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1 Introduction

Product redesigns happen across virtually all types of products from breakfast cereals to

tennis shoes to automobiles, and likely occur with much greater frequency than new variety

introductions. For example, we find in the data we use in this paper that redesigns of existing

automobile models (e.g., a Honda Civic) occur with twice the frequency of the introduction

of entirely new models. Surprisingly, there has been little economic analysis of the decision

by producers to redesign existing products and the effects these redesigns have on consumer

decisions and overall welfare.

There are a number of factors that may cause producers to redesign existing products.

One may be to incorporate new functional technology, upgrading the quality of an existing

variety while maintaining brand recognition with consumers. For example, a company may

develop a revised formula for their laundry detergent to better clean clothes and introduce

a “new and improved” version of their product. A second reason may be to simply update

the product’s appearance for consumers who value design changes. This would imply that

consumers not only value having many variety choices at a given point in time, but also

respond positively to dynamic changes in existing varieties, even if function and quality

are essentially unchanged. For example, the fashion industry introduces frequent seasonal

changes in colors and styling of clothes by brand name designers that have little to do with

quality or functionality changes.

Importantly, these redesign decisions have both internal and external strategic implica-

tions in the marketplace. Externally, redesign timing of products is a dimension in which

a firm may compete with other firms in the marketplace. This is particularly true if con-

sumers strongly value the “new” features that come with redesign, such that newly redesigned

products steal market share at the expense of other competitors.

Independent of these external considerations, a main internal consideration for a firm

is that a redesigned model will be replacing the firm’s own existing variety. This is most

important in the case of durable goods, as secondhand sales may significantly erode demand

for current production of a product. This creates an incentive for the firm to introduce a
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redesigned model of the product to limit the competition of the secondhand markets with

its current product. This phenomenon has been termed “planned obsolescence.”

In this paper, we use a model of strategic redesign decisions by U.S. automobile manufac-

turers in a dynamic oligopolistic setting to estimate the impact of these external and internal

strategic considerations on the redesign decisions and its resulting impacts on the market-

place. We employ a model of dynamic oligopoly that follows Bajari et al. (2007), in order

to model redesign and exit decisions. The estimation procedure allows us to estimate both

the structural parameters determining current period demand and profits for each product,

but also the dynamic parameters (costs) determining exit and redesign decisions. Because

the specification is tied to a structural model, we can also simulate alternative scenarios to

understand implications for welfare.

We find that redesigns are a costly activity in the automobile market, averaging about $1

billion in costs. Yet, redesigns are fairly frequent because consumers value redesigns strongly.

Model designs become obsolete quickly as demand falls with a model’s age, leading to fairly

frequent redesigns by automobile firms and almost a 20% gain in a model’s market share

the year of a new redesign. The incentives to develop new designs to recapture declining

market share is what we call the “obsolescence effect,” and comes through strongly in our

estimates. We also find evidence that model redesign decisions are influenced by redesigns of

competing models, which we term the “competitive redesign effect”. Based on our structural

model estimates, we then simulate an entire set of different combinations of reduced or

increased strength of these two forces on redesign activity. We show that welfare would

be improved if redesign competition were reduced, allowing redesign activity to be more

responsive to the planned obsolescence channel. The net effect of these changes would

reduce total redesigns by roughly 10%, increasing total welfare by roughly 3%. The high

valuation that consumers put on newly-designed models drives fairly frequent redesigns and

gives automobile manufacturers fairly substantial market power, with a 2-to-1 ratio of firm

profits to consumer surplus. We also note that we find quite heterogeneous effects across

classes of automobiles (e.g., trucks versus cars). While our model and welfare simulations
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are focused on the new automobile market, we provide some evidence that the gains from

redesigns in the new automobile market are an order of magnitude larger than the losses in

the secondhand automobile market.

Our analysis relates in important ways to some prior literature. First, there has been

a significant number of theoretical analyses of planned obsolescence. Much of the earlier

literature concerns the monopolist’s choice on durability and pricing of products, assuming

that new and used goods are perfect substitutes.1 This led to some surprising results, such

as prices being driven to marginal cost. Recent papers have relaxed many assumptions

(such as perfect substitutability between old and used goods), but can then derive a wide

variety of predictions. For example, depending on assumptions, a durable goods producer

may redesign a product more frequently than is socially optimal (Waldman (1993a, 1996)) or

less than is socially optimal (Fishman and Rob (2000)). Likewise, studies come to different

conclusions on whether these forces tend to decrease or increase firm profits, or decrease or

increase consumer welfare. Surprisingly, these ambiguous conclusions obtain even though

these studies invariably consider the case of a monopolist producer.2 Thus, our estimates

provide some of the very first empirical evidence for many of these theoretically ambiguous

effects, including the frequency of redesigns, firm profitability and overall welfare.

There has been a smaller set of empirical studies that have examined the issue of planned

obsolescence or related issues connected with secondhand markets for durable goods. Unlike

our analysis, however, these studies have been primarily focused on modeling and estimating

consumer behavior across the new and secondhand markets, taking introductions of new

and redesigned varieties as given. For example, Purohit (1992) estimates how much new

automobile model introductions affects prices of secondhand models, while Porter and Sat-

tler (1999) show that the greater the substitutability between the used and new automobile

model, the more transactions one sees in the secondhand market, consistent with a view that

the secondhand market facilitates vertical product differentiation for consumers. Esteban

1Most point to Swan (1970) and Coase (1972) as the initial papers in this literature. Waldman (2003) and
Grout and Park (2005) provide surveys of the literature from fields of economics and marketing, respectively.

2An exception is Grout and Park (2005).
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and Shum (2007) and Chen et al. (2008) build a structural model of a secondhand market of

consumers and analyze how much this affects firm profitability by new automobile manufac-

turers. Finally, Chevalier and Goolsbee (2009) show that consumers are forward-looking and

become much more price-elastic in their purchases of a textbook when a new edition in the

coming period is likely. This forward-looking behavior reduces the benefits from strategic

obsolescence to firms. We view these studies as more complementary than similar, as our

focus is on modeling strategic redesign decision by firms. This allows us to focus directly on

the internal and external factors that affect this redesign decision and its ultimate effect on

profits and welfare.

The papers closest in spirit to our paper are perhaps Iizuka (2007), Goettler and Gordon

(2011), and Kim (2013). Iizuka (2007) estimates the factors that affect the timing of a new

edition of a textbook. The hazard-model analysis finds significant evidence for a planned

obsolescence effect, as greater used textbook sales and age of the textbook make a new edition

more likely. However, there is no evidence for competitive effects from rival textbooks on the

timing of a new textbook. The reduced-form approach by Iizuka (2007) does not allow one

to examine how new model introductions affect the dynamic nature of redesign competition

or the implications for firm profits and consumer welfare, as does our approach. Goettler and

Gordon (2011) estimate a dynamic duopoly model with durable goods for the microprocessor

industry. Within their model firms invest in R&D that has a probabilistic chance of increasing

the quality of their product. Investment in their model is similar in nature to our decision

to remodel; however, in our setting firms incur a fixed cost to remodel and a remodel occurs

with certainty.3 Kim (2013) also combines a discrete choice model with a two-step approach

similar to Bajari et al. (2007) to analyze the interaction of innovation, production and the

used market in the jumbo jet market. She uses the parameter estimates to analyze the

3A second departure of our model with Goettler and Gordon (2011) is that we do not model consumers
as forward looking. In contrast to markets where technology is rapidly developing, giving consumers strong
incentives to delay until the next model generation, technological improvements are much slower over redesign
cycles in the automobile market. Also, the automobile market is a horizontally differentiated-goods one with
many varieties available to consumers each period that are nearly functionally identical. As a result, the
incentive for consumers to substantially delay purchase of any particular model (out of the many available)
in anticipation of that particular model’s redesign is likely quite small.
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welfare effects of governmental subsidies; her focus is on new products. Our paper differs

from these by examining more concretely the relative effects of redesign competition versus

planned obsolescence on the timing of redesigned models.

On a final note, our analysis also relates to prior research demonstrating that consumers

realize considerable welfare gains from the development of new products (Petrin (2002))

and the introduction of new varieties within product class (Feenstra (1994) and Broda and

Weinstein (2006)). While these studies demonstrate the effect of new varieties on welfare,

we show that redesigns of existing varieties can likewise be an important source of changes

in overall welfare.

Our paper proceeds in the following fashion. In the next section we provide some basic

information on our data and the observed patterns of redesign of automobile models. In

sections 3 and 4, we construct a dynamic model of redesign and competition in the auto-

mobile market, and estimate the model’s parameters. Sections 5 and 6 present simulation

results from our dynamic model, focusing on the effects of redesign on firm profits and con-

sumer welfare. We also show how various motives for redesign (obsolescence versus redesign

competition) affect redesign activity and welfare. Section 7 concludes.

2 Redesigns in the Automobile Industry: A First Look

Before developing a more formal empirical model to examine the motivations and effects of

redesigns, this section provides basic information on how automobile manufacturers redesign

vehicles, as well as key features of the empirical redesign patterns we see in the data.

We gather our basic data on automobile models from standard sources used by oth-

ers in the literature. Sales by automobile models come from Ward’s Automotive Yearbook,

while data on manufacturer suggested retail prices and physical characteristics by automo-

bile models were obtained from the MSNAutos website.4 Our data span the years from 1988

through 2009, as 1988 was the first year that physical characteristic data are available from

MSNAutos. Data on redesigns come from Wikipedia, which provides comprehensive infor-

4For details see, http://home.autos.msn.com.
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mation on design changes across all automobile models sold in the United States over time,

often including narrative details about the nature of the redesigns. Trade journals, such as

Autoweek and Motor Trend, do not have comprehensive information on redesigns, but often

report on the introduction of newly redesigned models. We used these to verify the high

degree of accuracy of the redesign information available from Wikipedia.

Redesigns in the automobile industry allow manufacturers to not only incorporate new

technology into the engineering of their vehicle, but also the opportunity to re-style its

interior and exterior.5 For example, a recent Automotive News article says General Motor’s

two main concerns with an upcoming redesign of the Camaro is how to reduce its weight to

meet fuel efficiency standards and how to come up with new styling that will be as popular

as the current model’s styling.6 We focus on redesigns of models rather than minor updates

that can occur annually, typically termed “refreshings” or “facelifts”.7 Redesigns receive

substantial attention by industry magazines, trade journals, and even popular media, while

refreshings receive relatively little attention, even in trade journals. As a result, there is no

systematically available data on refreshings and our focus is solely on redesigns.

