Lecture 4: main exercises

Exercise 4.1. Given $M^{\bullet} \in \mathrm{Ch}_{R}$, recall that we write $\tau^{\leq n}\left(M^{\bullet}\right)$ for the complex

$$
\cdots \rightarrow M^{n-2} \xrightarrow{d^{n-2}} M^{n-1} \xrightarrow{d^{n-1}} Z^{n} \rightarrow 0 \rightarrow \cdots,
$$

where $Z^{n}:=\operatorname{ker} d^{n} \subset M^{n}$. Show that the cokernel in Ch_{R} of the natural map $\tau^{\leq n-1}\left(M^{\bullet}\right) \rightarrow \tau^{\leq n}\left(M^{\bullet}\right)$ is quasi-isomorphic to $H^{n}\left(M^{\bullet}\right)[-n]$.
(Granting that $\mathrm{Ch}_{R} \rightarrow \mathrm{DMod}_{R}$ takes short exact sequences to exact triangles, this proves that we have an exact triangle $\tau^{\leq n-1}\left(M^{\bullet}\right) \rightarrow \tau^{\leq n}\left(M^{\bullet}\right) \rightarrow H^{n}\left(M^{\bullet}\right)[-n]$ in DMod_{R}).

Exercise 4.2. Let $R=\mathbb{C}[x]$ and $R^{!}=\mathbb{C}[\varepsilon] /\left(\varepsilon^{2}\right)$, where x has weight 1 and ε has weight -1 . Recall that the Koszul t-structure on $\mathrm{DMod}_{R}^{\text {gr,fg }}$ refers to the image of the standard t-structure on $\mathrm{DMod}_{R}^{\mathrm{gr}, \mathrm{fg}}$ under the equivalence

$$
K:=\operatorname{sh} \circ \operatorname{RHom}_{R}(R /(x),-): \operatorname{DMod}_{R}^{\mathrm{gr}, \mathrm{fg}} \xrightarrow{\sim} \operatorname{DMod}_{R^{!}}^{\mathrm{gr}, \mathrm{fg}} .
$$

One can show that the indecomposable objects of $\mathrm{DMod}_{R}^{\mathrm{gr}, \mathrm{fg}}$ are exactly the objects of the form $R[k]\langle\ell\rangle$ or $R /\left(x^{n}\right)[k]\langle\ell\rangle$.
(a) Determine which of these objects are in the heart of the Koszul t-structure. Hint: inspecting $R^{!}$, we see that any such object is of the form $R!\langle n\rangle$ or $R^{!} /(\varepsilon)\langle n\rangle$ as a graded $R^{!}$-module. Now use the computations in the previous lecture and show that $K(M[n]\langle n\rangle)) \cong(K(M))\langle n\rangle$.
(b) Identify a relationship between the short exact sequence

$$
0 \rightarrow R\langle 1\rangle \xrightarrow{x} R \rightarrow R /(x) \rightarrow 0
$$

in $\operatorname{Mod}_{R}^{\mathrm{gr}}$ and the short exact sequence

$$
0 \rightarrow R^{!} /(\varepsilon)\langle-1\rangle \xrightarrow{\varepsilon} R^{!} \rightarrow R^{!} /(\varepsilon) \rightarrow 0
$$

in $\operatorname{Mod}_{R^{!}}^{\mathrm{gr}}$. Hint: use the word triangle.
(c) An object X is formal with respect to a t-structure if it is isomorphic to $\oplus_{n} H_{t}^{n}(X)[-n]$. Determine which, if any, indecomposable objects of DMod ${ }_{R}^{\mathrm{gr}, \mathrm{fg}}$ are not formal with respect to the Koszul t-structure.
(d) Show that there exist nonisomorphic objects in $\mathrm{DMod}_{R}^{\mathrm{gr}, \mathrm{fg}}$ with the same Koszul cohomology. Show that there do not exist nonisomorphic objects with the same standard cohomology.

Lecture 4: additional exercises

Exercise 4.3. Suppose we are given a t-structure on $\mathscr{C}=\mathrm{DMod}_{R}$ and an exact triangle $X \rightarrow Y \rightarrow Z$. Using rotation of triangles and the fact that $H_{t}^{n}: \mathscr{C} \rightarrow \mathscr{C}_{t}^{\mathscr{O}}$ is a cohomological functor for all n, show that there is a long exact sequence

$$
\cdots \rightarrow H_{t}^{n-1}(Z) \rightarrow H_{t}^{n}(X) \rightarrow H_{t}^{n}(Y) \rightarrow H_{t}^{n}(Z) \rightarrow H_{t}^{n+1}(X) \rightarrow \cdots
$$

in t-cohomology.

Exercise 4.4. Let R and $R^{!}$be as in Exercise 4.2.
(a) Compute $\operatorname{sh}\left(\operatorname{Hom}_{R}^{\bullet}\left(K^{\bullet}, R /\left(x^{n}\right)\right)\right) \in \mathrm{Ch}_{R^{!}}^{\mathrm{gr}}$. Start with $n=2$.
(b) Write down the long exact sequence in Koszul cohomology associated to the exact triangle $R /\left(x^{n-1}\right)\langle 1\rangle \rightarrow R /\left(x^{n}\right) \rightarrow R /(x)$. Start with $n=2$.

