391 Homework 3 solutions

- Exercises 1.1: 4(e), 18.

4(e) For \(n \geq 3, n + 4 < 2^n \).

 Proof. Proceed by induction on \(n = 3, 4, \ldots \).

 Base case. If \(n = 3, 3 + 4 = 7 < 8 = 2^3 \).

 Induction step: Assume true for \(n = k, i.e. k + 4 < 2^k \). Consider the inequality for \(n = k + 1 \). We have that \(k + 5 = k + 4 + 1 < 2^k + 1 < 2^k + 2^k = 2^{k+1} \). Done.

18. Prove by induction that for any \(k = 1, 2, \ldots \), the product of \(k \) consecutive integers is divisible by \(k! \).

 Proof. I am going to show by induction on \(m = n + k \) that \((n + 1) \ldots (n + k)\) is divisible by \(k! \) for every \(n = 0, 1, \ldots \) and \(k = 1, 2, \ldots \).

 Base case: If \(m = 1, i.e. n = 0, k = 1, this is obvious.**

 Induction step: Assume that \((n + 1) \ldots (n + k)\) is divisible by \(k! \) for every \(n, k \) with \(n + k < r \). Suppose instead that we are given \(n, k \) with \(n + k = r \), and consider \((n + 1)(n + 2) \ldots (n + k)\). If \(k = 1 \) or if \(n = 1 \), the conclusion is obvious, so we may assume in addition that \(k > 1 \) and \(n > 1 \).

 By the induction hypothesis (and the assumption \(k > 1 \) and \(n > 1 \)), \(n(n+1) \ldots (n+k-1) \) is divisible by \(k! \) and \((n+1) \ldots (n+k-1)\) is divisible by \((k-1)!\). Now write

 \[(n+1) \ldots (n+k) = n(n+1) \ldots (n+k-1) + k(n+1) \ldots (n+k-1)\].

 The first term on the RHS is divisible by \(k! \), while the second term on the RHS is \(k \) times something divisible by \((k-1)!\), hence is also divisible by \(k! \). Hence the LHS is divisible by \(k! \) too. This completes the induction step.

 We have now established that \((n+1) \ldots (n+k)\) is divisible by \(k! \) for every \(n = 0, 1, \ldots \) and \(k = 1, 2, \ldots \). Strictly speaking we are not quite done, because the question asked for \(k \) consecutive integers, possibly negative! But in general, given \(k \) consecutive integers \((n+1) \ldots (n+k)\) with \(n \) negative, we can choose \(x \) so that \(n + xk! \) is positive. Then by what we have shown already,

 \[(n + xk! + 1) \ldots (n + xk! + k)\]
is divisible by $k!$. Expanding the brackets, it equals

$$(n + 1) \ldots (n + k) + (\text{a multiple of } k!).$$

So we get too that $(n+1) \ldots (n+k)$ is divisible by $k!$ in the general case.

- Exercises 1.2: 9, 10, 11, 17.

9. Prove that if p is prime and $p|(a_1 \ldots a_n)$ then $p|a_j$ for some j.

Proceed by induction on n. If $n = 1$ there is nothing to prove, so the base case is okay. For the induction step, assume that $p|(a_1 \ldots a_{n-1})$ implies that $p|a_j$ for some j, for every product $a_1 \ldots a_{n-1}$ of $(n-1)$ integers. Now consider the product of n (maybe different!) integers, $b_1 \ldots b_n$.

If $p|b_1 \ldots b_n$, then $p|xb_n$ where $x = b_1 \ldots b_{n-1}$. By Proposition 2.5, since p is prime, we get that either $p|x$ or $p|b_n$. In the latter case, we are done already. In the former case, $p|b_1 \ldots b_{n-1}$, whence by the induction hypothesis, $p|b_j$ for some j. This completes the proof.

10. Given a positive integer n, find n consecutive composite numbers.

The numbers are

$$(n + 1)! + 2, (n + 1)! + 3, \ldots, (n + 1)! + n.(n + 1)! + (n + 1).$$

Obviously the first is divisible by 2, so composite, the second by 3, so composite,..., the nth by $(n + 1)$ so composite.

