Exercises 4.1: 6, 18(a)(b)(c)

6 Prove that \(\phi : \mathbb{Z}_p \rightarrow \mathbb{Z}_p, a \mapsto a^p \) is a ring homomorphism.

Solution. Obviously 1 goes to 1. Also, \(\phi(ab) = (ab)^p = a^pb^p = \phi(a)\phi(b) \). So it is multiplicative. The hard thing is additivity.

\[
\phi(a) + \phi(b) = a^p + b^p,
\]

and

\[
\phi(a + b) = (a + b)^p = a^p + \binom{p}{1} a^{p-1} b + \cdots + \binom{p}{p-1} a b^{p-1} + b^p.
\]

We need to show these are equal. This follows because \(\binom{p}{k} = 0 \) in \(\mathbb{Z}_p \) for each \(k = 1, \ldots, p-1 \), i.e. the inside numbers on the \(p \)th row of Pascal’s triangle are all divisible by \(p \) providing \(p \) is prime. We proved that last week when we were discussing the irreducibility of \(x^{p-1} + x^{p-2} + \cdots + x + 1 \).

Note this shows that \((a+b)^p = a^p + b^p \) in \(\mathbb{Z}_p \) — this is known as the “Freshman’s dream” — wouldn’t it be nice if that was what the binomial theorem said in general!

18(a) Find the nilpotent elements in \(\mathbb{Z}_n \) for \(n = 6, 12, 8, 36 \).

Solution.

The nilpotents in \(\mathbb{Z}_6 \) are 0 only.

The nilpotents in \(\mathbb{Z}_{12} \) are 0, 6 only.

The nilpotents in \(\mathbb{Z}_8 \) are 0, 2, 4, 6 only.

The nilpotents in \(\mathbb{Z}_{36} \) are 0, 12, 24, 18, 30, 6. Note the easiest way to do this is to use the isomorphism \(\mathbb{Z}_{36} \cong \mathbb{Z}_4 \times \mathbb{Z}_9 \) we just proved in class. The nilpotents in the latter ring are the pairs \((a,b)\) where \(a \) is nilpotent in \(\mathbb{Z}_4 \), i.e. \(a = 0, 2 \), and \(b \) is nilpotent in \(\mathbb{Z}_9 \), i.e. \(b = 0, 3, 6 \). So there are 6 in total, \((0,0),(0,3),(0,6),(2,0),(2,3),(2,6)\). Now we find the numbers in \(\mathbb{Z}_{36} \) that correspond to these under the isomorphism to get the answer.

18(b) Find the nilpotent elements in \(\mathbb{Q}[x]/(x^2) \).

Solution. Suppose \(ax + b \in \mathbb{Q}[x]/(x^2) \) is nilpotent. Then for some \(n \), the binomial theorem gives us that

\[
(ax + b)^n = \binom{n}{0} axb^{n-1} + b^n = 0
\]

in \(\mathbb{Q}[x]/(x^2) \). But that means that \(b = 0 \). Hence, the nilpotents are exactly the elements \(\overline{ax} \) for \(a \in \mathbb{Q} \).

18(c) Prove that the set \(N \) of nilpotent elements of a ring \(R \) is an ideal.

Solution. It is easy to see that \(N \) contains 0 and is extra-closed under multiply. The difficult thing is to see it is closed under
addition. So let \(a, b \in \mathbb{N} \). Then, for some \(m, n \geq 1 \), we have that \(a^n = b^n = 0 \). Consider

\[(a + b)^{m+n} = a^{m+n} + \ldots + \binom{m+n}{k}a^{m+n-k}b^k + \ldots + b^{m+n}.
\]

I claim it is zero. To see this, look at the \(k \)th term \(\binom{m+n}{k}a^{m+n-k}b^k \) of the binomial expansion. If \(k \geq n \) it is zero because \(b^n = 0 \). If \(k \leq n \) then \(m + n - k \geq m \) so \(a^{m+n-k} \) is zero because \(a^m = 0 \).

Hence, \((a + b)\) is nilpotent.

- Exercises 4.2: 3(e) Show that \(F[x]/(x) \cong F \).

Solution. Let \(\phi : F[x] \to F \) be the evaluation homomorphism \(f(x) \mapsto f(0) \). It is onto, and the kernel is generated by the minimal polynomial of 0 over \(F \), namely, the polynomial \(x \). Hence, \(F[x]/(x) \cong F \) by the isomorphism theorem.

- Exercises 3.3: 3(b)(d), 8, 10.