Redesigns are an involved and costly process. Automobile manufacturers employ teams

of engineers and designers that work for years on new redesigns, and which also involve

substantial coordination of suppliers, retooling of assembly lines, etc. While redesign cost

numbers are closely guarded by automobile manufacturers, anecdotal information suggests

that it can be over $1 billion.8 Our estimates below are quite consistent with this, averaging

$1.25 billion over the various classes of automobiles. Thus, redesigns are major economic

decisions facing automobile manufacturers.

While redesigns are costly, redesigns of existing automobile models happen with consid-

5Drivetrain changes, such as engines and transmissions, often occur during redesigns. Therefore one
obvious motivation for redesigns is to incorporate technological advances in drivetrain components. Knittel
(2011) estimates that holding weight and horsepower constant, fuel economy increases roughly 2 percent per
year because of technological improvements.

6See http://www.autonews.com/article/20120313/BLOG06/120319962
7For example, the 2004 refreshing of the Honda Civic included introducing a new shape for the car’s

headlights. Other examples of more minor “refreshings” include adding bluetooth technology and introducing
new exterior color options.

8See http://www.forbes.com/2006/03/31/spring-luxury-cars_cx_dl_0403feat.html
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erable frequency. Table 1 provides a number of statistics by class of vehicle. The age of a

vehicle when it is redesigned (Design Age) averages about 6-8 years, with around 70% of all

vehicles taking 4-7 years between redesigns. The likelihood that a vehicle will be redesigned

in any given year is around 10%. There is clearly some variation in redesign times across

class of vehicles. Our analysis will be able to provide evidence on the extent to which various

factors (redesign costs versus redesign competition features) explain this heterogeneity.

Our paper is obviously interested in the timing of redesigns and the factors that determine

that timing. As an initial investigation into how market share responds to product redesigns,

we estimate an event study where the event is defined as a redesign. Figure 1 plots percentage

changes in market shares across cars, trucks and luxury vehicles around a redesign and over

various design ages. Panel (a) shows that just prior to a redesign market shares appear to be

either constant or slightly decreasing; however, a redesign increases market share by between

20 and 60 percent, depending on the type of vehicles. Panel (b) of Figure 1 illustrates that

the decline in market shares following a redesign is quite rapid starting for models that are

two years old and continues to decline as the vehicle ages.

We now turn to developing a structural dynamic model of the automobile market, where

we focus on the manufacturers’ strategic decisions to redesign their models to maximize

current expected profits. This will allow us to then separately identify the importance of

various forces affecting the redesign decision and the resulting implications for profits and

welfare.

3 The Dynamic Model and Estimation of Static Parameters

In this section, we explain the dynamic framework we use to examine the competition

amongst models of automobile firms, with particular focus on the decision to redesign a

model. Our framework follows BBL and Sweeting (2013) closely. However, the auto indus-

try is made up of a handful of firms overseeing a number of brands that each produce a set

of models (i.e., multi-product firms), which is different from the single-product assumption

in BBL and requires discussion before detailing our framework further.
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Multi-product firms can create interdependencies on the demand side and on the cost

side. On the demand side, a firm will consider cannibalization effects across its models as it

makes pricing decisions. We address this by calculating optimal prices within a multi-product

setting. Thus, our measure of static profits account for non-zero cross-price elasticities within

an auto maker’s set of products.

Cost-side interdependencies could occur with production costs or redesign costs, and

would be more difficult to control for in our framework. However, car manufacturers pri-

marily have separate production lines (often in different locations) for each of their models.

Likewise, anecdotal evidence suggests that each model has its own unique redesign team.

There are examples of models that share a common “platform”. However, our estimates

below find no evidence that sharing a platform has any impact on the timing of a model’s

redesign.

Given this discussion, we proceed by treating each model (j) as the equivalent of a

separate forward-looking enterprise maximizing its own dynamic payoffs while taking into

account static demand interdependencies. Each enterprise makes decisions at times t =

1, ...,∞ of which actions to take in order to compete in the oligopolistic market given current

states. In our specification, we consider three different sets of states that firms face – the

direct effects of their model’s age, the indirect (obsolescence) effects of the model’s age, and

the competitive redesign effects in response to their direct competitors’ (re)designs. The

full set of states in period t is denoted as ψjt = ψjt(djt, ojt, cjt) ∈ S ⊂ RL. The direct

effects, djt, include age of the current design, which equals unity for a newly redesigned

model and increases by one each period the model is sold, and an indicator for redesign.

Obsolescence states, ojt, are meant to capture the potential internal incentive to obsolesce the

secondary market for the model, which we control for by constructing the total stock of units

of the current model sold in previous periods: Stockjt =
∑t

t=1 1(Designjt = Designjt−1) ∗

qjt−1. Competitive redesign effects, cjt, represent the external pressure to redesign due to

competing rival models’ redesign activities. We proxy for these effects using the average

age of competing models, as well as total redesigns of models by competitors since the
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model’s last redesign within vehicle class in a given year.9 We note that we will be primarily

interested in “redesign competition” in our analysis (i.e., firms timing redesigns to compete

with redesigns of competing models), not the underlying market structure of competition.10

The actions ajt ∈ Aj available to firms in period t are: 1) do nothing, 2) redesign, or

3) exit. Suppose in period t firm f takes no action to change a model j whose design is 3

periods old. In t+ 1 the age of their model increases by one to 4, and stock increases by the

number of units that were sold in t. If this same firm decided to release a redesign of this

model next period, in t+ 1 the age of the model (Agejt) is reset to unity and stock (Stockjt)

is reset to zero. The competitive redesign states evolve according to the actions taken by

firms in the same product class. For example, if no models of compact cars are redesigned

in t+ 1 the average age of competitors (AgeCompjt) increases by one, and total competitor

redesigns do not change (Total Redesignjt = Total Redesignjt−1). Firms that exit receive

a value to scrap their model, and cannot reenter the market.11

Model j’s profit in t is a function of current states, private information, and actions,

which we denote as Πjt(at(ψt,νt),ψt, νjt). Firms dynamically optimize the present value of

current and future profits,

Vj(ψ;a; θ) = E

[
∞∑
t=1

βt−1Πjt(at(ψt,νt),ψt, νjt; θ)
∣∣∣ψt; θ] ,

where β is a common discount factor shared by firms, and at denotes the set of actions taken

by the firm and its competitors in period t, which depends on the accompanying set of states

ψt and private information shocks νt. Our goal is to estimate the vector θ that rationalizes

9To be explicit, total redesigns faced by model j in period t is defined as: Total Redesignsjt =∑t
t=1 1(Designjt = Designjt−1) ∗

∑
i 6∈j Redesignit.

10In other words, we will not be examining in this paper what would happen if the market goes from
many competitors to a single monopolist.

11In what follows we make the simplifying assumption that firms do not form expectations about the exit
of their competition. We assume that, in expectation, a firm presumes their competitors will redesign and
produce according to their optimal policies for as long as it remains in the market. This is an important
assumption since all states and actions are interlinked across all producers. This assumption is equivalent to
one where firms expect an exiting model to be replaced by an identical model. Thus, we are not capturing
any extensive margin effects on competition. We have also estimated the model where firms do not have an
option to exit, and our estimates of dynamic redesign costs are qualitatively identical.
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observed firm behavior. This vector is denoted as θ = [θR, θX , θP ], where the parameters θR,

θX and θX represent the cost of redesign, exit scrap value and a private value parameter,

respectively.12

To estimate the dynamic parameters, we follow the methodology developed by Bajari

et al. (2007), which proceeds in three steps. First, we estimate static behavior, which includes

the estimation of parameters determining current-period profits and the optimal policies

firms follow when taking actions. Second, we construct value functions by forward simulating

static markets using policy functions to transition between states.13 Third, we perturb the

policy rules and resimulate the markets in order to estimate the parameters that rationalize

our observed market outcomes. In the following sections, we provide more detail on the three

steps we use to estimate the parameters of the model.

3.1 The Static Demand Model and the Effects of Redesigns

To estimate the static effects of redesign on market share and profits for individual automobile

models, we follow the standard discrete choice techniques described in Berry (1994) for

specifying the demand structure for automobiles. In particular, assume that consumer i

makes a discrete choice over automobiles j ∈ Jg, nested by automobile class g = 0, 1, . . . , G,

to maximize her utility,

uij = xjβ − αpj + ξj + ζig + (1− σ)εij

= δj + ζig + (1− σ)εij,

where εij is an i.i.d extreme value random variable. The common group (automobile class

denoted by g) demand parameter ζ follows a distribution depending on σ ∈ [0, 1]. Since ε

is an extreme value random variable, ζ + (1− σ)ε is also an extreme value random variable.

12In the following, we will be explicit about the role of each parameter and the model, but for now it
suffices to introduce the notation.

13See Kalouptsidi (2014) for an example where one uses observed data on secondhand sales to estimate
value functions directly. We do not pursue this here because newly redesigned models are inherently not
available in a secondhand market.
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Characteristics, price, and unobservables of product j ∈ Jg are denoted as xj, pj and ξj,

respectively.

Under the extreme value assumption of ε, market share for product j is,

sj(δ, σ) = sj/gsg = e
δj

1−σ

Dσg
∑
g
D

(1−σ)
g

(1)

where Dg ≡
∑
j∈Jg

e
δj

1−σ . Assume the outside good represents the option to not buy a new

automobile. Normalizing δ0 = 0 and D0 = 1 implies s0(δ, σ) = 1∑
g
D

(1−σ)
g

. Given this model of

demand, Berry (1994) shows the demand parameters can be estimated as,

ln(sjt)− ln(s0) = xjtβ − αpjt + σln(sj/gt) + ξjt. (2)

We address the endogeneity of price and nest share as Berry et al. (1995) suggest, drawing in-

struments from the characteristics of a model’s competitors and competing models produced

by the firm.