11. Prove that there are no integers m, n so that $\left(\frac{m}{n}\right)^2 = 2$.

Suppose for a contradiction that there are integers m, n so that $\left(\frac{m}{n}\right)^2 = 2$. We may assume that m, n are relatively prime (since otherwise we could simplify the fraction). Then,

$$m^2 = 2n^2.$$

Hence, m^2 is even, which implies that m is even, i.e. $m = 2k$ for some integer k. But then

$$m^2 = 4k^2 = 2n^2$$
2k^2 = n^2.

This means that \(n^2 \) is even, which implies that \(n \) is even too. Now we have shown that both \(m \) and \(n \) are divisible by 2, which contradicts our original assumption that \(m \) and \(n \) were relatively prime.

17. Prove that whenever \(n > 1 \) is odd, \(2^{mn} + 1 \) is a composite number.

Proof. Let \(r = -2^m \). Then, assuming that \(n > 1 \) is odd,

\[
1 + r + \ldots + r^{n-1} = \frac{r^n - 1}{r - 1} = \frac{(-2^m)^n - 1}{-2^m - 1} = \frac{2^{mn} + 1}{2^m + 1}
\]

using Example 2 from 1.1 and the fact that \(n \) is odd. Hence,

\[
2^{mn} + 1 = (2^m + 1)(1 + r + \ldots + r^{n-1})
\]

is a composite number since \(2^m + 1 \) is a factor.

• Exercises 1.3: 1, 2(b), 4, 5.

1. We need to check three things. First: \(a \equiv a \pmod{m} \).

Proof. By definition this means that \(m | (a - a) \), which is true as everything divides 0.

Second: \(a \equiv b \pmod{m} \) implies \(b \equiv a \pmod{m} \).

Proof. If \(a \equiv b \pmod{m} \), then \(m | (b - a) \), hence \(m | (a - b) \), hence \(b \equiv a \pmod{m} \).

Third: If \(a \equiv b \pmod{m} \) and \(b \equiv c \pmod{m} \) then \(a \equiv c \pmod{m} \).

Proof. We have that \(m | (b - a) \) and \(m | (c - b) \). Hence, \(m | (b - a) + (c - b) = (c - a) \), i.e. \(a \equiv c \pmod{m} \).

2(b) Say \(n = \sum_{i=0}^{k} a_i 10^i \). Show that \(3 | n \) if and only if \(3 | \sum_{i=0}^{k} a_i \).

Proof. Note that \(10 \equiv 1 \pmod{3} \), hence \(10^i \equiv 1 \pmod{3} \) for each \(i \geq 0 \). So,

\[
n \equiv \sum_{i=0}^{k} a_i 10^i \equiv \sum_{i=0}^{k} a_i \pmod{3}.
\]

Now \(3 | n \) if and only if \(n \equiv 0 \pmod{3} \), so we have shown that \(3 | n \) if and only if \(3 | \sum_{i=0}^{k} a_i \) as we wanted.
4. They switch sides after 1, 3, 5, 7, ... games. This means that after 0 games, he is on side A, after 1 or 2 games he is on side B, after 3 or 4 games he is on side A again, In other words if you look at the total number of games played modulo 4 and you get 0 or 3, he is on the side he started on, if you get 1 or 2 he is on the other side.

Now, \(\bar{6} + \bar{2} + \bar{4} + \bar{3} = \bar{3} \) and \(\bar{6} + \bar{2} + \bar{5} + \bar{4} = \bar{1} \). Hence since is is on the side he started on, the score must be \(6 - 2, 4 - 3 \).

5. Prove that for any integer \(n \), \(n^2 \equiv 0 \text{ or } 1 \pmod{3} \), and \(n^2 \equiv 0, 1 \text{ or } 4 \pmod{5} \).

To calculate the possibilities for \(n^2 \mod 3 \), we only need to consider \(n = 0, 1, 2 \). Now \(\bar{0}^2 = \bar{0}, \bar{1}^2 = \bar{1} \) and \(\bar{2}^2 = \bar{1} \). So the squares modulo 3 are \(\bar{0} \) and \(\bar{1} \) only.

Instead modulo 5, \(\bar{0}^2 = \bar{0}, \bar{1}^2 = \bar{1}, \bar{2}^2 = \bar{4}, \bar{3}^2 = \bar{9} = \bar{4} \) and \(\bar{4}^2 = \bar{1} \).

So the squares modulo 5 are \(\bar{0}, \bar{1} \) and \(\bar{4} \) only.