3(b) Find the rational roots of \(x^5 - x^4 - x^3 - x^2 - x - 2 \).

Solution. Since its monic with integer coefficients, rational roots are integers. So we need only to think about the integer roots. For \(x \geq 8 \) for example clearly the term \(x^5 \) dominates all the others and it is positive. Similarly for \(x \leq -8 \) it is negative. Now search \(-7, \ldots, -1, 0, 1, \ldots, 7\) by hand to see if they are roots. You deduce the only zero is at \(x = 2 \).

3(d) Same thing for \(x^3 + x^2 - 2x - 3 \).

Solution. Again we need to look for integer roots. A similar search shows this has no zeros. (Or you can find the turning points and sketch the graph!)

8 Let \(p \) be a prime. (a) Prove that \(x^p - x \) has \(p \) distinct roots in \(\mathbb{Z}_p[x] \). (b) Prove that \(x^{p-1} - 1 = (x-1)(x-2)\ldots(x-(p-1)) \) in \(\mathbb{Z}_p[x] \). (c) Prove that \((p-1)! \equiv -1 \pmod{p} \).

Solution. (a) By Proposition 3.3 of chapter 1, \(a^p = a \) for every \(a \) in \(\mathbb{Z}_p \). Hence the numbers \(0, 1, \ldots, p-1 \) are all roots of the equation \(x^p - x \), so it has \(p \) distinct roots.

(b) Dividing by \(x \) we deduce that the numbers \(1, \ldots, p-1 \) are all roots of the equation \(x^{p-1} - 1 \) over \(\mathbb{Z}_p \). Hence it factors as \((x-1)(x-2)\ldots(x-(p-1)) \) in \(\mathbb{Z}_p[x] \).

(c) Now compute the constant term on both sides of the equation proved in (b) to see that \(-1 = (-1)^{p-1}(p-1)! \) hence \((p-1)! = (-1)^p \) in \(\mathbb{Z}_p \). Since \((-1)^p = -1 \) in \(\mathbb{Z}_p \) we are done.

10 Let \(f(x) = x^4 - 10x^2 + 1 \). Prove that \(f(x) \) is irreducible in \(\mathbb{Q}[x] \) but reducible in \(\mathbb{Z}_p[x] \) for every prime \(p \).

Solution. First let us show it is irreducible in \(\mathbb{Q}[x] \). Its roots are \(x = \pm \sqrt{5} \pm 2\sqrt{6} \) (all of which are real). Since none is rational, it has no linear factors in \(\mathbb{Q} \). But it could factor as a product of two irreducible quadratics gotten by pairing up these four roots.
in some way But in that case, either
\[(x - \sqrt{5 + 2\sqrt{6}})(x + \sqrt{5 + 2\sqrt{6}}) \]
or
\[(x - \sqrt{5 + 2\sqrt{6}})(x + \sqrt{5 - 2\sqrt{6}}) \]
or
\[(x - \sqrt{5 + 2\sqrt{6}})(x - \sqrt{5 - 2\sqrt{6}}) \]
would have to belong to \(\mathbb{Q}[x] \). Multiplying them out in each case
you see that is not the case.
Now we show it is reducible in \(\mathbb{Z}_p[x] \) for each prime \(p \). We know
by the hint that either 2, 3 or 6 is a square in \(\mathbb{Z}_p \).
Suppose first that 6 is a square in \(\mathbb{Z}_p \). Say \(k^2 \equiv 6 \) (mod \(p \)).
Then,
\[x^4 - 10x^2 + 1 = (x^2 - 5)^2 - 24 = (x^2 - 5)^2 - (2k)^2 = (x^2 - 5 - 2k)(x^2 - 5 + 2k) \]
so it is reducible.
Suppose next that 3 is a square in \(\mathbb{Z}_p \). Say \(k^2 \equiv 3 \) (mod \(p \)).
Then
\[x^4 - 10x^2 + 1 = (x^2 + 1)^2 - 12x^2 = (x^2 + 1)^2 - (2kx)^2 = (x^2 - 2kx + 1)(x^2 + 2kx + 1) \]
so it is reducible.
Finally suppose that 2 is a square in \(\mathbb{Z}_p \). Say \(k^2 \equiv 2 \) (mod \(p \)).
Then
\[x^4 - 10x^2 + 1 = (x^2 - 1)^2 - 8x^2 = (x^2 - 1)^2 - (2kx)^2 = (x^2 - 2kx - 1)(x^2 + 2kx - 1) \]
Either way it is reducible.