A multi-product firm f with models j ∈ Jf will set prices in order to maximize profits

across their models taking into account the possibility of cannibalization. Static profits are

calculated each period from the solution of the nested-logit demand discussed above, and

assumed Bertrand competition. Static profits each period are,

πft(pt,xt,ψt, ξt;σ, α) =
∑
j∈Jf

(pjt −mcjt)Msjt(pt,xt,ψt, ξt;σ, α),

where M is market size, defined as the total number of households in the US, and mcjt

represents firm-specific marginal costs. Given these assumptions, the price set by firms for

each model must satisfy the first-order condition

sjt(pt,xt,ψt, ξt;σ, α) +
∑
k∈Jf

(pkt −mckt)
∂skt(pt,xt,ψt, ξt;σ, α)

∂pjt
= 0.
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Moral and Jaumandreu (2000) describe a closed form solution to this model where multi-

product firms maximize profits across varieties facing a nested-logit demand. They demon-

strate that the optimal firm pricing rule for each model is,

pjt = mcjt +
1− σ

1− σs̄j/g t

 1

α
+

(1− σ)
∑Jf

r=1
srt

α(1−σs̄r/g t)

1− (1− σ)
∑Jf

r=1
srt

1−σs̄j/g t

 ,

for all models j in the set of models produced by the firm Jf at time t.

We take this specification to our data and Table 2 provides our estimates of the deter-

minants of market share from our nested-logit discrete choice demand specification. Our

empirical approach is to use a full set of model age dummies to capture the difference in util-

ity across the typical vehicle’s age profile. That is, we allow the unobserved quality terms, ζig,

to non-parametrically vary over the lifecycle of vehicles, and assume this variation captures

the loss/gain in utility from the timing of redesigns. This requires an assumption regarding

what vehicle features we want to hold constant. For example, we could ask what is the value

of product redesigns holding constant variables that we typically use to describe vehicles,

such as horsepower, fuel economy, etc. Alternatively, we may want to allow changes in these

product attributes to be subsumed in the model-age dummy variables, since changes in these

characteristics may occur during redesigns. We show results under both assumptions and

note that our main empirical results conclusions are robust to the demand specification.

Columns 1 through 4 provide OLS estimates of relative market share. In the first column,

we specify a base specification that only includes the price of the model and the market share

of the model within its own group. The price term is negative and statistically significant,

even without yet controlling for endogeneity, while the group market share is positive and

statistically significant.

In Column 2, we add observable physical attributes of the model—fuel efficiency, horse-

power relative to weight, size, and engine displacement to the base specification,14 while col-

umn 3 adds the redesign and age dummies for the model to the base specification (without

14As in Berry et al. (1995), we define fuel efficiency as Miles
$ , size as length × width × height in cubic

meters, and HP
Weight . The preceding serve as measures of efficiency, acceleration, and size.
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the observable physical characteristics). Age dummies control for the newness of a model’s

design. Column 4 adds both observable attributes and the redesign and age variables. Im-

portantly, the coefficients on the physical attributes are virtually unaffected by inclusion

of the redesign and age variables, and likewise, the coefficient on the redesign variable and

qualitative pattern of coefficients on the age dummies are hardly affected by inclusion of the

physical attributes of the vehicles, although as we might expect their magnitudes slightly

increase since any positive changes in product characteristics are now inherently captured

by the age variables. This highlights an important point—much of the effect of redesigns

on market shares and profits does not stem from changes in physical (functional) attributes

that we can measure consistently across models, such as size or fuel efficiency. Thus, con-

sistent with anecdotal evidence in the media discussed in Section 2, redesigns appear to be

appropriately modeled as significant discrete changes in the aesthetic design and styling of

the model, and independent of changes in the functional attributes of a model (which can

vary annually).

Our OLS specifications display good fit of the data (R2 from 0.71 to 0.76), with many of

the variables statistically significant and expected signs. With respect to physical attributes,

the estimates suggest that larger, more efficient, and higher horsepower vehicles receive larger

market shares. The age coefficients are estimated effects relative to models that are 10 years

or older. A major focus for our paper is the effect of a redesigned pre-existing model, which is

the sum of the coefficient on Redesign and the dummy variable for Age =1.15 Our estimates

suggest that the initial year of a new redesign sees about a 30% larger market share than

the excluded group (models ten years old or older), and is significantly larger than any other

year of a model’s life. The age-effect profile of market share shows a noticeable drop after

15In contrast, the coefficient on the dummy variable for Age=1 is the market share of a new entrant model
relative to the excluded group. We have also estimated the even-more flexible model where we have separate
year effects for entrants and redesigns, but we cannot reject equality for ages two onward. Therefore, we
report the more parsimonious specification.

13



the initial redesign year and then another fall after year six.16

In Columns 5 through 7 of Table 2 we provide 2SLS estimates of the same specifications in

Columns 2 through 4. As expected, the coefficient on price becomes larger in magnitude after

controlling for endogeneity. In addition, all of the physical attribute characteristics are also

statistically significant and accord with findings by previous studies and our intuition. Most

notably, the coefficient on the horsepower variable is now significantly positive. Controlling

for endogeneity also has substantial impacts on our estimated effects of redesign and age

of a model on its relative market share. Their coefficient estimates are much larger than

with OLS, and both are now statistically significant at the 1% level. The initial year of a

new redesign sees about a 90% larger market share than the excluded group, which falls to

about 70% larger than the excluded group in years two through five, and then falling again

after year five. The large coefficient on Redesign (using column 7 estimates) indicates that

the initial market share of a newly-redesigned model is almost 38% greater than the initial

market share of a new entrant. Figure 3 provides a convenient translation of these age and

redesign coefficients into market shares (and associated dollar figures) by age of the model

relative to year four of a model. As shown in the figure, a newly redesigned model has a

market share that is about 20% higher in its initial year than the following years two through

six, everything else equal. Market share then falls off rapidly after year six.

As in any modeling exercise, the BBL-based framework we use has a number of as-

sumptions for tractability, some of which may be more concerning for the issue we examine.

In particular, estimating static demand means we are not allowing for the possibility of

forward-looking consumers who might time the market in anticipation of redesigns, as in

Gowrisankaran and Rysman (2012) and Goettler and Gordon (2011). Gowrisankaran and

16Our age effects are similar in nature to the specification in Chevalier and Goolsbee (2009), which allows
utility for a textbook to fall with the probability of a new edition being released within the next year.
If consumers in the automobile market expect future redesigns to lower the resale value of their new car
purchase in the current period, then the more likely is a redesign, the lower the utility a consumers will
get from the purchase. We note that while this does not affect the interpretation of our age effects, we
discuss the empirical evidence of these secondhand market effects in Section 7. In addition, the market for
automobile and textbooks likely differ in one key respect: in the market for textbooks, the difference in the
quality of new editions, compared to the previous version, is likely to be small. In contrast, consumers in
the automobile market appear to value the added features in newer versions considerably.
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Rysman (2012) model a market (digital camcorders) where technology is leading to rapid

quality and functional improvements, which likely means much larger incentives for con-

sumers to delay purchases than in the more mature automobile market where functional

changes evolve much slowly over redesign cycles. While Gowrisankaran and Rysman (2012)

model a rich dynamic demand side of the market, for tractability reasons, they assume the

supply side is one where models and their characteristics arrive according to an exogenous

process. In contrast, we explore the dynamic re-design decisions by forward-looking firms.

Goettler and Gordon (2011) examine a homogeneous market (computer microprocessors)

where it is likely that consumers have strong incentives to “time the market” because of

rapidly evolving quality and functional improvements. In contrast, the automobile market

is a horizontally differentiated-goods one with many varieties available to consumers each

period that are nearly functionally identical. As a result, the incentive for consumers to sub-

stantially delay purchase of any particular model (out of the many available) in anticipation

of that particular model’s redesign is likely considerably reduced.

A second limitation is that we are not modeling the secondhand market for automobiles,

except to the extent that secondhand sales of any pre-existing models are accounted for

in our specification as part of the consumer’s “outside” option in the demand specification.

Modeling a richer secondhand market option in a detailed fashion in this framework is likely

to be quite complicated and goes beyond this paper’s analysis. Some have suggested that

the stock of the model should be in our demand estimation directly as it controls for how

much of a secondhand market from previous sales is competing with the current year’s sales.

The prediction would be that greater prior sales of this current generation of the model will

lower current-period market share. In Table B.2, we explore market share estimates when we

include a stock term or, more flexibly, four periods of lagged sales in our 2SLS specification.

Stock presents with a positive coefficient in these regressions. We believe this result is

produced as stock is also proxying for the unobserved quality of the current generation’s

design, which affects both past and current sales in the same direction. When we include

lagged sales, we continue to get a positive coefficient on last period’s sales (presumably due to
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the autocorrelation in sales), but negative coefficients for later lags. We believe the negative

coefficients on later lags are capturing obsolescence effects. However, this specification is

admittedly poorly identified (as we can see from the positive and insignificant coefficient

on price), which makes it intractable to use in the rest of our analysis. Importantly, the

inclusion of stock or previous-period sales terms do not have any qualitative effects on the

redesign coefficient or the general pattern of the age variables.

Given this discussion, we use the 2SLS estimates in Column 7 of Table 2 as our preferred

model for estimating the static effects of redesign activity on relative market shares for a

given history of redesigns in the market. In order to understand how the history of redesigns

evolves dynamically, we next specify and estimate the policy functions for redesign and exit

decisions of models. Then our third step is to use our estimated static market share model

and optimal policy functions to estimate the dynamic parameters governing these decisions

in the following section.

3.2 Optimal Policy Functions

3.2.1 The Redesign Decision

We estimate the probability that a model will be redesigned next period with the following

logit specification,

Rjt+1 = γddjt + γccjt + γoojt + εRjt.

Our specification hypothesizes that the probability of redesign next period (Rjt+1) depends

on the direct, obsolescence, and competitive effects of redesign – the state variables in our

model.17 The direct effects are proxied by the age of the model. Competitive redesign

effects are captured by the total redesigns by competitors since the model’s last redesign,

as well as the average age of competitors. Obsolescence effects are captured by the stock

17Our redesign policy function specification is also similar to Iizuka (2007) who estimates a hazard model
for redesigns in the textbook market.
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of previous production of the model. To provide as much flexibility as possible to fit the

redesign patterns we observe in the data, we also examine specifications with interactions

between state variables and higher order terms.

Table 3 displays the results of various specifications of our redesign policy model, where

we introduce additional terms sequentially. We start in Column 1 of Table 3 with simply a

constant term and the age of the model. We hypothesize that automobile manufacturers will

focus their redesign efforts on older models. The coefficient on age is positive and statistically

significant at the 1% significance level.

In Columns 2 through 3, we sequentially introduce the direct, competitive redesign, and

obsolescence effects, respectively. The coefficients on these variables have the expected sign

and are statistically significant. Older models and ones with a greater stock of previous

production (even after controlling for age of model) are more likely to introduce a redesign

in the coming period. This is consistent with an obsolescence effect. The younger the

average age of, and the more redesigns by a model’s competitors, the more likely a model

will redesign, providing evidence for a competitive redesign effect.

