Crystal sizes in evolving silicic magma chambers

Ilya N. Bindeman* Department of Geology and Geophysics, University of Wisconsin, 1215 W. Dayton Street, Madison, Wisconsin 53706, USA

ABSTRACT

Crystal size distributions (CSDs) of quartz and zircon phenocrysts in individual pumice clasts from several voluminous ash-flow tuffs provide a quenched snapshot view of conditions in precaldera magma chambers. A common feature of these CSDs is a concave-down, lognormal shape, in contrast to the reported linear CSDs in more mafic systems. This feature is interpreted to be a general result of surface-controlled, size-dependent growth by a layer nucleation in silicic magmas at low supersaturation. Specific CSDs may be important for interpreting nucleation and crystal-growth conditions and mechanisms in magmas erupted as large ash-flow tuffs and smaller-volume volcanic units, and for fingerprinting different magma batches (layers) in products of the same eruption.

Keywords: crystal size distribution, ash-flow sheets, acid extraction, quartz, zircon, caldera, silicic, nucleation.

INTRODUCTION

Crystal sizes (phenocrysts and microlites) in igneous rocks are important parameters for interpreting magma cooling conditions and mechanisms (Cashman and Marsh, 1988; Higgins, 1998; Marsh, 1998). Silicic volcanic and plutonic rocks show significant variations in crystal sizes and proportions within the same unit, although these phenomena are poorly understood. These variations have particular importance for studying zoned magma chambers with significant gradients in composition and crystal content. Most experimental and observational work on crystal size distributions (CSDs) has been in mafic magma systems, i.e., lava lakes, sills, and plutons. Eutectoid silicic magmas are more complicated because of multiple saturation with as many as 10 minerals and a fluid phase. The high viscosity of silicic melts, with its dependence on temperature (T) and fH2O, causes complex nucleation and growth kinetics in pressure (P)-T-XH2O space and high levels of supersaturation due to heat or volatile loss (e.g., Hammer and Rutherford, 2002). A snapshot view of large, batholith-scale magma chambers that have undergone deep eruptive drawdown (several kilometers) is provided by voluminous (~1013 km3) ash-flow tuffs (e.g., Wilson and Hildreth, 1997). In plutons and batholiths, near-solidus cumulus processes lead to overprinting of near-liquidus CSDs by coarsening and overgrowth (Higgins, 1998). Where detailed field and melt-inclusion information is available, each pumice clast in a tuff bears valuable chemical, isotopic, and P-T-XH2O information for each locus in the magma chamber (Anderson et al., 2000). Phenocryst sizes in pumice clasts are important petrogenetic parameters, but they have received little attention, despite widespread use of phenocrysts for isotope and trace element analyses.

In this paper I describe an acid (HF and HBF4) technique to extract and quantitatively measure abundance of phenocrysts in individual pumice clasts, coupled with camera- and computer-assisted measurements of their length, width, and shape (Appendix1). CSDs of quartz and zircon are presented for several well-known voluminous ash-flow tuffs and small-volume lavas (Fig. 1; Table DR1, Appendix [see footnote 1]).

RESULTS

Digital imaging allows examination of the external morphology of a very large number of acid-extracted crystals. In particular, >6000 zircons, and >3000 quartz crystals have been examined for the work reported here. The data suggest predominantly independent crystallization of quartz and zircon from rhyolitic melts: only five quartz and two zircon agglomerates were found; inclusions of magnetite and zircon in quartz occur in <-5% of the examined crystals and are volumetrically negligible. CSDs of quartz and zircon are plotted as the natural logarithm of population density versus crystal length (Fig. 1), as is often employed in crystallization studies (Randolph and Larson, 1988; Marsh, 1998, see Appendix [footnote 1]). On these graphs, linear crystal growth with homogeneous nucleation exponentially increasing in time should result in a linear CSD, such as commonly measured in more mafic igneous rocks (e.g., Cashman and Marsh, 1988). In contrast, samples exhibit similar-in-shape, concave-down CSDs that all low general conclusions on the crystallization of quartz and zircon from silicic magmas as well as conclusions that are specific to each eruptive unit and magma system. Quartz phenocrysts in each sample range over one order of magnitude in size, typically from 0.15 to 3.2 mm, and their mean and median sizes vary from 0.3 to 1.4 mm (Table DR1; see footnote 1). Regardless of size or sample, quartz has bipyramidal to near-spherical, poorly faceted morphology; crystal fragments surrounded by glass are also present. The lack of small (<0.1 mm) phenocrysts and microlites (confirmed in thin sections) and the deficiency of 0.15-0.8 mm quartz crystals for most samples yield concave-down CSD profiles with left-side truncation, and skewness toward larger crystal sizes (Fig. 1). The earlier-erupted, crystal-poor, and silica-richer parts of ignimbrites of several large, caldera-forming eruptions contain smaller quartz crystals than the later-erupted, hotter parts (e.g., BT, LBT, and LCT in Fig. 1A). CSD profiles of small-volume intracaldera lavas of similar compositions typically contain larger proportions of smaller crystals, but also lack smallest quartz phenocrysts and microlites.

