Crustal-scale recycling in caldera complexes and rift zones along the Yellowstone hotspot track: O and Hf isotopic evidence in diverse zircons from voluminous rhyolites of the Picabo volcanic field, Idaho

Dana L. Drew a, Ilya N. Bindeman a, Kathryn E. Watts b, Axel K. Schmitt c, Bin Fu d, Michael McCurry e

a Department of Geological Sciences, 1272 University of Oregon, Eugene, OR 97403, USA
b U.S. Geological Survey, 345 Middlefield Road, Menlo Park, CA 94025, USA
c Department of Earth and Space Sciences, University of California, Los Angeles, CA 90095, USA
d Research School of Earth Sciences, The Australian National University, Canberra, ACT 0200, Australia
e Department of Geosciences, Idaho State University, Pocatello, ID 83209, USA

A R T I C L E I N F O

Article history:
Received 6 March 2013
Received in revised form 11 July 2013
Accepted 2 August 2013
Available online xxxx
Editor: B. Marty

Keywords:
Picabo
Snake River Plain
oxygen isotopes
caldera
rhyolite

A B S T R A C T

Rhyolites of the Picabo volcanic field (10.4–6.6 Ma) in eastern Idaho are preserved as thick ignimbrites and lavas along the margins of the Snake River Plain (SRP), and within a deep (>3 km) borehole near the central axis of the Yellowstone hotspot track. In this study we present new O and Hf isotope data and U–Pb geochronology for individual zircons, O isotope data for major phenocrysts (quartz, plagioclase, and pyroxene), whole rock Sr and Nd isotope ratios, and whole rock geochemistry for a suite of Picabo rhyolites. We synthesize our new datasets with published Ar–Ar geochronology to establish the eruptive framework of the Picabo volcanic field, and interpret its petrogenetic history in the context of other well-studied caldera complexes in the SRP. Caldera complex evolution at Picabo began with eruption of the 10.44 ± 0.27 Ma (U–Pb) Tuff of Arbon Valley (TAV), a chemically zoned and normal-δ18O (δ18O magma = 7.9‰) unit with high, zoned 87Sr/86Sr1 (0.71488–0.72520), and low-ε Nd(0) (−18) and ε Hf(0) (−28). The TAV and an associated post caldera lava flow possess the lowest ε Nd(0) (−23), indicating ∼40–60% derivation from the Archean upper crust. Normal-δ18O rhyolites were followed by a series of lower-δ18O eruptions with more typical (lower crustal) Sr–Nd–Hf isotope ratios and whole rock chemistry. The voluminous 8.25 ± 0.26 Ma West Pocatello rhyolite has the lowest δ18O value (δ18O melt = 3.3‰), and we correlate it to a 1,000 m thick intracaldera tuff present in the INEL-1 borehole (with published zircon ages 8.04–8.35 Ma, and similarly low-δ18O zircon values). The significant (4–5‰) decrease in magmatic-δ18O values in Picabo rhyolites is accompanied by an increase in zircon δ18O heterogeneity from ~1‰ variation in the TAV to >5‰ variation in the late-stage low-δ18O rhyolites, a trend similar to what is characteristic of Heise and Yellowstone, and which indicates remelting of variably hydrothermally altered tuffs followed by rapid batch assembly prior to eruption. However, due to the greater abundance of low-δ18O rhyolites at Picabo, the eruptive framework may reflect an intertwined history of caldera collapse and coeval Basin and Range riftting and hydrothermal alteration. We speculate that the source rocks with pre-existing low-δ18O alteration may be related to: (1) deeply buried and unexposed older deposits of Picabo-age or Twin Falls-age low-δ18O volcanics; and/or (2) regionally-abundant late Eocene Challis volcanics, which were hydrothermally altered near the surface prior to or during peak Picabo magmatism. Basin and Range extension, specifically the formation of metamorphic core complexes exposed in the region, could have facilitated the generation of low-δ18O magmas by exhuming heated rocks and creating the large water-rock ratios necessary for shallow hydrothermal alteration of tectonically (rift zones) and volcanically (calderas) buried volcanic rocks. These interpretations highlight the major processes by which supereruptive volumes of magma are generated in the SRP, mechanisms applicable to producing rhyolites worldwide that are facilitated by plume driven volcanism and extensional tectonics.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

Large-volume rhyolitic volcanism in the Snake River Plain (SRP) began at ~16 Ma and migrated from Oregon to Nevada and...
through Idaho as the North American plate moved southwest over the Yellowstone hotspot (Fig. 1a; Pierce and Morgan, 1992; Schmandt et al., 2012). High heat fluxes and basalt input from the Yellowstone plume have facilitated large-scale melting of the crust and the formation of unique “SRP-type” rhyolites that are characterized by exceptionally large eruptive volumes, high magmatic temperatures, and anhydrous mineralogies (Branney et al., 2008; Christiansen and McCurry, 2008; Nash et al., 2006). The chemical and isotopic characteristics of SRP rhyolites have been experimentally and numerically modeled to be consistent with mid-crustal generation (∼10 km; Almeev et al., 2012; Rodgers and McCurry, 2009) and shallow-level (1–5 km) storage, assembly, and differentiation (Simakin and Bindeman, 2012).

Greater than 10,000 km³ of rhyolite with low-δ18O values and diverse δ18O zircon populations have erupted across the SRP over the past 16 Ma (Bindeman and Valley, 2001; Bindeman et al., 2007; Cathey et al., 2008; Watts et al. 2011, 2012; our unpublished data). However, the distribution and volume of low-δ18O rhyolites is not homogeneous across the SRP. It appears that less focused magmatism and more frequent silicic eruptions with uniformly low-δ18O values characterize the older Bruneau–Jarbidge (BJ) and Twin Falls (TF) eruptive centers in the central SRP (CSR) (Bonnichsen et al., 2008; Boroughs et al., 2005; Cathey et al., 2008; Cathey and Nash, 2004; Ellis et al., 2010), in contrast to the younger Heise and Yellowstone centers in the eastern SRP, which are characterized by fewer and larger individual caldera-forming eruptions that create nested caldera complexes with temporal decreases in δ18O (Bindeman et al., 2007, 2008; Watts et al. 2011, 2012).

This paper describes the Picabo eruptive center, which precedes Heise and Yellowstone and postdates BJ-TF in the spatiotemporal progression of the Yellowstone hotspot track (Fig. 1). Picabo produced at least three, and likely six major caldera-forming eruptions from 10.4–6.6 Ma (Table 1). Here we combine detailed isotopic, geochronologic, and geochemical studies using microanalytical methods to elucidate the mechanisms by which Picabo rhyolites were formed, and compare these mechanisms to those proposed for various large-volume rhyolites in the eastern and central SRP.

2. Background

2.1. Defining the Picabo volcanic field

The Yellowstone hotspot track is defined by a spatiotemporal progression of large-volume volcanic fields, and the SRP is considered to be floored by overlapping calderas across its length and width (Fig. 1a; Pierce and Morgan, 1992). However, a thick (~750 m to 2 km) veneer of Quaternary basalt blankets the Picabo, TF, and BJ volcanic fields (Doherty et al., 1979; Kuntz et al., 1992; Whitehead, 1992), concealing potential caldera ring fractures. The location of the Picabo volcanic field has been approximated on the map and inset of the SRP (Fig. 1a; Pierce and Morgan, 1992; our unpublished data). The older rhyolites of the core complex we consider to be of utmost relevance to this study, the Albion–Raft River–Grouse Creek complex is a metamorphic core complex (Table 1). The TAV is therefore markedly different than crystal poor SRP rhyolites with anhydrous mineralogies and mutable upper crustal signatures (Christiansen and McCurry, 2008; McCurry and Rodgers, 2009; Nash et al., 2006). Since the TAV was the only rhyolite previously associated with Picabo, other than the airfall record (Anders et al., 2009), the nature, history, and composition of the Picabo eruptive field was poorly constrained and its existence questioned (Nash and Perkins, 2012).

