
Lecture 1 main exercises

Exercise 1.1. Using the state sum model, verify the rung squash relation.

Exercise 1.2. For any representations X,Y of GLn, the map X ⊗ Y → Y ⊗ X,
x⊗ y #→ y ⊗ x is a GLn-intertwiner. We typically draw this map as a crossing. For
each choice of X and Y below, describe the crossing as a linear combination of the
given webs.

(a) X = Y = L1. Webs:
1 1

,
1 1

1 1

2

(b) X = L1 and Y = L2. Webs:
1 2

2 1
1

,
1 2

2 1

3

(c) X = L2 and Y = L2. Webs:
2 2

,
2 2

2 2

1

1

3 1

2 2

2 2

4

Lecture 1 supplementary exercises

Let X and Y be representations of GLn. To verify that a linear map ϕ : X → Y

is a G-intertwiner, it can be easier to verify that it commutes with the action of
the lie algebra gln. More precisely, one need only verify that it intertwines with the
generating elements {xi, yi}

n−1
i=1 of gln. Let V be the standard representation Cn.

Then

xi(ei+1) = ei, xi(ej) = 0 otherwise, yi(ei) = ei+1, yi(ej) = 0 otherwise.

When an element x in a lie algebra acts on tensor products (or exterior products,
etcetera), it acts by the formula

x(v ⊗ w) = x(v)⊗ w + v ⊗ x(w).

So for example, acting on V ⊗ V ⊗ V we have

y1(e1 ⊗ e3 ⊗ e1) = e2 ⊗ e3 ⊗ e1 + e1 ⊗ e3 ⊗ e2.

Exercise 1.3. Verify directly that xi and yi commute with the multiplication and
comultiplication maps between exterior products of V .

Exercise 1.4. (This is not the easiest exercise, but it is very worthwhile!) Using
the state sum model, verify the square flop relation. You will need the Chu-
Vandermonde identity, which states that, for any given 0 ≤ k,m ≤ n we have

(

n

k

)

=
∑

a+b=k

(

m

a

)(

n−m

b

)

. (1.1)

Exercise 1.5. Find a combinatorial proof of the Chu-Vandermonde identity.

Exercise 1.6. Try to generalize Example 1.2, and find a formula for the crossing in
terms of webs, when X = Lk and Y = Lm for all k and m. Use the state sum model
and the inclusion/exclusion principle to justify your answer.

For the remaining exercises, we examine the q-deformation of Webs.
Recall that [n] = q−n+1+q−n+3+ . . .+qn−3+qn−1, a Laurent polynomial which

evaluates to n at q = 1. For example, [2] = q−1 + q and [3] = q−2 + 1 + q2.
Let B = {1, . . . , n}, so that n is the number of size 1 subsets of B. In other

words,

n =
∑

T⊂B,#T=1

|T |.

Above we used both #T and |T | to indicate the size of T . We continue to use #T

to indicate the size of T below. Meanwhile, the quantum number [n] is a weighted
count of size 1 subsets of B, and henceforth we use |T | for the weighted count of a
subset of B. Let us define |{i}| = q2i. Then

[n] = q−n−1
∑

T⊂B,#T=1

|T |.

The power of q at the beginning is just a renormalization factor, to make the Laurent
polynomial symmetric around q0.

Exercise 1.7. Define the weight of a subset of size k, and prove an analogous formula
which describes the quantum binomial number

[

n
k

]

as the weighted sum of subsets
of B of size k.

Exercise 1.8. Use a q-deformed state sum model to prove the bigon relation and the
rung squash relation in Websq.

Exercise 1.9. Formulate and prove the q-Chu-Vandermonde identity.

Exercise 1.10. (Don’t actually do this exercise!) Use the state sum model to prove
the square flop relation in Websq.

Lecture 2 main exercises

Exercise 2.1. This exercise computes the clasp e3ϖ1
associated to 3ϖ1. If desired,

you can assume the direct sum decomposition L1⊗L1⊗L1
∼= L3ϖ1

⊕L⊕2
ϖ1+ϖ2

⊕Lϖ3
.

You can also assume the following basis for End(L1 ⊗ L1 ⊗ L1):

1 1 1

,
1 1 1

1 1

2 ,
1 1

1 1

2

1

,

1 1 1

,
1 1 1

,
1 1 1

3 .

(a) Justify why e3ϖ1
is the unique morphism in End(L1 ⊗L1 ⊗L1) satisfying the

following two properties:

(i) The coefficient of the identity is 1 (with respect to the basis above), and

(ii) e3ϖ1
is killed by postcomposition with

1 1 1

2 and
1 1

2

1

.