Zircons range in length from <20 µm to >300 µm, and are perfectly faceted, predominantly four-sided prisms with short terminations. Zircons from different samples yield remarkably similar length/width versus length relationships, and elongation changes from 1.3 to 2.1 as length increases from 50 to 200 µm. Both width and length of zircons exhibit similar concave-down CSDs, and CSDs of length are discussed here. On zircon CSD plots (Fig. 1B) there is also a deficiency of small (<50 µm) crystals, and few <10 µm zircons were observed. The CSDs of zircons, HF extracted from magnetite and from quartz-feldspar mixtures, were measured in three samples (YL-4, LCT-A, and HRT-A), but yielded similar CSDs with a deficiency of large zircons; the proportion of zircons included in other phenocrysts is estimated as <10%. Concave-down CSDs have been described in metamorphic (Kretz, 1966; Carlson, 1999) and plutonic rocks (Higgins, 1998). Reported CSDs of zircons extracted through the conventional mechanical separation procedures (Poldervaart, 1956; Bindeman and Valley, 2001, 2002) are also concave-up, showing that the latter technique is also robust and generates roughly similar, but more scattered CSDs.

Particle concentration (number of crystals per cubic centimeter of vesicle-free magma)
Figure 1. Crystal size distributions (CSDs) in several large ash-flow tuffs and in smaller-volume intracaldera lavas. A: Acid-extracted quartz phenocrysts. B: Acid-extracted zircon phenocrysts. Tuffs: LBT—Lower Bandelier; BT—Bishop; LCT—Lava Creek; HRT—Huckleberry Ridge; MFT—Mesa Falls; AT—Ammonia Tanks; YTT—Youngest Toba; see Table DR1 and Appendix (see text footnote 1). Each CSD is based on measurements of 150–400 quartz and 250–700 zircon crystals. Lack of smallest phenocrysts and microlites for large-volume tuffs is important, and suggests no new volume nucleation, or dissolution, prior to eruption. Slopes are shown and yield 2–8 times shorter residence times (τ) at constant growth rates (G), according to simplified Avrami equation \(d\ln(n)/dL = -1/Gr \) (Cashman and Marsh, 1988). There is no simple correlation between CSD slope and eruptive volume. Inset on second diagram in A shows calculated nucleation and growth rates using equations 6.115 and 6.116 of Lasaga (1998), based on Avrami equation, but assuming time-variable nucleation and growth rates. Note that nucleation curve peaks at and eruptive volume. Inset on second diagram in A shows calculated nucleation and growth rates using equations 6.115 and 6.116 of Lasaga (1998), based on Avrami equation, but assuming time-variable nucleation and growth rates. Note that nucleation curve peaks at and eruptive volume.

Figure 2. Correlation of particle abundance with mean size of quartz crystals. Each point represents measured parameters (Table DR1; see text footnote 1) for different samples; they contain quenched preruptive crystal size distributions on various stages of growth that enable comparison as if they were representing a series of natural experiments at various P-T-X conditions. Decrease in particle concentration with increasing crystal size demonstrates predominance of surface nucleation (with episodes of dissolution-reprecipitation of smaller crystals), and is too dramatic to be explained by crystal settling or any post-crystallization ripening process.

ranges from \(4 \times 10^1 \) to \(10^3 \) for quartz and from \(3 \times 10^1 \) to \(3 \times 10^2 \) for zircon, but correlates negatively with quartz (and zircon) mean size (Fig. 2). However, there is a positive correlation between volume abundance of crystals and their mean size, because more phenocryst-rich samples tend to contain larger quartz and zircon (Table DR1; see footnote 1). Particle concentration and mean size of a CSD enable calculations of interparticle distance of 0.5–2 mm between neighboring quartz and 1.3–3.5 mm between zircon crystals.