We have now assigned eight lava flows and voluminous ignimbrites of eastern Idaho (Fig. 1c) with the Picabo volcanic field based on our new and compiled geochronology and proximity to the hypothesized caldera boundary; these include the TAV, Two-and-a-Half rhyolite, Tuff of Hawley Springs, Tuff of Little Chokecherry Canyon, West Pocatello rhyolite, Tuff of American Falls, Stevens Peak rhyolite, and Stevens Peak 2 rhyolite. In addition, there are a number of tuffs and lavas preserved in two deep geothermal boreholes: the 3.2 km Idaho National Laboratory borehole (INEL-1) and ∼1.52 km WO-2 borehole (Anders et al., 2009; Doherty et al., 1979; McCurry and Rodgers, 2009; Shervais et al., 2006). The INEL-1 borehole consists of an upper 650 m of basaltic lava interbedded with alluvium and sediments, underlain by 84 m of tuffaceous silt and clay and a series of devitrified and propylitically-altered rhyolite tuffs 2.5 km thick (Doherty et al., 1979). Zircons from these rhyolites yielded analytically indistinguishable U–Pb ages of 8.27 ± 0.27, 8.04 ± 0.10, and 8.35 ± 0.24 Ma (with increasing stratigraphic depth; McCurry and Rodgers, 2009). Based on thickness and lithology the rhyolites are presumed to be intracaldera fill (McCurry and Rodgers, 2009). We used the borehole INEL-1 to make isotopic and chemical correlations between intracaldera fill and outflow sheets, in order to further confirm the presence of buried calderas. The WO-2 borehole (5 km southeast of INEL-1) similarly intersected 1.15 km of basalt and 1.23 km of rhyolite (McCurry and Rodgers, 2009; Shervais et al., 2006), however, the rhyolite units (dated at 6.12 Ma and 6.38 Ma; Anders et al., 1997) are in the age range of the Blacktail Tuff of the Heise volcanic field (Morgan and McIntosh, 2005; Morgan et al., 1984), and therefore are not likely derived from Picabo magmatism. Since this borehole did not intersect Picabo rhyolites, we use the location of the borehole to help infer the northern caldera wall boundary (Fig. 1b).

2.2. Local tectonic framework

The SRP is located in the northern Basin and Range province, a region now characterized by east–west extension (Miller et al., 1999; Stockli, 1999). Even prior to extension this region experienced a prolonged history of magmatism and regional folding, from the late Cretaceous through the early Cenozoic (Armstrong, 1982; Burchfiel et al., 1992; DeCelles 1994, 2004). The regional tectonic history modified the crustal architecture prior to hotspot track-related volcanism, affecting the crustal structure and strength (Bonnichsen et al., 2008). Extensional tectonics since ~15–10 Ma (Colgan et al., 2007; Egger et al. 2003, 2010; Fosdick and Colgan, 2008; Wells et al., 2000), have formed extensional basins and detachment systems, and exhumed metamorphic core complexes (Coney, 1980; Foster and Fanning, 1997; Foster et al. 2007, 2010). The Albion–Raft River–Grouse Creek complex is a metamorphic core complex we consider to be of utmost relevance to this study, because it is located on the southern margin of the SRP, in close proximity to the Picabo volcanic field (Fig. 1a). This core complex has also been recently shown to be exhumed beginning at 14 Ma and with faulting continuing to after 8.2 Ma (Konstantinou et al., 2012), both predating and occurring coevally with the development of the Picabo volcanic field. Magmatism accompanying extension includes the Challis–Absaroka and Great Basin volcanics (Armstrong and Ward, 1991; Best and Christiansen, 1991; Christiansen and Yeats, 1992; Gans 1987; Wells and Hoisch, 2008). Volcanism of the Challis–Absaroka province (Fig. 1a) initiated at 51 Ma and continued for ~5 to 10 million years, originally covering over half the state of Idaho with clastic products (Orr and
Basin and Range extension terminated just north of the current SRP and is thought to have been concentrated south of the SRP during the time of plume-related magmatism (Colgan and Henry, 2009; Egger et al., 2010). However, more evidence has emerged suggesting that extension both predated and was coeval with plume-drive magmatism in the CSRP (Konstantinou et al., 2012; Stockli, 1999), creating conditions for faulting, hydrothermal alteration, and δ18O preconditioning of the crust prior to SRP volcanism.

2.3. The Tuff of Arbon Valley and rhyolites of the Picabo volcanic field

The rhyolites that constitute the Picabo volcanic field (see Fig. 1 and Table 1) are found ~100 km apart on the northern and southern margins of the SRP as nonwelded and welded ignimbrites, lava flows, airfall, and reworked deposits (unit descriptions in the Appendix). We consider the TAV and West Pocatello rhyolite to be two major caldera-forming eruptions due to their extensive exposures on the surface and/or in the borehole. The other studied rhyolites are more localized due to limited preservation as a result of the highly dissected terrain, and therefore we are unable to locally trace the outflow-sheets or correlate rhyolites between locations. Due to this limited preservation and up to 2 km thick basaltic cover, we place an emphasis on the geochemical and isotopic evolution of the package of outflow deposits rather than field observations and distribution of the individual ignimbrites.

The TAV consists of a lower poorly-welded, crystal-poor (~5%) airfall tuff with pumice, lithics and accretionary lapilli and an upper moderately welded, crystal rich (>35%) tuff (Kellogg et al., 1994). We examined the type locality of the TAV, the Cove (Fig. 1), where ~100 m of exposed section of both the upper and lower tuff is preserved (Kellogg et al., 1994). Anders et al. (2009) hy-
pothesized that this unit represents two closely spaced eruptions,
\(^{40}\text{Ar/}^{39}\text{Ar}\) dated at 10.34 ± 0.01 and 10.16 ± 0.01 Ma, but our
sampling locality at the Cove exhibited no cooling breaks. The source
of the TAV is thought to be the Tabor caldera (Fig. 1; Kellogg et al.,
1994), due the thickness and presence of full stratigraphic
sections at the southern margin of the plain (McCurry, 2009) and
observations that the ignimbrites thin to the south from the proposed
caldera boundary. The Two-and-a-Half Mile rhyolite is geochemically
and petrographically similar to the TAV, located along the
eastern margin of the Tabor caldera. Picabo’s subsequent eruptions
(Table 1) produced more densely welded, crystal poor (5–25%)
ryholites similar to classic “SRP type” ignimbrites (Brannan et al.,
2008). For example, the voluminous West Pocatello rhyolite is a
densely welded ignimbrite (25 vol% phenocrysts) that is laterally
extensive, capping mountains south of Pocatello.

3. Methods

Individual zircon cores were analyzed for \(\delta^{18}O\) and \(^{238}\text{U/}^{206}\text{Pb}\)
ages (25–30 \(\mu\)m lateral resolution and < 1 \(\mu\)m depth resolution)
using the Cameca ims 1270 ion microprobe at UCLA. Analytical
reproducibility was estimated from the standard deviation (s.d.) of
replicate analyses of KIM-5 (5.09‰; Valley, 2003) and AS3 (5.34‰;
Trail et al., 2007) standard zircons on the same mount, in close
spatial proximity to the unknowns. In three analytical sessions
these values were 0.38‰ (n = 54), 0.27‰ (n = 12), and 0.14‰
(n = 31). Accuracy was checked through intercalibration of KIM-5
and AS3, whose averages were found to agree within 0.2‰. Zircon
spots analyzed on the ion microprobe were later analyzed for
\(^{176}\text{Hf/}^{177}\text{Hf}\) at the Australian National University, Canberra on a
193 nm excimer laser-based HEBLE ablation system with a Ne-
ptune multiple-collector ICPS as described in Eganis et al. (2005)
(a few additional zircons were analyzed at Washington State Uni-
versity on a Finnigan Neptune MC-ICP-MS). The laser spot dimen-
sions were 37 \(\mu\)m in lateral dimensions, and the ablation time was
60 s for each analysis (protocols from Woodhead et al., 2004). The
\(^{176}\text{Hf/}^{177}\text{Hf}\) data was reduced offline using the software package
lottie (e.g., Paton et al., 2011).