Columns 6 and 7 add various interaction and higher-order terms of our state variables.

All of these additional terms are statistically significant, suggesting non-linearities in how

the state variables affect the probability of a model’s redesign, and also nearly doubling the

pseudo-R2. These final columns add group fixed effects, which also increases the pseudo-R2,

but has hardly any quantitative effect on our estimates. Importantly, there is evidence that

all three state variables (direct, competitive redesign, and obsolescence) and their interactions

are important for the redesign policy function. The independent effects of model age and

stock along with their non-linear and interaction terms are statistically significant at the

1% level. The competitive redesign effects are also of the expected sign and statistically

significant at the 1% level, along with most of their interactions with other variables.18

We use Column 7 estimates as our optimal redesign policy function for the dynamic for-

18One potential concern is that the sharing of a common production platform between models may
artificially drive redesign timing for these models. While a significant number of models share platforms,
we do not find any statistical evidence that our coefficient estimates in the redesign policy function differ
between models that share a common production platform and models that do not.
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ward simulations we undertake below. To better interpret the effects of our key state variables

on the redesign decision from the estimated coefficients in Column 7, we examine how the

predicted redesign probability as a state variable varies. Figure 4 fits a locally-weighted scat-

terplot smoothing (lowess) curve through the predicted probabilities of redesign for each of

the three main state variables – model’s age, stock of past production, and competitors’ aver-

age age. In general, we see that older models with higher stock are significantly more likely to

redesign.19 Likewise, the obsolescence effect on the redesign decision is clear, as higher stock

increases the probability of redesign. The competitive redesign effects (seen in Panel (c) of

4) are more complicated. Generally, models are more likely to redesign as their competition

ages. There are, however, important competitive responses where the probability of a model

redesigning falls as their competition continues to age. These nonlinearities are intuitive,

and necessitate our use of higher order terms and interactions. The nonmonotonicity in the

response by models to state variables provide valuable realism to our simulations.

3.2.2 The Exit Decision

In a similar fashion we estimate the probability that the model will exit the market (i.e.,

discontinue the model) as,

Xjt+1 = φddjt + φccjt + φoojt + βxln(s̄j/g) + εXjt .

We specify exit as a function of the same state variables as redesign and report our estimation

results in Table 4 as we did for the redesign function in Table 3. We see that the direct

effects roughly work in the same direction on a firm’s exit decision as it does for the redesign

decision—the older the model, the more likely it will exit the market completely. There

is evidence that redesign competition affects the exit decision as well. As seen in Column

3, having older competitors makes exit less likely and a greater number of redesigns in the

current period lowers the exit probability. Once we include interactions and vehicle group

19This effect flattens out or reverses for very old models, but this is based on a small handful of van or
truck models that rarely remodel.
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fixed effects (Column 7) statistical significance of the many individual interaction terms

for these effects are a bit below standard confidence levels. The obsolescence effects on

exit decisions and their interactions with the other states do however work in the opposite

direction from that in the redesign policy function. Models with high stocks of previous

production are more likely to redesign, but less likely to exit. This is due to the correlation of

stock with the success of a model. Maintaining the accrued brand recognition of a high-stock

model is likely worth an investment in redesign rather than scrapping the model altogether

through exit. As with the redesign policy function, we use Column 7 estimates for our

optimal exit policy function for the dynamic forward simulations we describe next. Similar

to Figure 4 for the redesign policy function, Figure 5 displays the effect of a model’s age,

stock of vehicles, and competitor age effects on the probability of exit for various types of

vehicles.

4 Estimating the Dynamic Model

Estimating the dynamic model begins with forward simulations of state variables. Using the
preceding optimal policy functions of firms, we forward simulate the market as firms take
actions dictated by their policies and transitions of the state variables. Estimation of the
second stage then relies on constructing firms’ expected present value of future profits. We
assume these firm value and profit functions are linearly separable, and take the form,

Vj(at(ψt,νt),ψt, νjt; θ) = W 1(at(ψt,νt),ψt, νjt)−W 2(at(ψt,νt),ψt, νjt) ∗ θR (3)

+W 3(at(ψt,νt),ψt, νjt) ∗ θX +W 4(at(ψt,νt),ψt, νjt) ∗ θP .

The present discounted value of static profits given each simulated strategy is W 1. The

present value of a firm’s redesign costs and scrapping production, are W 2 ∗ θX and W 3 ∗ θR,

respectively. θR includes such costs as research and development expenditures for redesign,

as well as costs from production line retooling and advertising to inform consumers of the

new model. Additionally, we allow for firms to receive private values from the actions they

take in each time period. Private firm payoffs are given by W 4 ∗ θP . In the following we will

assume that the dynamic parameters, θ, are vehicle class specific but common across models
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within a class.
Explicitly the value function for a model j in vehicle class g is written as,

Vj(·) = E

[ ∞∑
t=1

βt−1πjt(at(ψt,νt),ψt, νjt)
∣∣∣ψt

]
− E

[ ∞∑
t=1

βtRj,t+1(at(ψt,νt),ψt, νjt)
∣∣∣ψt

]
∗ θgR

+ E

[ ∞∑
t=1

βtXj,t+1(at(ψt,νt),ψt, νjt)
∣∣∣ψt

]
∗ θgX + E

[ ∞∑
t=1

βt−1Pjt(at(ψt,νt),ψt, νjt)
∣∣∣ψt

]
∗ θgP . (4)

Before addressing the specifics of simulation and estimation, it is worth dissecting each

component of the value function. We calculate the present discounted value of static profits,

W 1, in each period given firms’ optimal actions chosen in the preceding period. As firm

actions update the state variables in the market, we compute πjt(·) from the nested logit

demand given the states. Summing these static profits while discounting by the fixed rate β,

yields W 1. The components W 2 and W 3 are simply counts of the actions taken by the firm

over time. For example, the function Rj,t+1(·) is an indicator function for whether the firm

redesigns in the subsequent period given the current states. Adding up the total number

of times the firm redesigns in our simulation and discounting yields W 2. As W 2 enters the

value function, it is scaled by θgR, the dynamic cost of redesign.

We also introduce private firm payoff shocks, W 4, as in Sweeting (2013).20 Private firm

payoffs are assumed to be Type 1 extreme value distributed and i.i.d., across firms over

time. These shocks are derived from the estimated probability that a firm takes the action

we simulate (e.g., the probability of redesign).21 Applying BBL to estimate our dynamic

parameters requires the assumption that firms use stationary Markov perfect pure strategies

when they follow the preceding policy functions. We acknowledge, as Sweeting (2013) does,

the recent proof of the existence of a pure strategy Markov perfect Nash equilibrium (MPNE)

in a model with discrete states when the random component of payoffs has unbounded

20Sweeting (2013) estimates the dynamic cost of repositioning a radio format (see also Jezionski). Sweeting
(2013) assumes the cost of repositioning is constant across firms within a market (e.g., the cost of switching
from Rock to Country in Chicago is identical for all firms and formats). In comparison, we assume the cost
of redesign is constant for all models in a vehicle class (e.g., redesign costs are the same for the Honda Civic
and Toyota Camry along with all other midsize cars).

21Explicitly, Pjt(·) = κ−log(Prob[ajt(ψt,νt)]. Where κ is Euler’s constant and ajt is the action (redesign
or not) taken by firm j in period t.
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support by Doraszelski and Satterthwaite (2010). Our assumption that firms receive a private

value based on the unobservable probability helps facilitate the MPNE assumption.22

Outside of the tractability provided, private firm payoffs capture factors that impact

the redesign decision of firms which we do not observe in our estimated profit functions.

For example, a firm’s redesign research and development may spillover to current models

through cost savings or increases in consumer demand that are not captured by physical

characteristics in our demand estimation. Additionally, these private payoffs will absorb any

management changes or new strategic partnerships at the firm level that relate to redesign

strategies and firm profitability.

One concern with our equilibrium assumptions may be that redesigns require significant

planning and are on relatively inflexible schedules. However, discussion with members of a

development team from one of the domestic “Big Three” suggests that they employ teams of

engineers and designers doing overlapping work toward model redesigns, which allows signif-

icant flexibility in timing of redesigns. And the data also bear out that there is significant

variation in length of redesign, even over time within models. Therefore, we will allow a

redesign the possibility of occurring in any period, and let the actual timing be borne out

by policy functions.23

Following Bajari et al. (2007), the dynamic model is estimated by choosing a vehicle class

specific coefficient, θ̂g, to minimize the objective function for each vehicle class g,

Qg(θ) ≡
∑
j∈Jg

(
min

[
0, V̂j(at(ψt),ψt; θ

g)− V̂j(a′t(ψt),ψt; θg)
])2

. (5)

Working from the presumption that each model is choosing the strategy that optimizes its

22We also note that other applications of BBL have addressed Doraszelski and Satterthwaite (2010)’s
critiques by assuming dynamic parameters vary within firms over time according to an estimable distribution
(c.f., Ryan (2009) and Kalouptsidi (2014)). Ryan (2009) for instance assumes firms observe a private random
investment cost then decide whether to invest in capacity and then by how much. In contrast to Ryan (2009),
our actions are strictly discrete – redesign does not vary by degree in our data. We thus follow Sweeting
(2013)’s strategy of estimating parameters within a narrow market (vehicle class in our case) that are constant
across firms under the assumption that firms use stationary MPNE pure strategies.

23In practice, and in our simulations, no model ever actually redesigns in consecutive years.
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value function, it must be the case in equilibrium that,

Vj(at(ψt,νt),ψt, νjt; θ
g) ≥ Vj(a

′
t(ψt,νt),ψt, νjt; θ

g). (6)

The empirical counterparts of our value function, V̂j, are calculated by averaging across our

simulated shock processes to form expectations. Then, observing actions ajt implies that

choosing a′jt would have been suboptimal. We thus minimize the error rate in order to

rationalize the firm outcomes we observe.24

4.1 Estimation details

Given our estimated policy functions and static-profit results, estimation of the dynamic

parameters requires empirical estimates of the value functions under the optimal policy

functions and empirical estimates of the value functions under alternative policy functions.

In this section, we discuss the specifics of how we construct each of these.