(b) Compute e3ϖ1
using these two properties above.

(c) (Big Challenge - try supplementary exercises first) Alternatively, compute the
two orthogonal idempotents projecting to L⊕2

ϖ1+ϖ2
, and the idempotent pro-

jecting to Lϖ3
, and subtract them from the identity to compute e3ϖ1

. Hope-
fully your answers agree!

Lecture 2 supplementary exercises

Exercise 2.2. Compute the clasp e2ϖ2
. It will help to know the direct sum decom-

position L2 ⊗ L2
∼= L2ϖ2

⊕ Lϖ1+ϖ3
⊕ Lϖ4

.

Exercise 2.3. Formal nonsense. To what extent are clasps unique? Let ϕ and ψ be
two clasps for the same irreducible λ.

(a) Prove that XϕX = XψX for all X ∈ P (λ), i.e. the idempotents in a clasp are
unique.

(b) Prove that there exist scalars κX for allX ∈ P (λ) such that XϕY = κXκ
−1
Y XψY .

Exercise 2.4. Formal nonsense. Suppose that { XϕY } is a family of maps between
objects in P (λ) such that

Alph Each map in the family is orthogonal to Hom<λ.

Blph For all X ∈ P (λ), XϕX agrees with idX modulo Hom<λ.

Clph ϕ satisfies compatibility modulo Hom<λ.

Then ϕ is a clasp.

Exercise 2.5. Check that the computation of the clasp ϕϖ1+ϖ2
from class is correct.

You can use one of two methods:

(a) Check that ϕ satisfies the compatibility axiom. (This would be a ton of work.
Please don’t do this! Maybe check one or two compositions to get the flavor.)

(b) Use the criteria of Exericse 2.4. (Yes, do this!)

Exercise 2.6. If you’re new to weights for GLn, do this exercise! Let n = 3 and
L1 = V = Cn.

(a) Give a weight basis for V ⊗ V and for each basis vector give its weight.

(b) Give a weight basis of S2V , and for each basis vector give its weight.

(c) Argue using only the multiplicities of weights that L1 ⊗L1
∼= S2V ⊕L2. Why

is S2V = L2ϖ1
?

(d) Compute the multiplicities of L1 ⊗ L2. Why is L3 a direct summand? (Hint:
there’s a nonzero map.) What is the weight decomposition of the complemen-
tary direct summand? Indeed, this is Lϖ1+ϖ2

.

(e) Enumerate the weights of S2V ⊗V with multiplicity. Show using weights that
S2V ⊗ V ∼= Lϖ1+ϖ2

⊕ S3V .

(f) Verify the decomposition of L1 ⊗ L1 ⊗ L1 stated in Exercise 2.1.

(g) Now repeat the whole process with n = 4. The dimensions grow very large,
so one will need to figure out how to enumerate things more cleverly and
abstractly, without just writing down the weights one by one.

Lecture 3 main exercises

Exercise 3.1. Writing down elementary light ladders.

(a) Write down all the elementary light ladders for L2 when n = 4. (There are
only 6.)

(b) Write down all the elementary light ladders for L2 when n = 6. (Ok, there are
a lot more now, but after some examination, many of them start to look alike.
How many different graphs are there, ignoring labels? How do you know what
the graph will be from the weight?)

(c) Write down all the elementary light ladders for L3 when n = 6. (There is one
new graph which didn’t appear before.)

Exercise 3.2. Drawing branching graphs.

(a) Draw the branching graph for L1 ⊗ L1 ⊗ L1 ⊗ L1.

(b) Draw the branching graph for L2 ⊗ L3 ⊗ L2.

(c) Do some more of your choosing.

Lecture 3 supplementary exercises

Exercise 3.3. Consider the elementary light ladder for ν = (0110010) given in class, a
map from L(1,5,3) to L(3,6). Find a vector xν ∈ L3 such that v+⊗v+⊗xν #→ v+⊗v+
under the light ladder. Deduce that the light ladder descends to a nonzero map
Lϖ1+ϖ5

⊗ L3 → Lϖ3+ϖ6
.

Exercise 3.4. Consider any sequence 0 ≤ a1 < b1 < a2 < b2 < . . . < bd < ad+1 and
let k =

∑

ai−
∑

bi. Find a weight ν for Lk such that the corresponding light ladder
is a map from Lb ⊗ Lk → La.

Exercise 3.5. Verify that the maps given in Exercise 2.1 form a basis for End(L1 ⊗
L1 ⊗ L1).

Exercise 3.6. For each of the branching paths in Exercise 3.2, construct the light
leaves.

Exercise 3.7. Construct a basis for End(L2 ⊗ L3 ⊗ L2).