Oxygen isotope ratios of quartz, plagioclase, and pyroxene phe-
nocrysts were measured by laser fluorination at the University of
Oregon using methods described by Bindeman (2008). BrF\(_5\) was
the reagent used, and an overall precision of <0.1‰ was achieved
for individual analytical sessions. Major and trace elements were
analyzed by XRF of whole rock powders at the GeoAnalytical Lab-
oratory at WSU. Whole rock Sr and Nd isotope analyses were
conducted on a Sector 54 thermal ionization mass spectrometer
(TIMS) at the University of New Mexico. A more detailed treatment
of the methods is included in the Appendix.

4. Results

Below we describe the geochemistry, geochronology, and iso-
topic ratios of whole-rock and individual phenocrysts of a suite of
ryholites derived from the SRP. We highlight the compositional
evolution of these rhyolites through time, which we later use to
interpret rhyolite petrogenesis and magma assembly.

4.1. Geochronology of Picabo ignimbrites and lavas

Our U–Pb dating of zircon cores from six ignimbrites (Table 1)
establishes that the duration of volcanism at the Picabo volcanic
field is 10.44–6.62 Ma. Comparison of these U/Ti disequilibria-
corrected U–Pb ages with published Ar–Ar and K–Ar ages (Anders
et al., 2009; Kellogg and Marvin, 1988, Kellogg et al., 1994) in-
dicate that the majority of Picabo zircon populations are within
uncertainty of the Ar–Ar age for samples where eruption ages are
available (TAV, West Pocatello rhyolite and Tuff of American Falls).

We also studied the following newly identified units (Ta-
ble 1, Appendix Table A3.3): Irvada biotite-bearing trachydacites
(>9.34 Ma; Ar–Ar dated by Anders et al., 2009), Jim Sage and Cot-
terel Mountain rhyolites (9.5–8.2 Ma; U–Pb dated by Konstantinou
et al., 2012), and the Hawkins Basin volcanics (6.63–6.09 Ma; U–Pb
dated by Pope, 2002).

4.2. Isotopic and compositional evolution: \(\delta^{18}O\), \(^{87}\text{Sr}/^{86}\text{Sr}\), \(^{143}\text{Nd}/^{144}\text{Nd}\)
and \(^{176}\text{Hf}/^{177}\text{Hf}\)

Studies of Picabo samples are largely metaluminous low- to high-
silica (74–77% SiO\(_2\)) rhyolites (Table A3.1) with a range in crys-
tal content of <5 to 35 volume % phenocrysts (Table A3.2) and
liquids temperatures of 850 °C on average (estimated using rhy-
oliteMELTS) (Fig. A5.1). The mineral assemblage is dominated by
plagioclase, alkali feldspar, clinopyroxene, orthopyroxene, Fe–Ti ox-
ides, ±quartz, ±biotite/hornblende, and ±accessory zircon (Table
A3.2). Variations in major and trace element whole rock geo-
chemistry (Table A3.1) between individual rhyolites is largely gov-
erned by fractionation of this mineral assemblage (Fig. 2, 3a), and
demonstrates a general enrichment in high field strength elements
and an A-type granite signature (Fig. 3b). Picabo rhyolites span a
\(\delta^{18}O\) range from 8.3 to 2.1% and a \(^{18}\text{O}_{\text{zircon}}\) range of 6.80
to 0.01‰ (Fig. 6). Major phases of quartz and plagioclase display
small ranges in \(\delta^{18}O\) within samples, suggesting equilibrium at
magmatic temperatures and therefore magmatic \(\Delta^{18}O_{\text{melt-plag}}\) and
\(\Delta^{18}O_{\text{melt-quartz}}\) (Fig. 5), which were used to calculate \(\Delta^{18}O_{\text{melt}}\).

Volcanic initiated with the normal-\(\delta^{18}O\) (\(\delta^{18}O_{\text{melt}} = 7.9\%\))
TAV (10.44 Ma), which exhibits upper crustal characteristics in
that it has an extremely low-\(\epsilon\)Nd (−17.7) and −\(\epsilon\)Hf (−28)
(Table 1). The TAV possesses large vertical zonation from high-
silica rhyolite at the base to low-silica rhyolite at the top. This
transition in Sio\(_2\) is coupled with significant zonings in \(^{87}\text{Sr}/^{86}\text{Sr}\)
from 0.72520 in the Sr-poor lower tuff to 0.71488 in the upper
tuff, demonstrating dramatic compositional changes within a single
eruption (Fig. 4a, b; Table A3.1). However, there is < 0.4‰ dif-
ference in the average \(\delta^{18}O_{\text{melt}}\) between the base and top of the
section, which is <1% variation observed within the individual
samples of the TAV. Similarly, we observed only a small differ-
cence in \(\epsilon\)Nd from the base (−17.7) to the top (−18) of the tuff
(Fig. 4c), suggesting negligible zoning in \(^{18}O\) and \(\epsilon\)Nd in our
analyzed samples. However, Nash et al. (2006) reports an \(\epsilon\)Nd of
−19, which suggests the presence of minor zoning in \(\epsilon\)Nd (−17.7 to
19) of the TAV. Both the ~9.1 Ma Two-and-a-Half Mile rhyo-
lite and Tuff of Hawley Spring are similarly normal-\(\delta^{18}O\) rhyolites
\(\delta^{18}O_{\text{melt}} = 7.7\%\), 7.1% accordingly) with extremely low-\(\epsilon\)Nd (−23, −30.9 accordingly). Due to the similarities in the TAV, Two-
and-a-Half Mile rhyolite, and Tuff of Hawley Spring, we consider
the Two-and-a-Half Mile rhyolite to be a post-TAV lava flow de-
Table 1

Ages and compositions of Picabo ignimbrites and lavas in this study. The $^{206}\text{Pb}^{238}\text{U}$ concordia ages have been disequilibrium corrected and are shown with 95% confidence intervals. Ar–Ar and K–Ar (italicized) ages are included for comparison. The zircon δ^{18}O range of individual zircon core measurements (zrc range) is presented with a one-sigma standard deviation (see the supplementary material for individual zircon data). The δ^{18}O value of quartz (qtz), plagioclase (plag), and pyroxene (pyrx) is also reported. The δ^{18}Omelt composition was calculated from the quartz and plagioclase phenocryst δ^{18}O measured compositions and from known fractionation factors between the mineral and melt for the average temperature of 850°C (Bindeman and Valley, 2003). Liquidus temperatures (liq) represent the first appearance of feldspar or quartz, and were calculated using rhyolite MELTS at a pressure of 1.5 kilobars, 3-wt% H$_2$O (using a water content of 1.5 wt% would shift temperatures upwards by \sim50°C), and QFM oxygen fugacity. Zircon saturation temperatures (zrc sat) were calculated from whole rock compositions, specifically major elements and zirconium (Miller et al., 2003; Hanchar and Watson, 2003).

$$\epsilon_{\text{Hf}}(0)$$ is the current $$\epsilon_{\text{Hf}}(t = 0)$$ (see Appendix for $$\epsilon_{\text{Hf}}$$ at time of formation).

