane arrangement.

Let OT (An−1) be the Orlik-Terao algebra of the hyperplane arrangement of type An−1, or

equivalently, of the transitive tournament
−→
Kn. Note that OT (An−1) is a graded algebra (since all

its defining relations are homogeneous), while Tn,2 is only a filtered algebra. For any algebra A with
a generating set S, let Gr(A) be the associated graded of A with respect to the filtration defined
by S (where the filtered degree of any element of S is 1).

Theorem 5.20. For every n > 1,

OT (An−1) ∼= Gr(Tn,2)

as graded algebras.

For the proof we need the following lemma.

Lemma 5.21. Let Bn ⊂ Tn,2 be the set of all square-free monomials in xij not containing products
of the form ximxjm for i < j < m. Then Bn is a basis of Tn,2, compatible with the natural filtration.

Proof. By Definition 5.13(a), the defining relations of Tn,2 are

(xim − xij)(xim − xjm) = 0 (i < j < m) and x2ij = 1 (i < j).

Rewrite these relations as

(5.1) ximxjm = xijxjm − xijxim + 1 (i < j < m) and x2ij = 1 (i < j).

The set of all monomials in the xij is, obviously, a spanning set for Tn,2. Define a weight function
on monomials in the xij by

w


∏

i,j

x
mij

ij


 :=

∑

i,j

mij · (i+ j).

Clearly, the weight of (each monomial in) the RHS of each of the relations in (5.1) is strictly smaller
than the weight of the LHS. This leads to a (non-deterministic) straightening algorithm (see, e.g.
[11, Section 2.2]), as follows: Replace an (arbitrary) occurence of the LHS in a monomial by the
RHS, recursively. Each step of this algorithm leads to a monomial, or a linear combination of
three monomials, of strictly smaller weights than the original. Thus the algorithm terminates after
a finite number of steps, yielding a linear combination of monomials in Bn. In addition to the
weight, the degree of each of these monomials is less than or equal to that of the original monomial.
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This shows that every filtered component of Tn,2 is spanned by a subset of Bn, namely, that Bn is
compatibile with the filtration.

It remains to show that Bn is linearly independent (and, in particular, that its apparently distinct
elements are indeed distinct) in Tn,2. Since it spans Tn,2, it suffices to show that |Bn| ≤ dimTn,2.
Recall that, by Corollary 5.14, dimTn,2 = n!. We shall prove, by induction on n, that |Bn| ≤ n!.
Indeed, |B2| = |{1, x12}| ≤ 2. For n > 2, each monomial in Bn is square-free and contains xin for
at most one index 1 ≤ i < n. Therefore Bn ⊆ {1, x1n, . . . , xn−1,n} · Bn−1, thus |Bn| ≤ n · |Bn−1|.
This completes the proof. �

Proof of Theorem 5.20. By Definition 5.18, the Orlik-Terao algebra OT (An−1) is generated by
{xij = −xji : 1 ≤ i < j ≤ n}, subject to the relations

(5.2) xijxjm + xjmxmi + xmixij = 0 (i < j < m) and x2ij = 0 (i < j).

Notice that, due to the relations xij = −xji, the relations (5.2) are equivalent to

(xim − xij)(xim − xjm) = 0 (i < j < m) and x2ij = 0 (i < j).

On the other hand, these relations, with x2ij = 0 replaced by x2ij = 1, are defining for Tn,2. Therefore,

the assignments xij 7→ Gr(xij) define a homomorphism of graded algebras

OT (An−1) → Gr(Tn,2).

To show that this an isomorphism, apply Lemma 5.21. Indeed, since Bn is a basis of Tn,2 compatible
with the natural filtration, it canonically descends to a basis Gr(Bn) of Gr(Tn,2). In particular, each
element of Gr(Bn) is a monomial in Gr(xij), hence Gr(Tn,2) is generated by Gr(xij) and the above
homomorphism is surjective. It is also injective because dimOT (An−1) = dimGr(Tn,2) = n!. �

Corollary 5.22. For every n > 1

Hilb(OT (An−1)) = Hilb(Tn,2) =

n−1∑

k=0

s(n, n− k) qk,

where s(n, k) are the Stirling numbers of the first kind.

Proof. The first equality follows from Theorem 5.20. By Lemma 5.21,

Hilb(Tn,2) =
∑

m∈Bn

qdeg(m) =

n−1∏

k=0

(1 + kq) =

n∑

k=1

s(n, n− k) qk,

as claimed. �

Remark 5.23. Theorem 5.20 may be generalized to any acyclic directed graph whose underlying
undirected graph is chordal.

Further connections to the Orlik-Terao algebra will be discussed elsewhere.
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