WARTHOG 2016 Exercises for Wednesday

1. Consider the following elements in H_c :

$$\mathbf{e} = \sum_{i} x_i^2, \mathbf{f} = \sum_{i} y_i^2, \mathbf{h} = \sum_{i} (x_i y_i + y_i x_i).$$

Prove that $\mathbf{e}, \mathbf{f}, \mathbf{h}$ span the Lie algebra $\mathfrak{sl}_2 \subset H_c$.

- 2. Consider the standard H_c -module $M_c(\lambda) = V_{\lambda} \otimes \mathbb{C}[x_1, \dots, x_n]$.
 - (a) Describe the action of **h** on $V_{\lambda} \subset M_c(\lambda)$ (recall that $y_i(V_{\lambda}) = 0$).
 - (b) Compute the graded character of $M_c(\lambda)$, that is, the trace of $q^{\mathbf{h}}\sigma$ for $\sigma \in S_n$.
 - (c) Prove that the bigraded Hilbert series of $\operatorname{Hom}_{S_n}(\wedge^*V, M_c(\lambda))$ (graded by **h** and the exterior degree) equals $q^{\dots}\varepsilon(s_{\lambda})$, where s_{λ} is the Schur function and $\varepsilon(p_k) = \frac{1-a^k}{1-q^k}$. Determine the graded shift (\dots) .
- 3. (a) Describe all irreducible representations in category \mathcal{O} for $H_{1/3}(S_3)$.
 - (b) Find all values of c such that $D_i(W) = 0$, where W is the Vandermonde determinant $W = \prod_{i < j} (x_i x_j)$.
 - (c) Describe all irreducible representations in category \mathcal{O} for $H_{1/2}(S_3)$.
- 4. (a) Use the Rosso-Jones formula to compute the uncolored HOMFLY polynomial for torus knots.
 - (b) Recall that the finite dimensional representation $L_{m/n}$ has a BGG resolution

$$L_{m/n} \longleftarrow M_{m/n}(n) \longleftarrow M_{m/n}(n-1,1) \longleftarrow M_{m/n}(n-2,1^2) \longleftarrow \ldots \longleftarrow M_{m/n}(1^n).$$

Use problem 2 to compute the bigraded Hilbert series of

$$\mathcal{H}_{m/n} := \operatorname{Hom}_{S_n}(\wedge^* V, L_{m/n}).$$

- (c) Check that the answers in (a) and (b) agree.
- 5. Use the Rosso-Jones formula to compute the S^2 -colored HOMFLY invariant of the trefoil.
- 6. * Let $f_i = \frac{\partial}{\partial x_i} \operatorname{Coef}_{m+1} \prod_{i=1}^n (1 zx_i)^{m/n}$.
 - (a) Prove that $\sum_{i} f_{i} = 0$ and hence f_{i} span a copy of the (n-1)-dimensional reflection representation of S_{n} .

1

(b) Prove that $D_i(f_i) = 0$ for all i and j for c = m/n.

- (c) Conclude that $L_{m/n} = \mathbb{C}[x_1, \dots, x_n]/(f_1, \dots, f_n)$.
- 7. In the lecture we have seen how a B_i can be moved underneath a crossing strand, which motivates the definition of a complex of singular Soergel bimodules for the (2, 1)-crossing. Now try to slide a B_i underneath a 2-labelled strand and compare to the complex for the (2, 2)-crossing.
- 8. Starting from the complex of singular Soergel bimodules for the (i, j)-crossing, try to guess the complex for the negative (j, i)-crossing. Decategorify the positive and negative crossing complexes to linear combinations of webs and use the extended MOY rules to check that the Reidemeister 2 move holds in the case of j = 1. Next, try to reduce the general case to the case of (1, 1) crossings. Use a similar trick to prove the Reidemeister 3 move for strands of any labels.
- 9. Use the extended MOY rules to compute the graded dimensions of the morphism spaces between consecutive terms in the complex of singular Soergel bimodules associated to an (i, j)-crossing. Argue why these complexes are essentially uniquely determined (assuming that they satisfy the Reidemeister 2 move up to homotopy equivalence).
- 10. (more work, but fun) Use the triangular decomposition of the skew Howe dual quantum group $U_q(\mathfrak{gl}_m)$ to explain why the extended MOY rules are sufficient to evaluate every closed braid-like web to an element of $\mathbb{Z}[a^{\pm 1}](q)$.
- 11. Show that $\operatorname{Hilb}^n(\mathbb{C}^2) \simeq \mathbb{C}^2 \times X_n$, where X_n is the preimage of 0 under the composite map $\operatorname{Hilb}^n(\mathbb{C}^2) \to \operatorname{Sym}^n(\mathbb{C}^2) \to \mathbb{C}^2$, where the second map sends $\{\mathbf{v}_1, \dots, \mathbf{v}_n\}$ to $\frac{1}{n} \sum \mathbf{v}_i$. Let \mathcal{T} be the tautological bundle on $\operatorname{Hilb}^n(\mathbb{C}^2)$. Show that $\mathcal{T} \simeq \mathcal{O} \oplus \mathcal{T}'$ for some vector bundle \mathcal{T}' , where \mathcal{O} is the trivial line bundle. What is \mathcal{T}' when n = 2?
- 12. Use the ADHM of the Hilbert scheme to show that $\mathrm{Hilb}^2(\mathbb{C}^2) \simeq \mathbb{C}^2 \times E$, where E is the total space of the line bundle $\mathcal{O}(-2)$ on \mathbb{P}^1 .
- 13. Consider the projection $\mathrm{Hilb}^3(\mathbb{C}^2) \to \mathrm{Sym}^3(\mathbb{C}^2)$. What is the preimage of a point $\{a,a,b\} \in \mathrm{Sym}^3(\mathbb{C}^2)$, where $a \neq b$?