<table>
<thead>
<tr>
<th>Unit</th>
<th>Sample</th>
<th>Abbr.</th>
<th>K/Ar–Ar age (Ma)</th>
<th>U–Pb age (Ma)</th>
<th>δ^{18}O (%)</th>
<th>δ^{18}Omelt (%)</th>
<th>Temp (°C)</th>
<th>$^{87}\text{Sr} / ^{86}\text{Sr}$</th>
<th>$^{143}\text{Nd} / ^{144}\text{Nd}$</th>
<th>$\epsilon_{\text{Nd}}(0)$</th>
<th>$\epsilon_{\text{Hf}}(0)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tuff of Arbon Valley (upper)</td>
<td>PC-14</td>
<td>TAVU</td>
<td>10.2 ± 0.05</td>
<td>8.41 ± 0.27</td>
<td>7.8</td>
<td>7.9</td>
<td>835</td>
<td>0.7252</td>
<td>0.51171</td>
<td>-18</td>
<td>-18</td>
</tr>
<tr>
<td>Tuff of Arbon Valley (lower)</td>
<td>PC-12</td>
<td>TAVL</td>
<td>8.83 ± 0.27</td>
<td>8.33 ± 0.12</td>
<td>7.6</td>
<td>7.7</td>
<td>765</td>
<td>0.71948</td>
<td>0.72078</td>
<td>0.51145</td>
<td>-23.2</td>
</tr>
<tr>
<td>Tuff of Little Chokecherry Canyon</td>
<td>PC-71</td>
<td>CC</td>
<td>9.7 ± 0.12</td>
<td>-</td>
<td>-</td>
<td>8.08</td>
<td>765</td>
<td>0.71194</td>
<td>0.72013</td>
<td>-6.2</td>
<td>-6.2</td>
</tr>
<tr>
<td>Two and a Half Mile Rhyolite</td>
<td>PC-20</td>
<td>TFM</td>
<td>9.1 ± 0.12</td>
<td>-</td>
<td>-</td>
<td>8.08</td>
<td>765</td>
<td>0.71234</td>
<td>0.51237</td>
<td>-6.5</td>
<td>-6.5</td>
</tr>
<tr>
<td>INEL-3686"</td>
<td>INEL-1</td>
<td>INEL</td>
<td>8.31 ± 0.22</td>
<td>8.27 ± 0.27</td>
<td>7.5</td>
<td>7.64</td>
<td>881</td>
<td>0.71234</td>
<td>0.51237</td>
<td>-6.2</td>
<td>-6.2</td>
</tr>
<tr>
<td>West Pocatello rhyolite</td>
<td>PC-01</td>
<td>PR</td>
<td>8.25 ± 0.26</td>
<td>-</td>
<td>-</td>
<td>8.3</td>
<td>877</td>
<td>0.71169</td>
<td>0.71231</td>
<td>-6.5</td>
<td>-6.5</td>
</tr>
<tr>
<td>Tuff of American Falls</td>
<td>PC-34</td>
<td>TAF</td>
<td>7.53 ± 0.27</td>
<td>7.91 ± 0.16</td>
<td>5.81</td>
<td>5.74</td>
<td>881</td>
<td>0.71197</td>
<td>0.71218</td>
<td>-6.9</td>
<td>-5.7</td>
</tr>
<tr>
<td>Hawley Spring</td>
<td>PC-76</td>
<td>HS</td>
<td>7.2 ± 0.12</td>
<td>7.61 ± 0.12</td>
<td>4.30 – 5.90</td>
<td>7.1</td>
<td>806</td>
<td>0.71234</td>
<td>0.51237</td>
<td>-31.5</td>
<td>-31.5</td>
</tr>
<tr>
<td>Tuff of Lost River Sinks</td>
<td>PC25</td>
<td>TLSR</td>
<td>8.81 ± 0.12</td>
<td>7.05 ± 0.13</td>
<td>6.12</td>
<td>6.08 – 5.73</td>
<td>837</td>
<td>0.71204</td>
<td>0.71276</td>
<td>0.51211</td>
<td>-10.3</td>
</tr>
<tr>
<td>Rhyolite of Steven’s Peak 2</td>
<td>PC-19</td>
<td>SP2</td>
<td>6.86 ± 0.19</td>
<td>6.41 ± 0.14</td>
<td>4.1</td>
<td>4.12 – 4.64</td>
<td>862</td>
<td>0.71052</td>
<td>0.71094</td>
<td>0.51224</td>
<td>-7.8</td>
</tr>
<tr>
<td>Rhyolite of Steven’s Peak</td>
<td>PC-16</td>
<td>SP</td>
<td>9.8 ± 0.12</td>
<td>6.62 ± 0.12</td>
<td>5.37</td>
<td>5.37 – 5.32</td>
<td>813</td>
<td>0.71094</td>
<td>0.71225</td>
<td>0.51225</td>
<td>-7.6</td>
</tr>
<tr>
<td>Lower Jim Sage</td>
<td>PC-62</td>
<td>JS</td>
<td>9.46 ± 0.09</td>
<td>9.44 ± 0.10</td>
<td>9.46</td>
<td>9.46 – 9.46</td>
<td>856</td>
<td>0.71094</td>
<td>0.71225</td>
<td>-7.6</td>
<td>-7.6</td>
</tr>
<tr>
<td>Upper Jim Sage</td>
<td>PC-63</td>
<td>JS</td>
<td>8.21 ± 0.15</td>
<td>-</td>
<td>-</td>
<td>8.21</td>
<td>874</td>
<td>0.71094</td>
<td>0.71225</td>
<td>-7.6</td>
<td>-7.6</td>
</tr>
</tbody>
</table>

a Denotes Ar–Ar age from Anders et al. (2009).
b Denotes K–Ar age from Kellogg et al. (1994).
c Denotes K–Ar age from Kellogg and Marvin (1988).
d Denotes K–Ar age from Morgan et al. (1984).
e Denotes U–Pb age and data from McCurry and Rodgers (2009).
f Denotes U–Pb age from Konstantinou et al. (2012).

* Denotes the major caldera-derived ignimbrites.
rived from the proposed caldera ring fracture, and the Tuff of Hawley Spring to be a TAV outflow deposit.

On the northern side of the plain the oldest Idavada units (1 through 3) underlying the Tuff of Little Chokecherry Canyon (9.3 Ma), but overlying Eocene Challis volcanics, also have normal δ^{18}O$_{melt}$ values of 7.0%o, 6.9%o and 6.6%o, respectively. We propose that these rhyolites are related to the TAV due to the presence of biotite and low ϵ_{Nd} values (-14.5). The overlying 9.3 Ma Tuff of Little Chokecherry Canyon rhyolite has a lower δ^{18}O$_{melt}$ value of 4.8%o and a primitive ϵ_{Hf} of -7.7.

The sequence of eruptions that followed included the voluminous 8.25 Ma West Pocatello rhyolite and the 7.91 Ma Tuff of American Falls. The West Pocatello rhyolite possesses the lowest δ^{18}O$_{melt}$ value (3.3%o) and highest ϵ_{Nd} (6.5) and ϵ_{Hf} (-5.5) found at the Picabo volcanic field (Fig. 4c). We correlate the West Pocatello rhyolite to a rhyolite of the INEL-1 borehole based on nearly identical ϵ_{Nd} (-6.5 and -6.2) and zircon U-Pb ages (8.25±0.26, 8.27±0.27, respectively). We consider these units to be coeval extracaldera and intracaldera parts of the same voluminous low-δ^{18}O eruption. The dacitic Tuff of American Falls is comparable to the West Pocatello rhyolite (within U-Pb dating error) in that its has low-δ^{18}O$_{melt}$ (4.1%o), and primitive ϵ_{Nd} (-6.87) and ϵ_{Hf} (-5.7) (Fig. 2, Table A3.1).