CSDs are used to calculate population residence times if linear growth rates are assumed, or to estimate growth rates if the cooling time is known (e.g., Marsh, 1998). The right sides of CSDs in Figure 1 yield slopes that differ only by a factor of 2–8, although large-volume systems generally show flatter slopes for quartz than smaller-volume rhyolites. At homogeneous nucleation and similar linear growth, such slopes should result in only 2–8 times longer residence times for large-volume rhyolites. However, geochronologic data on phenocrysts from large silicic magma bodies suggest far longer residence times and smaller growth rates (e.g., \(3 \times 10^5 \) yr and \(10^{-15} \) cm/s for quartz, respectively; Christensen and DePaolo, 1993).

Herein I discuss CSDs of zircons that were earlier dated by ion microprobe: BT (Reid and Coath, 2000; Reid et al., 1997), LCT, MFT, and HRT (Bindeman et al., 2001) (see Fig. 1). U-Pb ages of zircons in large-volume tuffs that show less-steep CSD slopes are within analytical uncertainty of Ar-Ar sanidine eruption age, suggesting that zircons grew shortly prior to eruption. Paradoxically, smaller-volume Bishop intracaldera lava (sample LV-13), which shows the steepest slope (shorter implied residence time), was determined by Reid et al. (1997) to have resided in the magma chamber for \(>200 \) k.y. In addition, in the 0.5 Ma Yellowstone intracaldera rhyolite (sample YL-4), most zircons are derived from 2.4–0.7 Ma rhyolites (Bindeman et al., 2001). However, this small-volume lava shows steeper slopes on CSD graphs of quartz and zircon, consistent with shorter residence times. These observations suggest that CSDs are rejuvenated by overgrowth despite significant inheritance. As shown in Figure 1 (inset) and discussed in the next section, the observed CSDs cannot have been generated by a constant rate growth. In addition, contrary to exponentially increasing nucleation with time, a deficiency (or lack) of small crystals on CSD graphs suggests subdued nucleation, and Figure 2 demonstrates that the number of crystals per cubic centimeter decreases with increase in crystal mean size.
DISCUSSION

This study shows that silicic magmas exhibit rather similar concave-down CSDs of quartz and zircon, deficiency of smaller crystals, and almost no crystals smaller than a threshold size. Qualitative inspection of feldspar phenocrysts indicates that they lack small crystals and thus should have similar concave-down CSD profiles. This finding may be a common and previously unappreciated phenomenon of size distributions in silicic rocks. It characterizes large-volume magma chambers as well as small-volume dikes and lavas. It is observed in both a major phenocryst phase (quartz) and an accessory phase (zircon) and warrants general explanation. Here I evaluate whether concave-down CSDs are related to (1) the intrinsic property of phenocryst growth from silicic magmas at small degrees of supersaturation, (2) postcrystallization ripening (e.g., Ostwald) phenomena, or (3) gravitational crystal redistribution.