We construct value functions in our sample for each model-year observation by forward-

simulating states and actions out 50 periods. In each of these simulations, a model draws

marginal cost, redesign and exit shocks. We repeat the simulations for 50 different shock

processes. Given the implied transitions of the state variables, we are able to construct

redesign and exit decisions for each model for each simulated time period.25 Specifically,

given current states, a firm will redesign next period when its predicted logit inclusive value

R̂jt+1 ≥ R̄ and exit when X̂jt+1 ≥ X̄. To best match moments of the data we choose the

threshold redesign and exit values R̄ = 0.275 and X̄ = 0.275. Table 5 displays the accuracy

24Miller (1974) finds that in the case of a monopolist, if consumers are forward-looking there is no profit
gain from planned obsolescence. This is supported by the empirical results in Chevalier and Goolsbee
(2009). In contrast, Waldman (1993b) finds that firms do have an incentive to strategic obsolete their
production. If we are in the world of Miller (1974) and Chevalier and Goolsbee (2009) the empirical moments
related to perturbations of the policy function with respect to the obsolescence effects will be weak. Weak
instruments can cause the objective function to have flat regions, thereby affecting identification (see, Knittel
and Metaxoglou (Forthcoming) for a discussion of this). In practice, we do not find evidence of flat regions
of the objective function, consistent with Waldman (1993b).

25Note that most of our state variables are constructed from market realizations (e.g., average age of
competitors).
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of our policy functions (percent of correctly predicted outcomes) for various predicted-value

thresholds, which informs our choice of 0.275. At a standard threshold of 0.5, non-events are

very precisely matched, but events (redesign or exit) are rarely matched correctly. In other

words, events are underpredicted for the sake of model fit. At lower levels (such as 0.10),

events are more often matched correctly, but then we get over-prediction of the events at

the expense of correctly predicting the non-events. We have found that the moments of the

simulations best fit the actual data at our preferred thresholds.

These redesign and exit decisions, coupled with our estimated utility functions and the

ownership structure of each model, allow us to calculate the static profits of each model

in each simulated time period. We use these simulated states to construct Ŵ 1(at(ψt),ψt)

the empirical analog of W 1(at(ψt,νt),ψt, νjt) in Equation 4. Our simulations also produce

estimates of each component of the value function, as Ŵ 2(at(ψt),ψt) and Ŵ 3(at(ψt),ψt)

are the summations of the redesign and exit actions taken, and Ŵ 4(at(ψt),ψt) is based on

the estimated probability of the firm’s chosen action.26 Lastly, the second stage is used to

estimate the dynamic parameters of Equation 4 (θgR, θ
g
X and θgP ) for each vehicle class, in a

way that “rationalizes” the estimated value functions. The intuition of the estimator based

on the presumption that our optimal policy functions should lead to greater profits than any

alternative policy function.

Applying the second-stage estimator, therefore, requires constructing value functions

for alternative policies and the transitional dynamics that these alternatives imply. Bajari

et al. (2007) demonstrates that by perturbing the estimated policy functions, the second

stage estimator is consistent. Srisuma (2010) points out linear perturbations can lead to

inconsistencies and proposes perturbations of the form, a′(·) = ε ∗ a(· ; θ0) to be more stable.

We thus draw ε ∼ Uniform[0, 2] independently for the exit and redesign policies for 500

perturbed policies applied to each simulation.27 Plainly, we randomly scale up or down

26To reiterate, Ŵ 4(at(ψt),ψt) =
∑

t β
t−1Pjt(·) where Pjt(·) = κ−log(Prob[ajt(ψt,νt)]. With κ denoting

Euler’s constant and ajt is the action (redesign or not) taken by firm j in period t.
27That is, each information shock is perturbed 500 times. We have also investigated various forms of

perturbations, including the additive perturbations suggested by Bajari et al. (2007), and the resulting
estimates are similar across either method.

23



the probability firms take particular actions. Using these perturbed policy functions we

forward simulate each model’s value function in parallel to the optimal path. This allows us

to construct a set of alternative value functions that are also linear functions in θ. These

simulations under alternative policy functions enable us to construct Equation 5. We then

choose the θs to minimize this sum of squares. Appendix A further details the non-linear

search methods used for estimation, but we opt for a simple Newton-Rhapson search as it is

shown to lead to consistent estimates regardless of starting value choice.

4.2 Dynamic parameter estimates

Table 6 presents our estimates of the dynamic parameters using the Bajari et al. (2007)

technique. Our estimates suggest that redesign costs average nearly $1.6 billion across all

types of vehicles. There is noticable heterogeneity across types of vehicles. Redesign costs

are smallest for luxury vehicles at around $900 million. For cars, vans and SUVs we estimate

redesign costs between $1.1 and $1.7 billion. Our largest estimates are for pick-ups at over

$3 billion. While automobile firms undoubtedly know (at least, ex post) their redesign costs,

these numbers are closely guarded and we cannot verify the credibility of these estimates with

publicly available information. However, we compare our estimates to a variety of sources in

the popular press. A recent AOL Autos article states that the price tag of a remodel starts

at $1 billion and, “It can be as much as $6 billion if it’s an all-new car on all-new platform

with an all-new engine and an all-new transmission and nothing carrying over from the old

model.” A recent Forbes article suggests the developments costs are at least $1 billion. In

addition, a Business Insider article quotes Nissan as saying that they normally spend $300-

500M on a remodel. Finally, a private conversation with a former manager in one of the

major U.S. automobile manufacturers suggest that our estimates are very reasonable.

Unlike redesign costs, scrap values are likely something that is even less observable,

as they represent an opportunity cost to the continuation of production of the model. Our

scrap values are estimated to be significantly larger in general than redesign costs. While this

seems quite plausible to us, it is difficult to compare these estimates to anecdotal evidence
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on these values, and we note that there are relatively few exits of models in our sample

(and simulations) from which to identify these estimates in our data and account for in

simulations. This contrasts with the high frequency of redesigns, the focus of our study.

There are additional issues surrounding firm exit in this model. Because the methodol-

ogy does not lend itself to modeling entry, specifically as that would require endogenously

choosing attributes and unobserved quality, allowing for exit in our model implies that in the

limit no vehicles will exist. While this does not happen in our simulations, only around 15%

of models exiting at the conclusion of our simulations, there is still a possibility that weak

identification of scrap values are influencing our redesign estimates, which are the purpose of

the paper. We investigate how shutting down exit affects our results. Table B.1 in Appendix

B presents estimates of the dynamic model assuming firms do not have the option to scrap

their models. There are only slight differences from our alternate specifications.

5 Baseline Welfare Estimates

Given our estimates of redesign and scrap values, we now have a fully dynamic model from

which we can construct and track estimated welfare and firm value over time. In particular,

our measure of welfare within vehicle class each period is the present discounted value of the

nested-logit inclusive value (see Nevo (2003)),

Ugt = E

 ∞∑
t=1

βt−1 ∗ 1

α
ln

∑
g

(∑
j∈Jg

e
δjt
1−σ

)1−σ
 ∗Msgt


such that the total utility from new auto purchases in period t is

∑
g Ugt. We then apply the

within class estimates of redesign cost and scrap value to each of our 50 forward simulations

and discount by the factor β = 0.95 to calculate present discounted profits (or “Firm Value”)

and present discounted utility in dollars (or “Utility”) for each model in our sample and then

sum up across models within each vehicle group. Figure 6 provides baseline estimates of

welfare in the model over time. Panel (a) of Figure 6 graphs discounted present value of firm

value, consumer utility, and total welfare for the automobile market over a 50-year horizon
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at every year of our sample.

Figure 6 displays a number of important features of our the market. First, as shown in

Panel (a), firm value in the entire market is around $4 trillion for most years in our sample,

which means an average of about $80 billion in annual firm value flow.28 Panels (b), (c),

and (d) of Figure 6 break out the automobile market into three major segments. These

are “cars,” which include standard compact, midsize, and full-size vehicles; “trucks,” which

includes minivans, pickups, SUVs, and vans; and “luxury” vehicles. There are a number of

interesting observations that one can take from Figure 6. First, firm value is high relative to

consumer surplus (about a ratio of 2 to 1), suggesting that firms are extracting a significant

amount of the total surplus in the automobile market.29 Second, the recessions of the early

1990s and late 2000s show up quite clearly in our estimates, with firm values and total

welfare falling considerably. Third, the truck and luxury segments of the market appear to

have been more affected by the recent recession than the standard cars market.

Figure 7 further decomposes the firm value component of welfare by the three main

automobile segments and the three components of firm value—profits from sales, redesign

expenditures, and scrap value. As one can see in Panel (a), the truck segment (which includes

minivans and SUVs) increased substantially from the early 1990s until the recent recession

in terms of its contribution to firm profits. The segment even surpassed the standard car

segment in the late 1990s, but also suffered the largest decline when the recent recession hit.

Redesign expenditures by vehicle segment show a relatively consistent ranking over time,

with the truck segment accounting for about half of automobile manufacturers’ redesign

expenditures, with cars next, and the luxury segment (a relatively small market segment)

accounting for the least amount of redesign expenditures. The estimated scrap value com-

ponent is very small compared to the other two components and fairly volatile. All segments

28These estimates seem plausible given stock market valuations of the auto industry. For instance, the
market capitalization of auto manufacturers is around $8.5 trillion as of January 2013.

29We note that our estimates are for the primary automobile market, as we do not model the secondary
car market. We will discuss this more below.
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are estimated to have similar total scrap values, with considerable variation over time.30

6 Using the Dynamic Model to Examine the Effect of Redesign

Competition and Obsolescence on Welfare

We now use our model to address our initial goals in the paper—analyzing the relative

role of redesign competition and obsolescence in affecting redesign decisions and ultimately

firm profits and overall welfare. This allows us to understand how much these redesign

competition and obsolescence considerations affect how efficiently the market operates.

To do this we undertake a set of simulations with our estimated dynamic model, where we

intensify and reduce the impact of both of these channels and note its impact on welfare. This

will allow us to understand how much these dynamic strategic forces of redesign competition

and obsolescence jointly and independently impact welfare. Perturbing these two forces in

a clear way is somewhat complicated by the flexibility of our policy function. To see this,

take the general form of our redesign policy function:

Rjt+1 = γddjt + γccjt + γoojt + βRln(s̄j/g) + εRjt.

In the simple case where there is one state variable capturing redesign competition and one

capturing obsolescence, and both γc and γo are positive, one approach is to introduce two

new parameters, δc and δo to intensify or reduce the effects of each channel by defining the

policy function as:

Rjt+1 = γddjt + δcγccjt + δoγoojt + βRln(s̄j/g) + εRjt.