The three youngest Picabo units (7.05–6.62 Ma; Table 1), the Tuff of Lost River Sinks, Stevens Peak rhyolite, and a newly identified unit, Stevens Peak 2, have moderately low and distinct δ^{18}O$_{melt}$ values (5.0%o, 5.9%o, and 4.7%o, respectively), which are higher than the West Pocatello rhyolite (Figs. 5, 6a, b). Each of these three units has subtle differences in δ^{18}O and U-Pb age of zircons, and critical differences in whole rock chemistry, mineralogy and Sr–Nd–Hf isotopic values (Table 1) that provides evidence that these samples represent distinct eruptions (Tables A3.1, A3.2). Stevens Peak 2 and Stevens Peak rhyolites have relatively primitive ϵ_{Nd} signatures of -7.8 and -7.6, respectively as well as primitive ϵ_{Hf} of -9.7 and -9.5, respectively.

We found that the 7.05 Ma Tuff of Lost River Sinks displays striking similarities to the Blacktail Creek Tuff of the younger Heise volcanic center in zircon U-Pb ages, normal-δ^{18}O melt and zircon compositions (Fig. 6a), whole rock geochemistry, 87Sr/86Sr (0.00034 difference), and ϵ_{Nd} (0.55 difference). We do observe minor mineral abundance differences on the order of 5%; however, the phenocryst identities and morphologies are very similar. Due to the isotopic and chemical similarities in the Blacktail Creek Tuff of the Heise volcanic center and the Tuff of Lost River Sinks we consider these units to be related, and therefore we do not associate the Lost River Sinks rhyolite with Picabo volcanism. The Tuff of Lost River Sinks also underlies the Blacktail Creek Tuff at the sampling locality, further supporting that these rhyolites are related.

The thick (~1 km) suite of rhyolitic lavas and a thin capping ignimbrite exposed in the Jim Sage and Cotterel Mountains (Fig. 1) (Covington, 1983; Konstantinou et al., 2012; Pierce et al., 1983) were found to have low-δ^{18}O$_{melt}$ values (Jim Sage melt: 2.8 to 4.0%o; Cotterel Mt: 3.0%o). We also note that the trace and major element characteristics of the Jim Sage and Cotterel Mt. volcanics fall within the SRP rhyolite range (Fig. 2). On the southeast side of the proposed Picabo caldera we found the Hawkins Basin rhyolites.
Fig. 3. a. Strontium variation with SiO2 for Picabo rhyolites, Jim Sage and Cotterell Mt. rhyolites, Hawkins Basin volcanics, and Challis volcanic and intrusives, in comparison to typical Snake River Plain rhyolites and western U.S. volcanics: Quaternary Craters of the Moon volcanic suite and Oligocene Great Basin rhyolites (modified from Christiansen and McCurry, 2008). The Sr-rich nature of the Great Basin volcanics is a result of wet conditions suppressing plagioclase crystallization.

b. Discriminant diagram of Rb versus Nb + Y for different fields of granite to demonstrate how Snake River Plain rhyolites consistently have a within plate geochemical signature (discriminant diagram of Pearce et al., 1984; modified from Christiansen and McCurry, 2008).

(6.09–6.63 Ma; Pope, 2002) to have normal δ18O_melt values (6.8 to 7.4‰). These rhyolites demonstrated significantly different trends in Zr, Ba, Rb/Sr, and K2O with SiO2 than the majority of compiled Picabo, Heise, BJ, TF and Yellowstone samples indicating contrasting fractionation trends (Fig. 2, Figs. A5.3a–c). We do not consider the Hawkins Basin volcanics to be related to Picabo volcanism.

4.3. Heterogeneous δ18O in zircons

High-resolution δ18O analyses of zircon cores were compared within individual samples, between samples, and to major phenocryst δ18O compositions. As previously mentioned, major phenocrysts (quartz and plagioclase) display homogeneous δ18O and are in equilibrium with the melt, however the TAV is one exception in that quartz δ18O values were found to be variable up to ~1‰ (within an individual TAV sample). Zircons on the other hand display appreciable heterogeneity within individual samples indicating magmatic disequilibrium (Fig. 6b).

As shown in Fig. 6a, the most significant trends in δ18O_melt are the lowering from the 8.3‰ TAV to the 3.3‰ West Pocatello rhyolite, with a subtle recovery in δ18O in the waning stages. The initial decrease and later recovery in δ18O through time also corresponds to an increase in δ18O_zircon heterogeneity from ~1‰ variation in the TAV up to 5‰ in the lower δ18O units. The two xenocryst zircons that are 1.3 million years older than the main zircon population have the same normal-δ18O_zircon composition. The other five Picabo rhyolites have larger δ18O_zircon ranges of 1.6–5.1‰ within individual samples, which is well outside the 2σ-reproducibility for a homogeneous zircon standard (~0.5‰). Stevens Peak 2 has the greatest variability in δ18O_zircon (1.3 to 6.4‰), with the majority of zircons from 2.4 to 4.4‰.

The two inherited zircons are 1.42 million years older, but are within the same normal δ18O range as the primary magmatic zircon population.

5. Discussion

5.1. Defining the existence of unexposed calderas at Picabo

We use the following lines of evidence to support the existence of nested calderas in the Picabo volcanic field, which allows us to interpret and characterize the geochemical evolution of the series of eight ignimbrites and lavas we have associated with Picabo (Table 1):

(1) Several thick (10’s to >100 m) ignimbrite outflow-sheets with great spatial extent at the northern and southern margins of the plain, with ages between 10.4 and 6.6 Ma.
(2) Geochemical and geochronological correlation of one 8.25 Ma Picabo ignimbrite, the West Pocatello rhyolite, with a 1000 m thick intracaldera fill from the INEL-1 borehole.
(3) Unique geochemical and isotopic compositions of dated Picabo rhyolites in comparison to contemporaneous eruptions...
Fig. 4. a. Binary mixing model of 87Sr/86Sr versus 143Nd/144Nd of Picabo rhyolites, in comparison to surrounding eruptive centers (Heise, Yellowstone and Bruneau–Jarbidge), Challis intrusives (87Sr/86Sr = 9 Ma), Idaho batholith (87Sr/86Sr = 9 Ma) and crustal xenoliths. 87Sr/86Sr, 143Nd/144Nd, Sr, and Nd crustal xenolith data from Leeman et al. (1985) was averaged and one standard error in 87Sr/86Sr was used for the crustal end-members for the binary mixing lines. The average composition of 87Sr/86Sr, 143Nd/144Nd, Sr, and Nd is 0.73199 ± 0.00109, 0.51079 ± 0.00013, 347.16, and 18.22 accordingly. The Sr and Nd data of Yellowstone basalts (Hildreth et al., 1991) was averaged and a composition of 0.7063, 0.5124, 300 ppm, and 23 ppm accordingly, was used to represent the primitive SRP end-member. The basalt field demonstrates the variability in basalt throughout the Snake River Plain (includes data from Camp and Hanan, 2008; Hughes et al., 2002; Graham et al., 2009).

b. 87Sr/86Sr of Picabo, Heise, and Bruneau–Jarbidge/Twin Falls rhyolites through time. Gray lines are Ar–Ar ages (Anders et al., 2009; Kellogg et al., 1994) of the Tuff of Arbon Valley, Pocatello Rhyolite and Tuff of American Falls. The two points for the Tuff of Arbon Valley are representative of the lower and upper tuff and demonstrate the large vertical isotopic zoning. U–Pb age error bars are one standard error.
c. 143Nd/144Nd versus 1/Nd of Picabo and surrounding volcanic centers in comparison to Yellowstone basalts, Archean crustal xenoliths, and Challis intrusives. The gray field represents the approximate range of Archean crust in 143Nd/144Nd (McCurry and Rodgers, 2009).
In order to assess the petrogenesis of large-volume, isotopically-distinct magmas erupted from the Picabo volcanic field of the eastern SRP, we use a suite of stable and radiogenic isotopic data to quantify the proportions of the mantle, lower crust, and upper Archean and hydrothermally-altered crust in Picabo rhyolites.