Surface-Controlled Crystal Growth and Concave-Down, Lognormal CSDs

Crystals grow when there is supersaturation. In near-eutectoid silicic magmas, supersaturation is not likely due to temperature drop, but either to heat withdrawal or to volatile loss accompanying pressure release (e.g., Hammer and Rutherford, 2002). The degree of supersaturation in large silicic magma chambers may be governed by volatile loss or by addition of non-\(\text{H}_2\text{O}\) fluid (e.g., \(\text{CO}_2\)) if the system is water saturated, as are many shallow silicic systems (e.g., Anderson et al., 2000). Viscous silicic magmas require proportionally greater supersaturation to nucleate and grow phenocryst-size crystals than do mafic magmas, a simple result of the Stokes-Einstein relationship (Lasaga, 1998). In large silicic magma bodies such as produced the Bishop Tuff, cooling is slow, because such systems often exist for \(\geq10^6\) yr, and quartz growth rates may be four orders of magnitude slower (10\(^{-15}\) cm/s; Christensen and DePaolo, 1993) than those measured in experiments (Swanson, 1977). For such slow growth rates and low degrees of undercooling, homogeneous nucleation rates are theoretically 0, because it takes a finite energy to form a nucleus (Tammann, 1898; Kirkpatrick, 1975; Lasaga, 1998). In practice, heterogeneous nucleation may be \(\geq0\) because of the presence of other phases. Nucleation of quartz on the surface of existing quartz phenocrysts is well known from experiments (Swanson and Fenn, 1986). At high cooling rates (in experiments and nature), quartz does not form microlites, but rather fibrolitic spherulites with feldspar in near-eutectic proportions. At low cooling rates, quartz apparently does not nucleate on other phenocrysts (as is seen in this study) or gas bubbles (Swanson, 1977), but only on surfaces of preexisting quartz crystals. Zircons occur in all other crystals and may precipitate in their boundary layers (Bacon, 1989), although this is volumetrically insignificant (see previous section). Even at higher degrees of supersaturation in smaller-volume rhyolites, crystallization by crystal growth and interfacial attachment is seen here to dominate over nucleation.

The measured CSDs of quartz and zircon (Fig. 1) are lognormal, as can be demonstrated by the application of \(\chi^2\), Smirnov-Kolmogorov, and log-log cumulative frequency tests (Appendix; see footnote 1) at \(>10\%\) confidence level (1\% is enough to pass the lognormal test, Crow and Shimizu, 1988). On mathematical grounds, the lognormal CSDs could suggest (e.g., Crow and Shimizu, 1988: Appendix [see footnote 1]) (1) crystal growth proportional to their size, according to: \(X_{j+1} = X_j + \varepsilon X_j\), where \(X\) is the size and \(\varepsilon\) is each small and random increment of growth \(J\); and/or (2) fragmentation of larger crystals in the magma chamber. The size-dependent growth, noted by Marsh (1988), could find physical explanation if it is surface controlled (Eberl et al., 1998). A statistical approach of Eberl et al. (1998) allows fitting curves pertinent to various mechanisms of growth, i.e., homogeneous volume nucleation, surface nucleation, Ostwald ripening, and supply-controlled growth. The best overall fit to data points is provided by a model of surface-controlled growth (quartz) and surface-controlled growth with minor (<5\% crystal volume) Ostwald ripening (zircon), followed by supply-controlled growth with progressively decreasing \(\varepsilon\). Ostwald ripening does not shift the mean size, but affects the left sides of zircon CSDs, making them steeper. Thus, only the smallest zircons (<20 \(\mu\text{m}\)) could be affected by ripening. For quartz, measured CSDs do not require a ripening process, which would lead to a far steeper decrease in the left side of CSDs. It is shown in experiments that for millimeter-size quartz in rhyolites, Ostwald ripening is negligible (Cabane et al., 2001).

Although physical mechanisms of size-dependent growth are discussed here, surface nucleation may promote faster growth for larger crystals because they sink faster and interact with more melt, and this may occur in steps, because episodes of dissolution (often seen in cathodoluminescence [CL] images) may alternate with periods of surface-controlled growth (Fig. 2). Calculated diffusion of silica and zirconia over \(<1\text{–}2\text{ mm}\) interparticle distances is fast even at 725 \(^\circ\text{C}\) compared to slow growth rates of quartz (<10\(^{-10}\) cm/s) at low supersaturation (Swanson, 1977). In general, in medium to large silicic magma bodies, crystal-surface dynamics (surface roughness) will be a rate-limiting step determining crystal growth (Lasaga, 1998).

Surface dynamics also predict crystal shapes, which are dependent on crystal-melt surface energy that correlates to a crystal’s latent heat of fusion (Jackson et al., 1967). The observed near-spherical and poorly faceted quartz is indicative of interface-controlled growth, such as characterizes experimental crystallization of quartz from silica melt, and is explained by the low surface energy of quartz (Kirkpatrick, 1975). For high-surface energy and latent heat of fusion mineral zircon, a faceted morphology is observed for both interface- and diffusion rate–limited growths.