We could then analyze how welfare changes when we vary γc and γo. This exercise would

identify the pair of γs that maximize total welfare; a γ < 1 would reduce the channel, while

30Our results are robust to a number of alternative model assumptions, including whether we model firms
as single product or multi-product firms and whether we model and allow for exit. Appendix B provides
more details.
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a γ > 1 would magnify the channel.

Our redesign policy function is more flexible, and therefore more complicated, than this

simple example. Two complications arise: sign differences across the γs and interaction

terms. To see why sign differences across the parameters of the competitive redesign or

obsolescence effects matter, suppose we had two (not one) variables capturing the redesign

competition effects, c1jt and c2jt:

Rjt+1 = γddjt + γ1cc1jt + γ2cc2jt + γoojt + βRln(s̄j/g) + εRjt.

Now suppose that γ1c > 0, while γ2c < 0. If we multiplied both variables by the same δ > 1,

this would tend to increase the probability of a redesign by making γ1cc1jt more positive,

but at the same time, it would tend to reduce the probability of a redesign by making γ2cc2jt

more negative. The net effect of this could be to increase or decrease the probability of a

redesign, and δ would no longer carry the interpretation we seek.

This issue of sign differences is easy to overcome. In our simulations, we multiply by δj

whenever γj is positive and divide by δj whenever γj is negative. Therefore, in the example

above, a δ > 1 would make both δcγ1cc1jt and 1
δc
γ2cc2jt more positive.

The second issue—the existence of interaction terms—cannot be completely accounted

for, and changes the interpretation of the δjs slightly. To see the complication here, suppose

our δ-augmented redesign policy function was:

Rjt+1 = γddjt + δcγccjt + δoγoojt + δcδoγoccjtojt + βRln(s̄j/g) + εRjt.

Ideally, δc and δo scale the derivatives of the probability of a redesign with respect to the

two channels. In this simple set up those derivatives are:

∂Rjt+1

∂cjt
= δccjt + δcδoγocojt,

∂Rjt+1

∂ojt
= δoojt + δcδoγocojt.
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With interaction terms, δc is present in both the derivative with respect to the redesign

competition channel and the derivative of the obsolescence channel. If we interpret δc as

magnifying the size of the redesign competition state variables, then the interaction terms

do not present a problem. If, however, we want to interpret δc as magnifying the parameter

estimates associated only with the redesign competition channel, then our set up is not ideal.

To identify welfare under different δjs, we perform a grid search varying the size of the

δjs from 0 to 2 in 0.1 increments. We search for the pair of δjs that maximize total welfare

in each year of our sample, forward simulating out 50 years from that given year. Therefore,

we can have a different pair of δ∗j s in each year.

A convenient way to summarize our results is through the use of a contour plot that

displays the percentage difference of the sum of total welfare between the base and perturbed

estimates across each year in our sample. Figure 8 plots these for the market as a whole,

as well as for each of the car, truck, and luxury vehicle segments of the market. The

baseline scenario welfare is at the center of these plots, where both parameters are equal to

1. Darker shades in the plot represent higher welfare levels and the black diamonds represent

combinations of δjs that maximize welfare in at least one single year, which we term our

“optimal simulation.”

Welfare is relatively high in the baseline scenario, and it is clear that perturbations to

reduce the responsiveness of the redesign policy function to either (or both) of the redesign

competition or obsolescence effects results in major welfare losses. The worst results come

from fully strengthening the competitive channel and fully weakening the obsolescence chan-

nel. Perturbations that increase responsiveness of the redesign policy function result in much

smaller welfare losses. In other words, too frequent redesigns in this market would be much

less costly than too infrequent redesign activity.

While our welfare is relatively high in the baseline scenario, our contour of simulations

suggests that welfare could be improved in this marketplace by moving southeast from the

baseline to a region that represents a reduced redesign competition effect and a greater

obsolescence effect. Referencing the black diamonds in our plot, which represent the highest
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welfare levels obtained in our simulations, they suggest that in the typical year, welfare

is maximized by reducing the redesign competition channel by roughly 20 percent, but

increasing the obsolescence channel by between 20 and 50 percent. The welfare increase

between the optimal simulation and our baseline is between 1.5 and 15 percent. Interestingly,

these observations are true not only for the entire market, but also for each market segment.

All four plots suggest that the welfare-maximizing policy functions correspond to a ridge in

the welfare mapping that runs from the northwest to the southeast in Figure 8.

We can also use our simulations to show how consumer utility, firm value, and total

welfare in these optimal simulations compare to the baseline estimates in each year. It is

possible that either firms or consumers can be made worse off in the optimal simulation, even

if total welfare is a bit higher. And these comparisons may vary over time in the market.

Figure 9 plots the welfare difference of the optimal simulation to the baseline for consumer

utility, firm value, and total welfare over the years of our sample. We plot these for the entire

market in Panel (a), as well as for each of the car, truck, and luxury vehicle segments of the

market in Panels (b), (c), and (d). Under the optimal simulation, firm value is generally

higher than the baseline. In contrast, consumer utility under the optimal simulation can

sometimes be lower than for our baseline scenario. Lower relative consumer utility in the

optimal simulation is especially pronounced from 2004 and 2005 and from 2008 and 2009.

These periods notably encompassed both an increase in gasoline prices and the beginning of

the Great Recession. Comparing the results across market segments, we find that the luxury

vehicle segment has the largest welfare gain (positive percentage) in the simulation relative

to the baseline, while the car market segment has the smallest, and the optimal outcome is

most often the baseline.

Finally, in Figure 10 we show the relative differences between the optimal simulation and

the baseline for the components of firm value (profit from sales, redesign expenditures, and

scrap values). As with Figure 9, we show these for the market as a whole, as well as for each

of the car, truck, and luxury vehicle segments of the market, in four separate panels. As

shown above, the optimal simulation is generally one where the competitive redesign channel
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is weakened and the obsolescence channel is strengthened. These should have opposite effects

on how often firms redesign and, thus, total redesign expenditures. As seen in Figure 10, these

channels vary significantly across vehicle class. The weaker competitive redesign channel in

the optimal simulation appears to dominate for trucks with respect to the effect on redesign

expenditures, as expenditure is lower in the optimal simulation relative to the baseline by

20%, or $40 billion (about $0.8 billion per year), on average. For cars, we see the opposite.

In the optimal simulations, redesign expenditure increases on average by 30%, or $60 billion

(about $1.2 billion per year). For the entire market, which includes luxury vehicles, total

expenditure rises and falls from 40% to -10% depending on the period.

We interpret the change in firm behavior from the optimal perturbation as enhancing

social efficiency by reducing inefficient redesigns coming from redesign competition, enhanc-

ing redesigns valued by consumers that come from obsolescence, and discontinuing weak

varieties. Figures 9 and 10 demonstrate that the more efficient timing of redesigns results

in relatively little change to profits from sales and consumer welfare. Welfare gains are

thus realized as firms acquire significant savings by eliminating excess redesigns with minor

distortions to the final goods market.

7 Secondhand Market Considerations

Our model and welfare analysis is clearly focused on the new automobile market. We account

for the secondhand market for automobiles in two indirect, but important, ways in our

model. First, it is implicitly accounted for as part of the outside option consumers have in

the discrete-choice demand model we specify. Second, the appeal of secondhand automobile

models is presumably a factor in how quickly demand for new automobiles falls as the current

model ages.

One may be concerned that the channels which produce welfare gains in our characteriza-

tion of the optimal simulation may be at the expense of used car value. Explicitly modeling

the secondhand market is beyond the scope of this paper, and therefore we cannot describe

how redesigns of new automobiles directly affect transactions and welfare of participants in

31



the secondhand market. However, to get some sense of the possible welfare effects on the

secondhand automobile market, we do the following. First, using auction data of second-

hand vehicles, we estimate the impact of redesigns of a model on the current generation of

used automobiles of the same model, controlling for other observable factors, such as annual

depreciation (which average around 20%) and manufacturer and automobile class effects.

From this analysis, we estimate that a redesign leads to, at most, a 4% fall in the value of

the used car models of the most recent model generation. Furthermore, this result is not sta-

tistically robust. We also assume that the value of used automobiles from models more than

one generation ago see their value fall to zero. This is likely a very strong assumption, but

will give us an upper-bound estimate of how much impact redesigns have on the secondhand

market.31

Using these assumptions, we can estimate the impact of redesigns on the total value of

the stock of used automobiles in our simulation of the model. In our baseline simulations,

we find that if we eliminate redesign activity there is an increase of about $250 billion (or

roughly 7.5%) in the total value of used vehicles. Applying the same thought experiment

to our optimal simulation, eliminating redesign activity implies an increase of about $200

billion (or roughly 7%) in the total value of used vehicles. To reiterate, we think of these

effects as upper bounds on the losses from redesign activity. And these estimated losses in

the secondhand market are small compared to the welfare losses from eliminating redesign

in the new automobile market, where eliminating redesign in the baseline scenario leads to

anywhere from a 60%-75% loss in total surplus (or approximately $2 trillion).

8 Conclusion

This paper builds the first empirical structural model of product redesign in the auto industry.

We use it to examine redesign decisions in the U.S. automobile market and their effects on

firm profits, consumer utility, and total welfare. Unlike the few prior empirical studies

31However, we note that since redesigns happen about every 5 years and annual depreciation is around
20% annually, the residual value of these used automobiles beyond the most recent generation will be quite
small anyway.
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of product redesigns, we find that both redesign competition among models and planned

obsolescence to recapture market share play important roles. Simulations using our estimated

dynamic model find evidence of wasteful redesign competition that then precludes more

redesign activity targeted to obsolete models at the optimal time. We find that welfare

would be maximized by reducing the redesign competition channel by roughly 20 percent,

but increasing the obsolescence channel by between 20 and 50 percent. This would have only

a modest net effect on redesign expenditures and still yield welfare increases of roughly 3%.