Volcanism began at the Picabo volcanic field with the eruption of the normal-δ18O TAV, with extremely radiogenic Sr and less radiogenic Nd and Hf isotope ratios (Figs. 4a-c, 7a), supporting derivation from melting of significant portions of Archean and hydrothermally-altered crust in Picabo rhyolites.

The majority of eruptions following the TAV were low-δ18O, and all possess more primitive radiogenic isotopic signatures, requiring a greater proportion of lower crustal granulite can better reproduce trace element signatures (Rb, Th, U, and Pb) of most SRP rhyolites. However, the moderately elevated 87Sr/86Sr of all Picabo rhyolites also suggests these magmas sampled a greater portion of Archean crust than surrounding centers (Fig. 4b). The 9.7 Ma Tuff of Little Chokecherry Canyon and 9.44 Ma Jim Sage rhyolite (Konstantinou et al., 2012) are low-δ18O, and there is evidence for low-δ18O zircons of 9.43 ± 0.36 Ma (Fig. 6a) indicating that low-δ18O volcanism started between 9.7 and 9.4 Ma, ≤1 million years after the eruption of the TAV.

The West Pocatello rhyolite and Tuff of American Falls were sourced from a magma reservoir containing entrained xenocrysts (1035 and 580 Ma) and zircons derived from pure crustal melts with extreme εHf(0) as low as −38 (Fig. 7), further corroborating evidence that the later Picabo rhyolites received upper crustal input, although the isotopic signature reflects an overwhelming basaltic component. The later eruptions, Stevens Peak and Stevens Peak 2 rhyolites, were also relatively isotopically primitive, and possess δ18O higher than the West Pocatello rhyolite, suggesting that observed isotopic trends are not uniform throughout the eruptive sequence and after the initial lowering of δ18O there is recovery to more elevated δ18O and lower εHf(0).

5.3. Mechanisms of generating low-δ18O rhyolites at the Picabo volcanic field

With the discovery of abundant low-δ18O rhyolites at Picabo, it now appears that the presence of voluminous low-δ18O rhyolites characterizes nearly all caldera complexes in the SRP. Bindeman et al. (2008) and Watts et al. (2011) proposed that the process for generating Yellowstone and Heise low-δ18O rhyolites is nested caldera collapse, with repeated caldera formation (at least two nested calderas) creating conditions for hydrothermal alteration and subsequent remelting of buried intracaldera tuffs. This mechanism of bulk cannibalization of erupted pyroclastic rocks leads to the formation of voluminous low-δ18O rhyolites at the end of caldera cluster evolution in the eastern SRP. In the CSRP, persistently low-δ18O volcanism from the exposed inception of volcanic activity has led Boroughs et al. (2005, 2012) to advocate that the low-δ18O signatures in the CSRP predate volcanism and are derived from hydrothermally altered crustal material from the Idaho batholith. However, the vast majority of the Idaho batholith and Archean crustal rocks in the SRP are high-δ18O (Criss and Fleck, 1987; King and Valley, 2001), and thus are an unlikely source of voluminous low-δ18O magmatism. The Idaho batholith is also too far west of the Picabo volcanic field (Fig. 1a) to have provided a crustal source for Picabo magmas.

There is compelling geologic evidence (i.e., spatial distribution) that both the TAV, Chokecherry Canyon rhyolite, and West Pocatello rhyolite were formed as a result of caldera collapse in the SRP. However, whether a caldera formed between the TAV and the Tuff of Little Chokecherry Canyon remains unknown. The presence of older normal-δ18O units followed by low-δ18O units at Picabo seemingly supports the genesis of low-δ18O magmas at Picabo by the nested caldera model proposed for Heise and Yellowstone. In this scenario, hydrothermally altered intracaldera TAV is the source of later low-δ18O melts. However, the “upper crustal” geochemo-physical characteristics of the TAV would require at least 50% dilution by SRP basalt to justify the more primitive radiogenic isotopic signature of later erupted, low-δ18O units (Fig. 4a). In addition, the lack of intermediate δ18O values between the TAV and Chokecherry Canyon–West Pocatello rhyolites presents mass balance challenges because it is unknown whether intracaldera TAV reached sufficient depths to be remelted at the time of the first low-δ18O magma genesis. While this is not inconceivable, an alternative explanation is that the voluminous 9–7 Ma low-δ18O volcanism at the Picabo volcanic field shares some similarities with the “persistent” low-δ18O volcanism at the BJ-TF centers to the west (Fig. 6a) (Cathey and Nash, 2009; Seligman, 2011).
Fig. 6. a. Compilation of δ¹⁸O compositions and U–Pb ages of individual zircons determined by ion microprobe. Calculated melt values are shown by the solid (Picabo) and dashed (Heise and Bruneau Jarbidge–Twin Falls) lines. Bruneau–Jarbidge/Twin Falls and Heise melt compositions are from Bonnichsen et al. (2008) and Watts et al. (2011), accordingly. Heise Ar–Ar ages are from Morgan and McIntosh (2005) and Picabo Ar–Ar ages (and K–Ar ages) are from Anders et al. (2009), Kellogg and Marvin (1988), and Kellogg et al. (1994), and are all shown by solid vertical gray lines. U-Pb age error bars are drawn at 1 standard error, and the δ¹⁸O error bar reflects the weighted average of the standard errors (0.29 for 97 analyses). The colored bars at the top of the figure signify the approximate eruption duration of the three volcanic centers: Twin Falls, Picabo, and Heise, highlighting the presence of contemporaneous eruptions from different volcanic centers. The δ¹⁸O melt curve is calculated from the δ¹⁸O of major phenocrysts, plagioclase and quartz (same as Fig. 5). b. Summary of δ¹⁸O zircon heterogeneity with average U–Pb age. Each bar corresponds to the range of δ¹⁸O zircon measured for each sample. The dotted line is the calculated zircon equilibrium δ¹⁸O, 1.8‰ less than the calculated melt δ¹⁸O, emphasizing the presence of disequilibrium zircons in the erupted rhyolites. Ranges of δ¹⁸O for Heise and Yellowstone are derived from Watts et al. (2011) and Bindeman et al. (2008), respectively.

Without definitive evidence that caldera clusters existed during eruption of the first low-δ¹⁸O rhyolite at Picabo, we search for alternative source rocks (other than buried and hydrothermally altered TAV) to be melted, and mechanisms (other than caldera collapse) to expedite hydrothermal alteration and melting. The possible source rocks include: (1) “Picabo” age intracaldera tuffs of 10.4–9.0 Ma that have not been identified near the surface, or in the INEL-1 borehole; (2) far-traveled ignimbrite units derived from the west, TF in particular, which preceded or were coeval with early Picabo volcanism; and (3) Eocene Challis volcanics. These potential source rocks could be hydrothermally altered by low-δ¹⁸O meteoric waters syneruptive, during uplift and SRP plume-crust interaction, or during TAV caldera collapse. We include Challis as a potential source because Challis intrusives and volcanics: (1) are regionally abundant and exposed proximal to the Picabo volcanic field (Fig. 1a); (2) are already low-δ¹⁸O in certain regions of Idaho due to syneruptive water-rock interaction (locally down to −8.8‰; Criss et al., 1991), however hydrothermal alteration is heterogeneous and sporadic; and (3) possess more primitive isotopic compositions (−3.5 to −19.7 εHf(0); Gaschnig et al.,...
would be closer to the heat source than intracaldera TAV for melting and generation of the first low-$\delta^{18}O$ magmas < 1 m.y. after the TAV eruption. In this scenario, the purpose of the TAV caldera collapse is to create conditions for burial, further hydrothermal alteration, and melting without contributing mass. It is also likely that the 10.4 Ma TAV plutonic residuum was already fully crystalline by the time of voluminous low-$\delta^{18}O$ Picabo volcanism at \sim9.7 Ma, and could therefore be cross-cut by the invading basalt towards melted proposed sources in the intracaldera block.