Fragmentation of phenocrysts in magma chambers into a random number of smaller and intermediate-size crystals (e.g., due to rupture of melt inclusions) is an additional proportionate mechanism that may generate lognormal CSDs, by analogy with sedimentology, and in accordance with Kolmogorov disaggregation theory (Appendix; see footnote 1). Breakage is evidenced by irregular and off-centered cores in CL images, often followed by crystallographic recrystallization. The lack of the smallest crystals proves that crystallization, and not dissolution, determined CSD and crystal morphologies prior to eruption.

The present work indicates that concave-down lognormal CSDs are an intrinsic property of near-equilibrium systems (such as large volume near-eutectoid silicic bodies). I demonstrate that crystal settling does not change the overall CSD shape and that CSDs can be used to fingerprint different magma batches and provide insights into (time integrated) crystallization in each magma system.

Magma Chamber Dynamics and CSDs

Magma chamber dynamics play a role in the modification of CSDs of crystals that are capable of quantitative redistribution by gravity. Crystal settling may be important when convection is sluggish, and crystals are lost downward at a rate that is proportional to \(r^2\). Crystal settling can explain the lack of large crystals in the upper part of the magma body, and the gain of such crystals at the bottom, forming cumulate layers progressively richer in crystals, but these are rarely erupted. The general concave-down CSD shape is preserved even after >50\% of the quartz volume has been removed or added (Fig. 3), because the less abundant large crystals constitute the most volume. Crystal settling would not explain the strong differences in quartz CSDs in the Lava Creek Tuff and Lower Bandelier Tuff (Fig. 1A), but is permissive for the Bishop Tuff (Fig. 3).

The alternative interpretation is that CSDs of earlier- and later-erupted parts of the same eruption represent two separate magma layers.
size pumice clasts provide an effective new tool for inferring preeruptive conditions of crystal growth, nucleation, and redistribution, and for fingerprinting different magma batches.

ACKNOWLEDGMENTS
I am grateful to A.T. Anderson for encouragement to write this paper, D. Eberl for suggestions on the Galoper software, C. Chesner for donating the Toba sample, J.S. Lackey and J. Fournelle for insightful reviews. Supported by Department of Energy grant FG0293ER14389.

REFERENCES CITED

Figure 3. Calculated evolution of crystal size distributions (CSDs) of quartz as function of Stokes settling and accumulation in magma chamber. Modeling is done by dividing magma chamber into finite number of layers and by calculating net gain and loss of crystals in each layer through time. Initially CSD is same throughout magma chamber, e.g., because of convective stirring. Note that for CSD where significant quartz (Qz) volume percent is lost with few large crystals, general concave-up shape of CSD profile is preserved. Cumulative CSDs and quartz volume abundance of late and early Bishop Tuff (BT) are plotted for comparison. Additional crystalization of quartz by overgrowth during settling shifts CSD mean to right. It is permissive to explain CSDs in BT by crystal redistribution, as suggested by study of melt inclusions in quartz (Anderson et al., 2000).
Data Repository Item: Table DR1: Abundance, concentration, and sizes of quartz and zircon phenocrysts

