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Modern molecular techniques have revealed an extraordinary

diversity of microorganisms, most of which are as yet

uncharacterized. This poses a major challenge to microbial

ecologists: how can one compare the microbial diversity of

different environments when the vast majority of microbial taxa

are usually unknown? Three statistical approaches developed by

ecologists and evolutionary biologists — parametric estimation,

nonparametric estimation and community phylogenetics — are

proving to be promising tools to meet this challenge. The

combination of these tools with molecular biology techniques

allow the rigorous estimation and comparison of microbial

diversity in different environments.
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Introduction
Microbial ecologists, like all ecologists, are often inter-

ested in the factors that regulate community diversity

across temporal and spatial scales, the impact of human

activity on this diversity and the consequences of this

diversity for ecosystem processes. In addition, efficient

exploitation of microorganisms (as sources of novel phar-

maceuticals, for example) requires knowledge of the

distribution of microbial diversity. Investigating these

patterns requires that diversity be compared among dif-

ferent environments. Because of their extremely high

abundance and diversity [1], however, this task has pro-

ven to be very difficult for microbes.

Microbiologists have recently rediscovered that ecologists

and evolutionary biologists studying the diversity of macro-

organisms have developed a range of approaches to docu-

ment and analyze environmental diversity patterns, many

of which may be applicable to microorganisms [2,3,4�].
Although most of this literature concentrates on comparing

species richness (i.e. thenumber of distinct species), most if

not all of these statistics are applicable to taxonomic levels

other than species. This is fortunate for microbial ecolo-

gists, as defining prokaryotic species is difficult [5,6]. Out of

necessity, microbial diversity studies usually examine the

diversity of operational taxonomic units (OTUs). Although

some OTU definitions try to capture a species-like unit,

one can ask valid questions about biodiversity at any level,

as long as the OTU definition is clear and consistent.

Community diversity is more than richness, however. It

also includes evenness, or the relative abundance of

OTUs [2]. A further aspect of community diversity is

the genetic relatedness of the OTUs present. Indeed,

because microbial ecologists often have phylogenetic data

about their communities, they are in a unique position to

compare evolutionary diversity (i.e. genetic distinctness

among communities).

Several approaches to compare diversity have been applied

recently to molecular studies of microbial diversity. In this

review, we discuss three of these new (or, more accurately,

newly rediscovered) approaches: parametric estimation,

nonparametric estimation and community phylogenetics.

The first two approaches are used to compare OTU

richness among environments. The third approach com-

pares evolutionary diversity among environments. Each

approach has its own unique strengths and limitations.

Parametric methods: using species-
abundance models to estimate diversity
Parametric approaches estimate the number of unob-

served OTUs in a community by fitting sample data to

models of relative OTU abundance (traditionally species

abundance). These models include the lognormal ([7],

Figure 1]) and Poisson lognormal [8], among others [9].

The advantage of this approach is that, given a few

simplifying assumptions, one can use the model to esti-

mate diversity from relatively small samples of indivi-

duals from a given environment. Thus, this approach

could be ideal for estimating the diversity of hyperdiverse

organisms such as microbes.

However, there are several impediments to using para-

metric approaches to estimate microbial diversity. The

primary impediment is that there are not large datasets of

microbial diversity data to support the use of any of the

many competing abundance models. In the absence of

empirical data, only theoretical arguments can be made

for the appropriateness of some models over others. For
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example, Tom Curtis, John Dunbar and their respective

colleagues [10��,11�] have recently argued that the growth

dynamics and large population sizes, characteristic of

many microorganisms, could lead to lognormal distribu-

tions of diversity.

A second problem with using parametric approaches is

that even if compelling arguments can be made in favor of

a particular model, the models still require large datasets

to evaluate the distribution parameters, unless simplifying

(and untested) assumptions are made. For instance, Curtis

et al. [10��] developed two methods for parameterizing

the lognormal curve that do not rely on large datasets,

although they do require some simplifying assumptions.

These approaches only rely on estimates of the total

number of individuals in a sample (NT) and the number

of individuals of the most abundant OTU (Nmax; Figure 1).

An attractive feature of this method is that in theory these

two parameters can be measured directly; the former can

be measured relatively simply by microscopy and the

latter with quantitative fluorescent in situ hybridization

(FISH). Alternatively, one could estimate these values

from a clone library and extrapolate to the larger sample.

The validity of these methods rest, of course, on the

appropriateness of the lognormal distribution as a model

of microbial diversity. The theoretical arguments in favor

of this model are compelling, but it should be noted that

attempts to determine empirically if bacterial diversity is

indeed lognormally distributed have failed (e.g. [11�]),
most likely because of the small proportion of diversity

sampled. There is also some evidence that other models,

such as a uniform distribution [12] or Fisher’s negative

binomial [13], may also be appropriate for microorganisms.