An additional mechanism (other than caldera collapse) that would facilitate hydrothermal alteration and the juxtaposition of the proposed source rocks and heat source (required for melting) is Basin and Range extension (Fig. 8). We suggest that pre-modification of the crust due to Basin and Range extension, as well as SRP-plume driven extension would have allowed for hydrothermal alteration prior to caldera collapse. During Basin and Range extension, the formation of normal and detachment faults would down-drop the altered source units and provide additional heating and fracturing necessary to further elevate water-rock ratios, facilitating hydrothermal alteration in the upper crust. We advocate that the exhumation of metamorphic core complexes is one mechanism by which Basin and Range extension can facilitate hydrothermal alteration and production of low-$\delta^{18}O$ rhyolites. For example, exhumation of metamorphic core complexes has been specifically proposed for the Jim Sage Mts (Konstantinou et al., 2012), on the southern margin of the SRP between the Pocatello and TF volcanic fields (Fig. 1). Konstantinou (2011) describes the Jim Sage volcanics as being erupted from small eruptive centers along the Raft River Detachment-Albion Fault system, which exhumed the local metamorphic core complex, and proposed that associated faulting could have facilitated deep magma migration from the SRP. Konstantinou (2011) also allows for the possibility that the Jim Sage volcanics are associated with SRP volcanism. Although Basin and Range extension coeval with Picabo magmatism is not required to produce the rhyolites observed it would further facilitate the process and demonstrate the intertwined history of local tectonics and plume-driven magmatism in the SRP.

This model which we propose for “pre-modification” of the crust with respect to $\delta^{18}O$ applies to the CSRP (BJ-TF) and Picabo center where an overabundance of low $\delta^{18}O$ rhyolites are observed. However, caldera collapse is still an important pre-requisite to bring “pre-altered” source rocks closer to underlying heat sources, thus requiring the magma storage be shallow (Almeev et al., 2012). Our model has critical differences from the model proposed by Leeman et al. (2008), because we suggest that it is unlikely that: 1) water will travel up the temperature gradient; 2) water will remain isotopically unaffected on the descent to mid-crustal depths of 500–700 °C at 15 km; and 3) such great depths will have the necessary porosities for effective water-rock interaction. We postulate that in order to imprint significant low-$\delta^{18}O$ signatures on tens of thousands of cubic kilometers of source rocks (thousands of which are required to be melted to generate low-$\delta^{18}O$ SRP magmas), a fundamental two-stage process is required. First, shallow interaction between heated meteoric waters and source rocks with large porosities at high water-rock ratios; second, melting of these source rocks at depth following burial. A plume-derived heat source can induce shallow hydrothermal alteration and melting, which can be further facilitated by the heat supplied during exhumation of metamorphic core complexes. Therefore rift burial during Basin and Range extension and burial during caldera collapse can create conditions suitable for remelting of the surface-altered rocks.

Fig. 7. a. $\epsilon_{Hf}(t)$ versus U-Pb age of individual zircons from Picabo rhyolites with evolution lines of depleted mantle, CHUR (chondrite uniform reservoir) and average continental crust composition at various ages. One-sigma error bars are shown for the age and two-sigma error bars for $\epsilon_{Hf}(t)$. b. $\epsilon_{Hf}(0)$ versus $\delta^{18}O$ of individual zircons from Picabo rhyolites. The inferred crust composition is the average $\delta^{18}O$ of SRP xenoliths from Watts et al. (2010) and the average ϵ_{Hf} of Archean crust worldwide (Vervoort and Patchett, 1996). The Challis field is approximated from average whole rock $\delta^{18}O$ of Challis volcanics (Crisp et al., 1991) and whole rock ϵ_{Hf} of Challis intrusives (Gaschnig et al., 2011). The low $\delta^{18}O$ Challis deposits range from 1.6 to \sim8%, and although these values are not representative of the entire Challis deposit they serve as an end-member for low $\delta^{18}O$ Challis volcanics. The dotted lines are individual binary mixing models between the Challis and mantle (gray-dotted) and Archean crust and mantle (black-dashed) with individual tick marks corresponding to 10% increments. Two sigma error bars are shown for $\epsilon_{Hf}(0)$ and one sigma error bars for $\delta^{18}O$.
Mechanism I: Caldera cluster formation

central SRP

δ¹⁸O < -10‰

Heise and Yellowstone

Challis/and or
pre-existing volcanics
Archean basement

Mid-crustal sill

Basaltic intrusions

unmelted crust

digested crust

Mechanism II: Basin and Range extension and formation of metamorphic core complexes.

8 \%

Degree of hydrothermal alteration

-4 \%

Low δ¹⁸O, zircon
saturated melt

Normal δ¹⁸O, zircon
undersaturated melt

δ¹⁸O < -10‰

Extension

Heat provided by
the metamorphic
core complex

Challis/and or
pre-existing volcanics
Metamorphic core complex
Sedimentary Fill

Fig. 8. Summary of the petrogenetic mechanisms proposed for generating low-δ¹⁸O rhyolites at the Picabo volcanic field. The general features applicable to both mechanisms are a mid-crustal sill developing near the brittle-ductile transition of the crust, individual pockets of rhyolite melt forming from remelting gabbro with heat input from the pervasive basalt supply, alteration by low-δ¹⁸O meteoric water, and generation of variable δ¹⁸O signatures. Mechanism I demonstrates how repeated caldera formation results in the formation of a caldera cluster, and the progressive lowering of intracaldera rhyolite, bringing these units closer to basaltic intrusions (Bindeman and Valley, 2001; Watts et al., 2011). Hydrothermal alteration of buried deposits is shown by the blue to yellow gradient, emphasizing the heterogeneity of alteration we propose to be present. We also illustrate smaller lava flows between caldera forming eruptions that sample pockets of rhyolite melt with variable δ¹⁸O compositions. As the North American plate migrates over the mantle plume, the crust, modified by basaltic intrusions, is progressively digested. Mechanism II demonstrates one example of how extensional tectonics of the Basin and Range can modify the crust and facilitate hydrothermal alteration. The exhumation of a metamorphic core complex is shown (modified from Rey et al., 2009), which facilitates hydrothermal alteration by extensive faulting coupled with the heat input from the intruded igneous and metamorphic rocks. The exhumation of this core complex causes a pre-modification of the crust with respect to δ¹⁸O. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

5.4. Significance of zircon δ¹⁸O diversity and Hf homogeneity in voluminous tuffs

The zircon heterogeneity, which we now observe at Picabo, suggests that isolated pockets of melt with unique δ¹⁸O signatures were derived from variably altered volcanic predecessors and rapidly assembled prior to eruption. These individual pockets of melt were of variable temperature and zircon saturation, and therefore not all pockets of melt crystallized zircons. In order to preserve the observed O isotope diversity on a cm-scale these pockets of melt had to be thoroughly mixed prior to eruption. By retaining heterogeneous δ¹⁸O signatures, many of the zircons are erupted in disequilibrium with the host melt. The lack of inherited zircons also implies that zircons dissolved and re-precipitated from these pockets of diverse δ¹⁸O melt. In contrast to the heterogeneous zircon δ¹⁸O, we observe homogeneous zircon Hf isotope signatures for all analyzed Picabo rhyolites. The presence of zircons diverse in δ¹⁸O and homogeneous in εHf (Fig. 11) suggests that the zircons crystallized after remelting variably hydrothermally-altered tuffs (affecting δ¹⁸O, but not Hf), which themselves were already homogenized in whole rock εHf isotopic composition during earlier magmatism and convection. The occasional low-εHf(0) zircon xenocrysts indicate that Archean crust was added to the low-δ¹⁸O magma chambers as well, but in small proportions (Fig. 10).