<table>
<thead>
<tr>
<th>Tuff unit</th>
<th>Sample (Qz-Mt)</th>
<th>Zircon (Zrc)</th>
<th>Concentration</th>
<th>Abundance</th>
<th>n</th>
<th>Mean size</th>
<th>Median size</th>
<th>Measured number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pre-eruptive</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lower Bandelier (LBT), Toledo Caldera, NM, 600 km</td>
<td>LBT-10 Early</td>
<td>77</td>
<td>25</td>
<td>0.5</td>
<td>4.4</td>
<td>219</td>
<td>223</td>
<td>21</td>
</tr>
<tr>
<td></td>
<td>LBT-4 Early</td>
<td>73</td>
<td>74</td>
<td>2.2</td>
<td>158</td>
<td>92</td>
<td>107</td>
<td>76</td>
</tr>
<tr>
<td>Bishop (BT), Long Valley Caldera, CA, 650 km</td>
<td>LV-27 Early</td>
<td>71</td>
<td>19</td>
<td>1.9</td>
<td>117</td>
<td>71</td>
<td>90</td>
<td>69</td>
</tr>
<tr>
<td></td>
<td>BC97-16 Early</td>
<td>75</td>
<td>29</td>
<td>2.1</td>
<td>112</td>
<td>68</td>
<td>93</td>
<td>75</td>
</tr>
<tr>
<td></td>
<td>LV-751 Late</td>
<td>76</td>
<td>19</td>
<td>15.8</td>
<td>105</td>
<td>73</td>
<td>103</td>
<td>84</td>
</tr>
<tr>
<td></td>
<td>LV-748 Late</td>
<td>81</td>
<td>15</td>
<td>140</td>
<td>97</td>
<td>70</td>
<td>106</td>
<td>71</td>
</tr>
<tr>
<td></td>
<td>LV-3 Late</td>
<td>76</td>
<td>77</td>
<td>11.8</td>
<td>110</td>
<td>79</td>
<td>100</td>
<td>62</td>
</tr>
<tr>
<td></td>
<td>LV-13 lava</td>
<td>80</td>
<td>15</td>
<td>200</td>
<td>18</td>
<td>37</td>
<td>106</td>
<td>50</td>
</tr>
<tr>
<td>Lava Creek (LCT), Yellowstone Caldera, WY, 1000 km</td>
<td>LCT-3a Early</td>
<td>80</td>
<td>8</td>
<td>1.9</td>
<td>113</td>
<td>8</td>
<td>19</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>LCT-4b Late</td>
<td>91</td>
<td>9</td>
<td>162</td>
<td>99</td>
<td>62</td>
<td>136</td>
<td>94</td>
</tr>
<tr>
<td></td>
<td>YL-4 lava</td>
<td>88</td>
<td>19</td>
<td>639</td>
<td>2.0</td>
<td>70</td>
<td>61</td>
<td>325</td>
</tr>
<tr>
<td>Huckleberry Ridge (HRT), Big Bend Caldera, WY, 2500 km</td>
<td>HRT-3a Early</td>
<td>86</td>
<td>19</td>
<td>328</td>
<td>9.8</td>
<td>2</td>
<td>2</td>
<td>113</td>
</tr>
<tr>
<td></td>
<td>HRT-1b Early</td>
<td>88</td>
<td>26</td>
<td>399</td>
<td>12.1</td>
<td>2</td>
<td>2</td>
<td>112</td>
</tr>
<tr>
<td></td>
<td>HRT-C Late</td>
<td>92</td>
<td>22</td>
<td>445</td>
<td>8.2</td>
<td>2</td>
<td>2</td>
<td>73</td>
</tr>
<tr>
<td>Mesa Falls (MFT), Island Park Caldera, ID, 300 km</td>
<td>MFT-1 Early</td>
<td>80</td>
<td>37</td>
<td>138</td>
<td>0.9</td>
<td>73</td>
<td>22</td>
<td>130</td>
</tr>
<tr>
<td></td>
<td>MFT-1 Early</td>
<td>80</td>
<td>37</td>
<td>138</td>
<td>0.9</td>
<td>73</td>
<td>22</td>
<td>130</td>
</tr>
<tr>
<td>Katmai-Valley of 10,000 Smokes, AK, 8-12 km</td>
<td>KTM-3 Early</td>
<td>790</td>
<td>277.4</td>
<td>158</td>
<td>0.9</td>
<td>83</td>
<td>525</td>
<td>238</td>
</tr>
<tr>
<td></td>
<td>Novarupta Late</td>
<td>949</td>
<td>786</td>
<td>2</td>
<td>76</td>
<td>158</td>
<td>92</td>
<td>107</td>
</tr>
<tr>
<td>Yongest Toba Tuff, Toba Caldera, Indonesia, 2800 km</td>
<td>752</td>
<td>72</td>
<td>27</td>
<td>75.5</td>
<td>75</td>
<td>107</td>
<td>88</td>
<td></td>
</tr>
</tbody>
</table>

*Oxygen isotope T (°C) estimates and sample descriptions are from Bindeman and Valley (2001, 2002)