Nonparametric methods: using detection
probabilities to estimate diversity
In contrast to parametric approaches, nonparametric

approaches estimate OTU richness from small sample

sizes without assuming a particular OTU abundance

model [14��]. Many of these estimates are adapted from

mark-release-recapture (MRR) statistics for estimating

the size of animal populations [15,16]. Such approaches

consider the proportion of OTUs that have been observed

before (‘recaptured’) to those that are observed only once.

The probability of detecting an OTU more than once will

be higher in samples from less diverse communities. By

contrast, samples from more diverse communities are

predicted to contain fewer recaptures.

For instance, the Chao1 estimator uses the number of

singletons (OTUs represented by only one individual in a

sample) and doubletons (OTUs represented by two indi-

viduals in a sample) to estimate the diversity of a given

environment. This estimator is particularly useful

because a closed-form solution for the variance of the

Chao1 estimator has been derived [17]. This variance is

an estimate of the precision of Chao1; that is, it estimates

the variance of diversity estimates that one expects if

many different samples were drawn from the same com-

munity. The Chao1 variance can be used to calculate

confidence intervals about the Chao1 estimate, and thus

can be used to determine whether a difference in diver-

sity between two samples (and the environments from

which they are taken) is statistically significant. Hughes

et al. [14��] used this approach to compare the microbial

diversities of the human mouth and gut, two grassland

soils under different agricultural management (Figure 2),

and several aquatic mesocosms differing in nitrogen

input. The Chao1 method has also been used for estimat-

ing diversity from environmental genomics data [18].

One disadvantage of nonparametric approaches is that

they rely on estimates of the relative abundance of OTUs.

Many studies have revealed that sampling biases can

accompany genetic surveys of microbial diversity. For

example, the abundance of PCR-amplified genes might

not reflect the relative abundance of template DNA

because of differences in primer binding and elongation

efficiency [19–21]. Certainly, steps should be taken to

reduce these biases when possible. Yet as long as the

biases are similar across samples, robust comparisons

using nonparametric estimators can still be made [14��].

Figure 1
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The lognormal species-abundance curve. This distribution assumes that

a few taxa contain many individuals, a few taxa contain a few individuals

and that most taxa contain moderate numbers of individuals. Nmax is the

number of individuals in the most abundant species, Nmin is the number

of individuals in the least abundant species, and N0 is the modal species

abundance. The total diversity (ST) is the area under the species-

abundance curve. The width of the curve is inversely proportional to the

spread parameter a (a ¼ 2ln2s2, where s2 is the standard deviation of

the distribution) (Copyright � 2002 National Academy of Sciences, USA.

Used with permission.)
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Another disadvantage of nonparametric estimators is that

they only provide a lower bound of OTU diversity. The

nonparametric approach relies solely on the information

from the OTUs observed and, unlike parametric

approaches, does not assume a distribution of relative

OTU abundances. As a result, these methods do not

account for very rare classes of OTUs. Thus for bacterial

communities, nonparametric estimators will tend to

underestimate OTU diversity.

Using trees to see the forest: comparing
phylogenetic diversity
Most microbial diversity data published recently are mole-

cular in nature; that is, they consist primarily of sequence

data from a given target gene (most commonly a ribosomal

gene) obtained from an environmental sample. To be

analysed by most of the approaches described above, this

genetic diversity must first be grouped into taxonomic

groups (OTUs). Although this grouping allows use of some

potentially powerful analytical tools, it also has drawbacks.

First, there is not a common criterion for grouping micro-

bial sequence data into taxons, making comparisons of

results based on OTUs difficult across studies. Second,

by grouping sequences into OTUs, potentially valuable

information concerning relatedness is often lost.

By contrast, phylogenetic approaches incorporate this

information to compare genetic diversity among commu-

nities. For example, population biologists have developed

methods for comparing the topology (shape) of phyloge-

netic trees for different communities. Martin [22��] used

one of these techniques to compare microbial commu-

nities from different soil samples. He compared these

communities by comparing lineage-per-time plots, graphs

of the number of lineages present on a phylogenetic tree

as a function of time. Constant rates of birth and extinction

of lineages are predicted to yield exponential lineage-per-

time plots. Concave departures from an exponential rela-

tionship indicate an overabundance of highly divergent

lineages (i.e. a very genetically diverse community); con-

vex departures indicate an overabundance of closely

related lineages (i.e. a less genetically diverse community)

(Figure 3). A more genetically diverse community would

be predicted to be more phenotypically (i.e. functionally)

diverse, if phenotypic variation is positively correlated

with genetic variation (as has been shown for plants,

animals and some microbes) [22��].