These diverse zircons and their host batches were assembled in a single reservoir and erupted without delay to prevent annealing by diffusion and solution-reprecipitation. We speculate that the process of rapid coalescence of individual (diverse in δ¹⁸O) shal-
low magma batches may be the trigger for the caldera-forming eruptions, and could have occurred in response to an increased supply of basalt at the base of the magma chamber (e.g. Simakin and Bindeman, 2012). This increased supply of basalt could result in catastrophic magma assembly by merging individual magma batches, density destabilization of the caldera roof, and a caldera-forming eruption of low-δ^{18}O tuffs with diverse zircons.

5.5. Origin of silicic volcanism at the Picabo volcanic field and in the SRP

With the discovery of new rhyolites with diverse δ^{18}O compositions at the Picabo volcanic field it is now evident that nearly all SRP caldera clusters for the past \sim16 Ma have produced voluminous low-δ^{18}O rhyolites, either at the end of caldera cluster evolution (Yellowstone, Heise), or throughout the eruptive sequence (CSRP). Picabo shares key similarities with Heise and Yellowstone, having produced initially normal-δ^{18}O magmas followed by voluminous low-δ^{18}O rhyolites in the later stages of caldera complex evolution. Like the voluminous low-δ^{18}O Kilgore Tuff of the Heise volcanic field (Watts et al., 2011), Picabo’s low-δ^{18}O rhyolites (West Pocatello rhyolite, Tuff of Little Chokecherry Canyon, Tuff of American Falls, Stevens Peak, and Stevens Peak 2) possess diverse zircon populations. This transition from normal- to voluminous low-δ^{18}O rhyolites happens at all three centers after a \sim2 Ma time delay from the onset of the first voluminous normal-δ^{18}O rhyolitic tuff eruption. At Picabo, <1 Ma separates eruption of the normal-δ^{18}O TAV from the low-δ^{18}O Tuff of Chokecherry Canyon.

At Heise and Yellowstone, it appears that two to three nested caldera collapses are required to produce \sim1000 km3 of low-δ^{18}O rhyolites, therefore the predominance of low-δ^{18}O rhyolites at Picabo suggests that it shares similarities with the western eruptive centers, BJ–TF, whose exposed sections display overabundant low-δ^{18}O rhyolites with diverse zircons throughout the eruptive sequence. As we discussed above, these similarities suggest that a pre-modification of the crust was made possible in Basin and Range rift zones, and accelerated the process of low-δ^{18}O magma genesis at Picabo and volcanic fields to the west.

Another important result from our study is that there is significant spatiotemporal overlap between volcanism at TF–BJ, Picabo and Heise, indicating that eruptions at these various volcanic fields were contemporaneous during the transition between eruptive centers (Fig. 6a). However, the waning cycle of low-δ^{18}O volcanism in the BJ–TF centers, represented mostly by lavas (10.5–8 Ma), display universally low-δ^{18}O signatures (Bonnichsen et al., 2008; Boroughs et al., 2005; Ellis et al., 2010; Seligman, 2011), while the contemporaneous and newly developing Picabo center started with large-volume normal-δ^{18}O ignimbrite eruptions at 10.44 Ma. Likewise, the latest stages of volcanism at Picabo from 8.25–6.62 Ma were characterized by low-δ^{18}O values and diverse zircons, while the contemporaneous eruptions at Heise began with the normal-δ^{18}O Blacktail Creek Tuff with more homogenous zircons (newly determined; Fig. 6a, inset). Late-stage low-δ^{18}O Picabo eruptions reached a maximum δ^{18}O$_{melt}$ of 5.9‰, a close yet distinguishable δ^{18}O difference between the contemporaneous Heise and Picabo rhyolites.

Our new zircon U–Pb geochronology data also reveal a decreasing lifespan of each caldera complex across the Yellowstone hotspot track. Large-volume ignimbrite volcanism in the BJ–TF complexes spans \sim12.8–10.5 Ma, followed by lavas as young as 6 Ma (Bonnichsen et al., 2008), thus BJ–TF has a lifespan of \sim4–6 million yr. Picabo volcanism spans \sim3.8 million yr (this study), Heise spans \sim2.6 million yr (Watts et al., 2011) and Yellowstone spans \sim2.0 million yr (Christiansen, 2001). Coupled with the decreasing lifespan is a decrease in the number of caldera-forming eruptions: BJ–TF (abundant, \sim10–12), Picabo (\sim3–6), Heise (4) and Yellowstone (3). We interpret these spatiotemporal trends in eruption frequency and volcanism duration as reflecting a combination of the following: increasing thickness of the lithosphere from 40 km beneath TF to 47 km beneath Yellowstone (Yuan et al., 2010), and/or decreasing potency of the Yellowstone plume (Bonnichsen et al., 2008).

6. Conclusions

The Picabo eruptive center produced a series of voluminous rhyolites from 10.4–6.6 Ma that become progressively lower in magmatic δ^{18}O and more heterogeneous in zircon δ^{18}O through time. These trends are similar to what has been observed at Heise and Yellowstone, underscoring the importance of recycling hydrothermally altered intracaldera rhyolites at the end of caldera cluster evolution. In addition, similarities to BJ–TF suggest that coeval rifting, extension, and metamorphic core complex formation may further promote hydrothermal alteration and production of low-δ^{18}O source rocks. It now appears that at Picabo, Heise, and Yellowstone the eruption of \sim1000 km3 of low-δ^{18}O rhyolites with diverse zircon crystal cargoes heralds the end of caldera cluster evolution, and after volcanism initiates at a new location with normal-δ^{18}O values and homogeneous zircon populations. The heterogeneous zircon population in late-stage low-δ^{18}O magmas supports our petrogenetic model that previously erupted tuffs and their subvulkanic roots were variably altered and lowered in δ^{18}O, and subsequently re-melted or “cannibalized” at the crustal-scale, causing the silicic crust to become more refractory and mafic. Our work also demonstrates the importance of large-scale batch assembly occurring on timescales more rapid than O isotope re-equilibration of zircons, but long enough to chemically homogenize the melt and δ^{18}O composition of phenocrysts. Picabo, is the third youngest volcanic field of the Yellowstone hotspot track, and the isotopic evolution of the suite of rhyolites we have studied contributes to our growing understanding of past and future magmatic activity at Yellowstone.

Acknowledgements

We thank Dylan Colon for analytical help and fieldwork assistance, Jim Palandri, Ben Ellis, Frank Ramos, Chris Fisher, and Jeff Vervoort for their analytical help, Les Kinsely for assistance with LA-MC-ICP-MS analysis, and Richard Gaschnig for contributing Challis intrusive samples. We also thank Calvin Miller, Jorge Vazquez, and an anonymous reviewer for their thoughtful reviews, which greatly helped to improve this paper. We also thank Angela Seligman for her help editing. This work was supported by NSF grant EAR/CAREER-844772, and the ion microprobe facility at UCLA utilized during this study is partly supported by a grant from the Instrumentation and Facilities Program, Division of Earth Sciences, National Science Foundation.

Appendix A. Supplementary material

Supplementary material related to this article can be found online at http://dx.doi.org/10.1016/j.epsl.2013.08.007.

References