A handful of existing studies have estimated consumer gains from new automobile product

varieties. In particular, Blonigen and Soderbery (2010) estimate consumer valuation of new

product variety to be on the order of 10% of utility. As noted in the introduction, the

redesign of existing autos occurs twice as often as the introduction of new varieties. Our

analysis points to the importance of redesigns, as the redesign activity in our simulations

has nearly six times the effect on consumer welfare as previous estimates of new variety

introduction.
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9 Tables and Figures

Figure 1: Design Lifecycle
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Figure 2: Age Distribution
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Figure 3: Estimated Age Effects from Demand Model
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Table 2: Market Share Regressions

Characteristics ln(sjt)− ln(s0)

OLS IV

Price ($1000in′85) −0.044∗∗∗ −0.044∗∗∗ −0.045∗∗∗ −0.045∗∗∗ −0.078∗∗∗ −0.048∗∗∗ −0.079∗∗∗

(0.004) (0.006) (0.004) (0.006) (0.011) (0.004) (0.011)
log(sj/g) 0.815∗∗∗ 0.823∗∗∗ 0.808∗∗∗ 0.814∗∗∗ 0.413∗∗∗ 0.423∗∗∗ 0.391∗∗∗

(0.026) (0.026) (0.026) (0.026) (0.076) (0.063) (0.075)
Miles/$ 0.015∗∗ 0.014∗∗ 0.026∗∗∗ 0.024∗∗∗

(0.007) (0.006) (0.008) (0.007)
HP

Weight 0.005 0.004 0.026∗∗∗ 0.023∗∗∗

(0.004) (0.004) (0.007) (0.006)
log(Size) 2.070∗∗∗ 2.000∗∗∗ 1.771∗∗∗ 1.574∗∗∗

(0.267) (0.268) (0.389) (0.395)
log(Engine Displacement) −0.461∗∗∗ −0.387∗∗ 0.312 0.502∗

(0.150) (0.154) (0.258) (0.265)
Redesign 0.172∗∗ 0.159∗∗ 0.423∗∗∗ 0.376∗∗∗

(0.071) (0.064) (0.073) (0.077)
Age = 1 0.108 0.235∗∗ 0.207∗ 0.496∗∗∗

(0.095) (0.102) (0.118) (0.139)
Age = 2 0.199∗∗ 0.329∗∗∗ 0.448∗∗∗ 0.723∗∗∗

(0.083) (0.092) (0.114) (0.137)
Age = 3 0.174∗∗ 0.316∗∗∗ 0.397∗∗∗ 0.689∗∗∗

(0.083) (0.092) (0.112) (0.135)
Age = 4 0.183∗∗ 0.341∗∗∗ 0.398∗∗∗ 0.698∗∗∗

(0.083) (0.091) (0.113) (0.134)
Age = 5 0.194∗∗ 0.344∗∗∗ 0.412∗∗∗ 0.695∗∗∗

(0.081) (0.090) (0.112) (0.134)
Age = 6 0.182∗∗ 0.322∗∗∗ 0.364∗∗∗ 0.640∗∗∗

(0.079) (0.089) (0.106) (0.131)
Age = 7 0.115 0.265∗∗∗ 0.268∗∗∗ 0.553∗∗∗

(0.076) (0.088) (0.101) (0.126)
Age = 8 0.079 0.265∗∗∗ 0.207∗∗ 0.484∗∗∗

(0.075) (0.083) (0.097) (0.116)
Age = 9 0.011 0.194∗∗ −0.006 0.255∗∗

(0.076) (0.085) (0.101) (0.115)

R2 0.709 0.756 0.711 0.759 0.609 0.602 0.607
N 4831 4831 4831 4831 4831 4831 4831
Note: Standard errors clustered by model are in parentheses, * p<0.10, ** p<0.05, *** p<0.01.



Table 3: Redesign Policy

Controls Logit Estimates of Pr[Redesign=1]

Age 0.131∗∗∗ 0.117∗∗∗ 0.107∗∗∗ 0.165∗∗∗ 0.987∗∗∗

(0.034) (0.035) (0.033) (0.036) (0.124)
Age2 −0.050∗∗∗

(0.009)
Age = 2 −3.103∗∗∗ −3.161∗∗∗

(0.456) (0.468)
Age = 3 −1.472∗∗∗ −1.544∗∗∗

(0.324) (0.336)
Age = 4 −0.611∗∗ −0.685∗∗∗

(0.253) (0.262)
Age = 5 0.164 0.088

(0.242) (0.252)
Age = 6 0.485∗∗ 0.428∗

(0.242) (0.253)
Age = 7 0.376 0.330

(0.262) (0.269)
Age = 8 0.052 0.012

(0.279) (0.288)
Age = 9 0.229 0.167

(0.307) (0.308)
Total Redesigns 0.044∗∗∗ 0.029∗∗ −0.007 −0.001 0.054∗∗∗ 0.125∗∗∗

(0.014) (0.013) (0.012) (0.013) (0.014) (0.040)
Total Redesigns2 −7.262∗∗∗

(0.662)
AgeComp −0.050 −0.053 −0.071 0.087 0.203∗∗∗ 0.867∗∗

(0.056) (0.055) (0.058) (0.061) (0.069) (0.347)
AgeComp 2 −0.097∗

(0.050)
Stock 0.064∗∗∗ 0.049∗∗∗ 0.058∗∗∗ 0.210∗∗∗ 0.636∗∗∗

(0.019) (0.015) (0.017) (0.040) (0.108)
Stock ×Age −0.019∗∗∗ −0.065∗∗∗

(0.005) (0.018)
Stock ×Age2 0.003∗∗∗

(0.001)
Stock ×AgeComp 0.001 −0.188∗∗∗

(0.017) (0.049)
Stock ×AgeComp 2 0.026∗∗∗

(0.007)

Group FEs No No No No Yes Yes Yes
R2 0.032 0.040 0.052 0.124 0.138 0.082 0.133
N 4514 4514 4514 4514 4514 4514 4514
Note: Standard errors clustered by model in parentheses, * p<0.10, ** p<0.05, *** p<0.01.



Table 4: Exit Policy

Controls Logit Estimates of Pr[Exit=1]

Age 0.129∗∗∗ 0.143∗∗∗ 0.136∗∗∗ 0.110∗∗∗ 0.331∗∗∗

(0.029) (0.029) (0.028) (0.025) (0.057)
Age2 −0.013∗∗∗

(0.003)
Age = 1 −3.805∗∗∗ −3.146∗∗∗

(0.507) (0.532)
Age = 2 −1.979∗∗∗ −1.363∗∗∗

(0.301) (0.323)
Age = 3 −1.115∗∗∗ −0.608∗∗

(0.247) (0.276)
Age = 4 −0.832∗∗∗ −0.425

(0.236) (0.263)
Age = 5 −0.463∗∗ −0.170

(0.234) (0.260)
Age = 6 −0.170 0.075

(0.230) (0.257)
Age = 7 −0.265 −0.114

(0.257) (0.273)
Age = 8 −0.817∗∗ −0.781∗∗

(0.340) (0.354)
Age = 9 −0.250 −0.293

(0.316) (0.348)
Total Redesigns 0.026 0.012 −0.021 0.042∗∗ 0.070∗∗∗ 0.104∗∗

(0.016) (0.016) (0.016) (0.018) (0.017) (0.040)
Total Redesigns2 −0.003

(0.002)
AgeComp −0.324∗∗∗ −0.337∗∗∗ −0.329∗∗∗ −0.098 −0.095 0.321

(0.074) (0.075) (0.070) (0.097) (0.105) (0.451)
AgeComp 2 −0.058

(0.067)
Stock 0.063∗∗∗ 0.064∗∗∗ 0.095∗∗∗ 0.080 0.190

(0.020) (0.019) (0.021) (0.054) (0.135)
Stock ×Age −0.005 −0.040∗∗∗

(0.004) (0.010)
Stock ×Age2 0.002∗∗∗

(0.000)
Stock ×AgeComp 0.018 0.048

(0.012) (0.088)
Stock ×AgeComp 2 −0.007

(0.014)
log(sj/g) −0.733∗∗∗ −0.761∗∗∗ −0.821∗∗∗ −0.866∗∗∗ −1.007∗∗∗ −0.986∗∗∗ −1.004∗∗∗

(0.055) (0.050) (0.054) (0.059) (0.072) (0.069) (0.071)

Group FEs No No No No Yes Yes Yes
R2 0.180 0.197 0.202 0.238 0.287 0.263 0.273
N 5443 5443 5443 5443 5443 5443 5443
Note: Standard errors clustered by model in parentheses, * p<0.10, ** p<0.05, *** p<0.01.



Figure 4: Predicted Probability of Redesign
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Figure 5: Predicted Probability of Exit
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Table 5: Performance of Policy Functions

Logit Policy Threshold (R̄ or X̄)

Sample 0.10 0.20 0.25 0.275 0.30 0.40 0.50

% Correct if
Redesign = 1 100% 82.4% 55.2% 43.7% 37.0% 32.3% 16.9% 6.9%
Redesign = 0 100% 69.4% 86.1% 91.1% 92.9% 94.3% 97.7% 98.6%
Exit = 1 100% 14.8% 12.7% 12.4% 12.4% 12.2% 10.8% 9.3%
Exit = 0 100% 99.1% 99.3% 99.3% 99.3% 99.3% 99.4% 99.4%

Fraction of Sample
Redesigned 9.8% 35.6% 18.0% 12.3% 10.0% 8.3% 3.8% 2.0%
Exited 6.9% 1.8% 1.5% 1.5% 1.4% 1.4% 1.2% 1.1%

Table 6: Estimates of Dynamic Parameters

Type Class Redesign Scrap Private
Cost ($M) Value ($M) Value ($M)

COMPACT 1119.950 4259.150 99.480
Car FULL 1283.976 5576.464 299.600

MID 1657.509 8305.982 499.094

PU 3049.221 8169.166 496.914
Truck SUV 1320.915 5325.169 381.302

VAN 1712.673 3784.817 159.762

Luxury LUX 860.344 5852.855 431.069
SPORT 1986.206 20267.543 1690.631



Figure 6: Welfare Baseline
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Figure 7: Decomposing Firm Value
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Figure 8: Mapping of the Welfare Differences Between Optimized Policy Functions Relative
to Baseline Policy Functions
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Note: � denotes the combination of perturbations that lead to the maximum total surpluses.



Figure 9: Welfare Components: Welfare Differences Between Optimized Policy Functions
Relative to Baseline Policy Functions
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Figure 10: Decomposing Firm Value Components: Welfare Differences Between Optimized
Policy Functions Relative to Baseline Policy Functions
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A Appendix A: Details of the Non-Linear Search

Our empirical model requires a non-linear search over the dynamic parameters representing the cost of
redesign and the scrap value of eliminating a model. We investigated the sensitivity of this non-linear
search to both starting values and non-linear search algorithms drawing on the lessons learned in Knittel
and Metaxoglou (Forthcoming). Ultimately, we found that unless one uses the Nelder-Mead (Simplex)
algorithm, convergence is always met in the same location (down to at least the fourth decimal point) of
the parameter space. Furthermore, if we restart the non-linear search at points where the Nelder-Mead
algorithm “converged” and use another non-linear search algorithm, we again end up where the non-Nelder-
Mead algorithms converge, which corresponds to a smaller GMM objective function value. That is, the
Nelder-Mead algorithm appears to converge at points that are not actually extrema.

