Exercise 17.1. For any $M^{\bullet} \in \operatorname{Ch}_R$, let \overline{M}^{\bullet} denote the complex with $\overline{M}^k \cong M^k \oplus M^{k+1}$, and with differential given in matrix form by

$$\begin{pmatrix} d & 1 \\ 0 & -d \end{pmatrix}.$$

- (a) Show that this indeed squares to zero, and that \overline{M}^{\bullet} is quasi-isomorphic to the zero complex (hence becomes isomorphic to zero in DMod_R). To do this, it suffices to find a *chain homotopy* from the identity map to the zero map. That is, a degree $-1 \text{ map } h : \overline{M}^{\bullet} \to \overline{M}^{\bullet}$ such that $h \circ d + d \circ h = \text{id} 0 = \text{id}$. Hint: matrix form is convenient.
- (b) Show that there is a short exact sequence $0 \xrightarrow{i} M^{\bullet} \to \overline{M}^{\bullet} \to M[1]^{\bullet} \to 0$ in Ch_R (here it is conventient to define the differential on $M[1]^{\bullet}$ as minus the differential on M^{\bullet} , though the resulting complexes are isomorphic).

REMARK 17.4. Granting that $\operatorname{Ch}_R \to \operatorname{DMod}_R$ takes short exact sequences to exact triangles, this shows that for any $X \in \operatorname{DMod}_R$, the cofiber of $X \to 0$ is indeed represented by taking the shift of any complex representing X.

Exercise 17.2. If $X, Y \in \mathcal{C}$ are objects in a stable ∞ -category \mathcal{C} , there are homotopy equivalences of (base)pointed spaces:

 $\operatorname{Map}_{\mathscr{C}}(X[1], Y) \cong \Omega \operatorname{Map}_{\mathscr{C}}(X, Y) \cong \operatorname{Map}_{\mathscr{C}}(X, Y[-1]).$

Here $\Omega Z = \operatorname{Map}_{Spc}(S^1, Z) = \operatorname{fib}(\operatorname{pt} \to Z)$ is the *loop space* of a pointed space Z.

(a) Compare the equivalences listed above to the natural isomorphisms

$$\operatorname{Hom}_{R}(\operatorname{cok}(X \xrightarrow{f} M), Y) \cong \ker(\operatorname{Hom}_{R}(M, Y) \xrightarrow{\circ f} \operatorname{Hom}_{R}(X, Y))$$
$$\operatorname{Hom}_{R}(X, \ker(M \xrightarrow{f} Y)) \cong \ker(\operatorname{Hom}_{R}(X, M) \xrightarrow{f \circ} \operatorname{Hom}_{R}(X, Y))$$

of abelian groups, where $X, Y, M \in \text{Mod}_R$ and f is a module homomorphism (these follow from the universal properties of kernels/cokernels). What plays the role of M?

- (b) Show that $\operatorname{Hom}_{\mathscr{C}}(X,Y) := \pi_0 \operatorname{Map}_{\mathscr{C}}(X,Y)$ has the structure of an abelian group for any $X, Y \in \mathscr{C}$. Use the fact that for any pointed space Z and any $n \geq 2$, the set $\pi_n Z := \pi_0 \Omega^n Z$ has the structure of an abelian group (here Ω^n means "apply Ω *n* times").
- (c) Suppose \mathscr{C} has a t-structure. We defined $Y \in \mathscr{C}^{\geq 1}$ to mean $\operatorname{Hom}_{\mathscr{C}}(X,Y) = 0$ for all $X \in \mathscr{C}^{\leq 0}$ (again we really mean $\operatorname{Hom}_{\mathscr{C}}(X,Y) := \pi_0 \operatorname{Map}_{\mathscr{C}}(X,Y)$). Show that this is equivalent to the a priori stronger condition that $\operatorname{Map}_{\mathscr{C}}(X,Y)$ is contractible for all $X \in \mathscr{C}^{\leq 0}$ (which is equivalent to the condition that $\pi_n \operatorname{Map}_{\mathscr{C}}(X,Y) = 0$ for all $X \in \mathscr{C}^{\leq 0}$ and $n \geq 0$).

Exercise 17.3. In the setting of Exercise 8.2(c), show that if $Y \in \mathscr{C}^{\heartsuit}$, then $\operatorname{Map}_{\mathscr{C}}(X, Y)$ has contractible connected components for all $X \in \mathscr{C}^{\leq 0}$. In particular, $\operatorname{Map}_{\mathscr{C}}(X, Y)$ is homotopy equivalent to a space with the discrete topology for all $X, Y \in \mathscr{C}^{\heartsuit}$. This can be interpreted as saying that even though \mathscr{C} is an ∞ -category, the subcategory \mathscr{C}^{\heartsuit} is still an ordinary category (up to the relevant notion of equivalence).

Exercise 17.4. Let $f: M^{\bullet} \to N^{\bullet}$ be a morphism in Ch_R . Describe the cokernel C(f) of the map $(f,i): M^{\bullet} \to N^{\bullet} \oplus \overline{M}^{\bullet}$ explicitly (this is called the *mapping cone* of f, though there exist different sign conventions for it). Note that (a) (f,i) is injective since i is, and that (b) $N^{\bullet} \oplus \overline{M}^{\bullet}$ is quasi-isomorphic to N^{\bullet} since \overline{M}^{\bullet} is quasi-isomorphic to zero. In particular, the short exact sequence

$$0 \to M^{\bullet} \to N^{\bullet} \oplus \overline{M}^{\bullet} \to C(f) \to 0$$

in Ch_R tells us there is an exact triangle

$$M^{\bullet} \to N^{\bullet} \to C(f)$$

in $DMod_R$, so C(f) gives us a way of computing cofibers in $DMod_R$.