Differences in tree topology can further be used to make

inferences regarding the processes important in the

assembly of communities [4�]. For example, communities

structured primarily by competitive exclusion are pre-

dicted to be less closely related than expected by chance,

whereas communities structured primarily through habi-

tat filtering are predicted to be more closely related than

expected by chance. Webb [23] has developed two

indices for comparisons of tree topology that allow such

comparisons to be made: the net relatedness index (NRI)

Figure 2
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Chao1 estimates of bacterial OTU richness in improved (black open circles) and unimproved (green solid circles) soil as a function of sample size. Error

bars are 95% confidence intervals and were calculated with the variance formula derived by Chao (see text). The black lines are error bars for the improved

sample. The green lines are error bars for the unimproved sample. (Copyright � 2001, the American Society for Microbiology. Used with permission.)
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and the nearest taxa index (NTI). These two indices

measure different aspects of ‘clumpedness’ or clustering

of taxa in a given sample. These indices have been

successfully applied to microbial diversity data (MC

Horner-Devine and BMJ Bohannan, unpublished data).

The major disadvantage of the phylogenetic approaches

described above is that they assume that patterns of

genetic diversity observed in samples directly reflect

patterns in the environment sampled. This may or may

not be true. Thus, these approaches may tell you some-

thing about the sample analyzed (a clone library, for

example) but not necessarily the environment sampled.

This is in contrast to the parametric and nonparametric

approaches discussed above, which attempt to extrapolate

from sample to environment.

Application of approaches to microbial
diversity data
How might these three classes of approaches contribute to

our understanding of microbial diversity? To answer this,

we consider one dataset in detail. McCaig et al. [24]

sequenced two 16S rDNA clone libraries, one from an

unfertilized pasture and the other from a fertilized pasture.

They partially sequenced a total of 281 clones, grouped

these sequences into OTUs (using a criterion of 97%

Figure 3
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Lineage-per-time plots constructed by counting the numbers of lineages present at different time intervals. Time intervals are equal lengths and were

defined arbitrarily. (a) In this tree, there is an excess of highly divergent lineages, yielding a concave lineage-per-time plot. (b) In this tree, there is an excess

of closely related lineages, yielding a convex lineage-per-time plot. Constant rates of birth and extinction of lineages yield exponential lineage-per-time

plots, the signature of which is indicated by the solid straight line. (Copyright � 2002, the American Society for Microbiology. Used with permission.)
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sequence similarity), and then described the data using a

variety of traditional ecological diversity and similarity

indices. On the basis of this analysis, they concluded that

the libraries were not substantially different in either

diversity (i.e. OTU richness and evenness) or composition

(i.e. the identity of the taxons present), although some

differences in composition (most notably among the

a-Proteobacteria) were noted upon inspection of the data

(Table 1). The new techniques described above can aug-

ment this analysis in three ways. First, they can be used to

estimate the richness of the environments from which

these samples were taken, allowing one to determine

how representative a sample is of the environment. For

example, Curtis et al. [10��] used a parametric approach to

estimate the total diversity in this grassland soil by fitting a

lognormal model to the data of McCaig et al. [24]. They

estimated that the diversity of this soil was approximately

6300 OTUs, indicating that the 113–117 OTUs observed

by McCaig et al. represented less than 2% of the total soil

diversity (Table 1). By contrast, Hughes et al. [14��] used

the nonparametric Chao1 estimator to estimate a total soil

diversity ranging from 467 OTUs (in the fertilized soil) to

590 OTUs (in the unfertilized soil), suggesting that

McCaig et al. sampled approximately 20% of the total

diversity (Table 1). This discrepancy could be due to

the underestimation characteristic of nonparametric esti-

mators, or to an overestimation by the parametric estimator

caused by departure of the diversity data from lognorm-

ality. Regardless, the dataset of McCaig et al. represents a

severe undersampling of the total diversity.

The second contribution that these new approaches can

make is to add statistical robustness to comparisons of

microbial communities. For example, Hughes et al. [14��]
demonstrated that the decrease in diversity observed in

the fertilized soil (relative to the unfertilized) was not

statistically significant (Table 1, Figure 2). Furthermore,

they demonstrated that if this decrease was indeed real

(and the lack of significance was due to a lack of statistical

power) then a sampling of at least 250 clones from each

soil would be necessary to have sufficient power to detect

this difference. Third, these techniques can increase

the resolution of community comparisons. For example,

Martin [22��] demonstrated using phylogenetic methods

that although total genetic diversity of the fertilized and

unfertilized soils examined by McCaig et al. did not differ

significantly, the compositions of these libraries were

indeed significantly different. He was also able, using

phylogenetic methods, to identify the specific clade in

which the majority of these compositional differences

occurred, increasing the resolution of the comparison.

Conclusions
The approaches described above offer windows to dif-

ferent aspects of microbial diversity. However, each

approach has particular strengths and limitations, as well

as different requirements for input data. These factors, as

well as the research question being addressed, must be

considered when choosing an analytical approach. The

most robust alternative is to use a combination of

approaches to analyze microbial data, relying, for exam-

ple, on parametric approaches to make absolute estimates

of environmental diversity, nonparametric approaches to

compare the diversity of different environments, and

phylogenetic approaches to provide genetic comparisons

of environmental communities. Combined with culture-

independent molecular techniques for surveying the

diversity of microorganisms, these statistical approaches

make possible the detailed and rigorous description of the

distribution of microbial life.
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