We used the Optimize() command within Stata to estimate the GMM problem associated with the
dynamic parameters.32 While Stata is more limited than alternative programs, such as Matlab, in terms
of the options for undertaking the non-linear search, it includes a Simplex algorithm, a Newton-Raphson
algorithm, and three quasi-Newton algorithms. Stata also allows the programmer to set starting values and
tolerances.

Convergence is dictated by three tolerances: ptol, vtol, and nrtol. Convergence is reported if one of
three things happens. (1) If the largest relative change in parameters (i.e., (βh − βh−1)/βh for iteration
h) is smaller than ptol ; (2) If the change in the objective function value between two iterations is smaller
than vtol ; (3) If the scaled gradient vector (i.e., gH−1g′, where H is the Hessian) is smaller than nrtol. We
use Stata’s default tolerances for ptol (1e-6), vtol (1e-7), nrtol (1e-5), but have found that tightening these
tolerances does not appreciably change our estimates.

For our initial investigation of whether starting values and/or the non-linear search algorithm yield
different results, we used three of Stata’s non-linear search algorithms and a fourth which is a hybrid of two.
Specifically, we use the Nelder-Mead (Simplex) algorithm, the Newton-Raphson, and the Davidson-Fletcher-
Powell (Quasi-Newton) algorithms. Our hybrid approach uses the Nelder-Mead algorithm until convergence
is met, and then shifts to the Newton-Raphson algorithm. For each of these four algorithms, and each of the
three dynamic parameters, we used nine different starting values (representing millions of dollars): -900, 100,
1100, 2100. The intersection of these three sets yields 64 starting-value combinations for each algorithm.

Figures A.3 and A.4 summarize our results from this exercise, when we pool the classes of vehicles
and estimate one redesign cost and one scrap value across all vehicles classes. Separating things by classes
yields similar results in terms of stability of the non-linear search. We find that provided we do not use the
Nelder-Mead algorithm alone, we converge to the same place for both parameters, down to the third decimal
point. Furthermore, when we allow the Nelder-Mead routine to converge and then start the Newton-Raphson
routine at these parameter values, the Newton-Raphson routine leaves the space where the Simplex routine
converged and goes to the lone extrema found by the Newton-Raphson and quasi-Newton algorithms. We
take this as evidence that the Nelder-Mead routine terminates at points that are not minima.

Among the non-Nelder-Mead-only exercises, we analyzed the first-order conditions associated with those
searches where Stata reports convergence. The mean Hessian-weighted gradient (in absolute value), among
those for which convergence was reached, is -1.53e-07, while the maximum (minimum) is 3.18e-06 (-6.18e-06).
We therefore conclude that the first-order conditions are met. The Hessian is positive definite for all points,
for which convergence is met, in the non-Nelder Mead estimates, implying the second-order conditions are

32See man Optimize within Stata for more information.



also met. In addition, the condition number never exceeds 43.33 Figure A.1 shows the density of weighted-
gradient, while Figure A.2 shows the objective function across all non-linear search algorithms.

Given this exercise and using the “Smoke and Fire” analogy discussed in Knittel and Metaxoglou (Forth-
coming), we see no smoke and therefore have no reason to suspect any fire. Our results for the class-specific
estimates are similar. For the final set of parameters used in the analysis, we still iterate over 9 different sets
of starting values (500, 1000, and, 1500 for both parameters) and use the hybrid algorithm. We choose the
set of parameter values corresponding to the lowest GMM objective value, but these do not differ at least
for the first 11 significant digits.

Figure A.1: Hessian-weighted gradient of converged sets of parameters
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33Judd (1998) argues that a condition number is small if its base 10 logarithm is about 2 or 3 for a
computer that carries about 16 significant decimal digits. A condition number of 43 is well below this
criterion.



Figure A.2: Objective function across all converged sets of parameters
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Figure A.3: Estimated redesign cost across starting values and algorithms
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Figure A.4: Estimated scrap value across starting values and algorithms
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B Appendix B: Alternate Specifications

Our main specification considers multi-product firms making dynamic redesign decisions. Here we present
results from alternative assumptions in order to examine the channels of the model further. These alternatives
include:

1. Single product firms

2. Multiproduct firms no characteristics

3. Multiproduct firms no exit

Figure B.1 displays the willingness to pay for designs of different ages for each of these robustness exercises
and our main specification. Next we repeat the dynamic estimation for each of the alternate specifications
along side the main. Table B.1 presents these estimates. We can see that the dynamic estimates are nearly
identical when we assume each vehicle model is a single product firm. This is not surprising as the estimated
demand model is comparable between the two assumptions, and the policy functions are unchanged. The
assumption of single product firms does affect the magnitudes and patterns of the forward simulations, which
has a noticeable effect on our scrap value estimates. It is reassuring that our redesign estimates are relatively
stable to this assumption.

Additionally, we remove the option of firm exit from the dynamic model. This decreases our redesign
estimates across the board. However, the patterns across vehicle classes are largely unaffected. The impact
of removing exit from the model is also quite intuitive. Vehicles with large scrap values in the base model
see the largest decrease in the estimated redesign cost as they substitute away from exit and into redesign
in the forward simulations.

Finally, we explore the possibility that firms change their characteristics at and around redesigns by
dropping characteristics from the demand model. This forces the age coefficients and demand error term to
absorb the model’s characteristics. This is by no means a preferred specification, but highlights the role of a
model’s age. Figure B.1 demonstrates that without controls for characteristics, consumer willingness to pay
for a redesign more than doubles. These demand effects are transferred to the dynamic estimates as larger
redesign costs as firm redesign has larger stakes as it captures larger market shares.

To conclude, in Table B.2 we explore the issue of directly including our obsolescence measure, stock, in
market share regressions. Clearly this variable is endogenous, as it enters with the opposite sign that we
expect. It is reassuring that the inclusion of this variable does not affect the pattern of our age coefficients.
In Column 3, we demonstrate that the stock effect is dominated by the endogenous relationship between
lagged sales and current market shares making it a poor choice for inclusion in our demand model.



Figure B.1: Estimated Age Effects from Demand Model

Table B.1: Estimates of Dynamic Parameters

Multi-Product Firms Multi-Prod Firms Firm Independence Multi-Prod Firms: Multi-Prod:
with Private Payoffs No Characteristics No Exit

Type Class Red Scrap Priv Red Scrap Red Scrap Red Scrap Red
Cost Value Value Cost Value Cost Value Cost Value Cost

COMPACT 1119.95 4259.15 99.48 1509.64 2657.38 1493.96 2603.51 1970.74 4448.54 851.98
Car FULL 1283.98 5576.46 299.60 967.70 1230.78 948.42 1303.93 1214.24 2176.13 542.07

MID 1657.51 8305.98 499.09 963.49 3178.37 955.66 3064.66 1156.09 4437.48 599.49
PU 3049.22 8169.17 496.91 1852.04 3468.40 1809.70 3675.97 2077.23 4344.24 1297.79

Truck SUV 1320.91 5325.17 381.30 635.24 164.41 627.52 207.75 746.31 545.83 654.12
VAN 1712.67 3784.82 159.76 1073.79 2237.76 1051.66 2142.04 1159.71 3308.06 839.09

Luxury SPORT 860.34 5852.86 431.07 171.53 126.40 170.42 139.86 185.61 210.05 158.57
LUX 1986.21 20267.54 1690.63 170.15 990.43 170.30 1028.98 201.28 1471.75 133.19



Table B.2: Market Share Regressions: Exploring Stock Effects
Characteristics ln(sjt)− ln(s0)

Price ($1000in′85) −0.073∗∗∗ −0.054∗∗∗ 0.002
(0.010) (0.010) (0.002)

log(sj/g) 0.411∗∗∗ 0.184∗∗ 0.030
(0.073) (0.078) (0.019)

Miles/$ 0.282∗∗∗ 0.373∗∗∗ 0.360∗∗∗

(0.104) (0.096) (0.028)
HP

Weight 1.065∗∗∗ 0.613∗∗ −0.212∗∗∗

(0.281) (0.251) (0.064)
log(Size) 1.437∗∗∗ 0.978∗∗∗ 0.100

(0.378) (0.327) (0.082)
log(Engine Displacement) 0.443∗ 0.410∗ 0.138∗∗

(0.251) (0.233) (0.056)
Redesign 0.374∗∗∗ 0.513∗∗∗ 0.362∗∗∗

(0.075) (0.085) (0.050)
Age = 1 0.456∗∗∗ 1.293∗∗∗

(0.133) (0.179)
Age = 2 0.679∗∗∗ 1.477∗∗∗ 0.093∗

(0.130) (0.166) (0.051)
Age = 3 0.643∗∗∗ 1.292∗∗∗ 0.101∗∗

(0.127) (0.146) (0.044)
Age = 4 0.653∗∗∗ 1.158∗∗∗ 0.084∗

(0.127) (0.132) (0.044)
Age = 5 0.651∗∗∗ 1.032∗∗∗ 0.102∗∗

(0.127) (0.124) (0.045)
Age = 6 0.597∗∗∗ 0.873∗∗∗ 0.076∗

(0.124) (0.119) (0.045)
Age = 7 0.505∗∗∗ 0.672∗∗∗ 0.019

(0.119) (0.108) (0.052)
Age = 8 0.440∗∗∗ 0.538∗∗∗ 0.078

(0.110) (0.105) (0.052)
Age = 9 0.222∗∗ 0.288∗∗∗ 0.050

(0.110) (0.099) (0.065)
Stock 0.170∗∗∗

(0.033)
log(Salest−1) 1.306∗∗∗

(0.071)
log(Salest−2) −0.298∗∗∗

(0.067)
log(Salest−3) 0.055

(0.040)
log(Salest−4) −0.076∗∗∗

(0.026)
R2 0.626 0.613 0.937
N 4831 4831 3168
Note: Standard errors clustered by model are in parentheses,
* p<0.10, ** p<0.05, *** p<0.01.



Figure B.2: Estimated Age Effects from Alternate Demand Models
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