Exercises 5.1: 21, 23.

21 Let V and W be vector spaces over a field F and $T : V \to W$ be a linear transformation. Prove that
(a) $\ker T$ is a subspace of V.
(b) $\operatorname{im} T$ is a subspace of W.
(c) For any subspace U of V, $T(U)$ is a subspace of W.
(d) For any subspace Z of W, $T^{-1}(Z)$ is a subspace of V.

Solution. Note (b) follows from (c) taking the special case $U = V$, and (a) follows from (d) taking the special case $Z = \{0\}$. So I just need to prove (c) and (d).

(c) We need to show $T(U)$ is closed under addition and under scalars. I’ll just do the closed under addition part. Take two vectors, $T(u), T(u') \in T(U)$, for $u, u' \in U$. Then $T(u) + T(u') = T(u + u')$. Since U is a subspace, $u + u' \in U$. Hence, $T(u + u') \in T(U)$.

(d) We need to show $T^{-1}(Z)$ is closed under addition and under scalars. I’ll just do the closed under scalars part. Take a vector $v \in T^{-1}(Z)$ and a scalar c. So $T(v) \in Z$. We need to show that $cv \in T^{-1}(Z)$, i.e. that $T(cv) \in Z$ too. But $T(cv) = cT(v)$ and $T(v) \in Z$ which is a subspace, so $cT(v) \in Z$, done.

23 Let V be a finite dimensional vector space and $T : V \to W$ be a linear transformation.
(a) Suppose $\ker T = \{0\}$. Show that if $v_1, \ldots, v_k \in V$ are linearly independent, so are $T(v_1), \ldots, T(v_k) \in W$.
(b) More generally, let u_1, \ldots, u_l be a basis for $\ker T$ and extend to a basis $u_1, \ldots, u_l, v_1, \ldots, v_k$ for V. Prove that $T(v_1), \ldots, T(v_k)$ is a basis for $\operatorname{im} T$.
(c) Prove that $\dim V = \dim \ker T + \dim \operatorname{im} T$.

Solution. Since (a) is a special case of (b), I’ll skip the proof of (a). For (b), we show $T(v_1), \ldots, T(v_k)$ span $\operatorname{im} T$ and that they are linearly independent.

SPAN: any vector of $\operatorname{im} T$ looks like $T(a_1 u_1 + \cdots + a_l u_l + b_1 v_1 + \cdots + b_k v_k)$ since the u’s and the v’s span V. Since T is a linear transformation and $T(u_1) = \cdots = T(u_l) = 0$ this equals $b_1 T(v_1) + \cdots + b_k T(v_k)$. Hence any vector of $\operatorname{im} T$ is a linear combination of $T(v_1), \ldots, T(v_k)$ as required.

LINEARLY INDEPENDENT: Suppose $b_1 T(v_1) + \cdots + b_k T(v_k) = 0$. We need to show that $b_1 = \cdots = b_k = 0$ already. Well, since T is linear, we have that $T(b_1 v_1 + \cdots + b_k v_k) = 0$. Hence $b_1 v_1 + \cdots + b_k v_k$ lies in $\ker T$, so it is a linear combination $a_1 u_1 + \cdots + a_l u_l$ of our basis for $\ker T$. Hence, $b_1 v_1 + \cdots + b_k v_k = a_1 u_1 - \cdots - a_l u_l = 0$. Since the v’s and the u’s are
linearly independent, this implies the coefficients \(b_1, \ldots, b_k \) are zero, as required.

- Exercises 5.2: 10, 13.

10 (a) Prove that if the regular \(mn \)-gon is constructible, so is the regular \(m \)-gon and the regular \(n \)-gon.
(b) Prove that if \(\gcd(m, n) = 1 \) and the regular \(m \) and \(n \)-gons are constructible, so is the regular \(mn \)-gon.

Solution. (a) Since the regular \(mn \)-gon is constructible, we can construct the angle \(\frac{360}{mn} \). Constructing it \(m \) times next to each other gives the angle \(m(\frac{360}{mn}) = \frac{360}{n} \). Hence the regular \(n \)-gon is constructible. Similarly for \(m \).
(b) Since \(\gcd(m, n) = 1 \), we can write \(1 = am + bn \) for \(a, b \in \mathbb{Z} \). Since the regular \(m \) and \(n \)-gons are constructible, we can construct the angles \(\frac{360}{m} \) and \(\frac{360}{n} \). Hence we can construct the angles \(b(\frac{360}{m}) \) and \(a(\frac{360}{n}) \), hence their sum

\[
b(\frac{360}{m}) + a(\frac{360}{n}) = 360((am + bn)/mn) = \frac{360}{mn}.
\]

Hence we can construct the regular \(mn \)-gon.

13 Show an angle of 3 degrees is constructible, whereas an angle of 1 degree is not. Now decide which angles \(n \) degrees are constructible for \(n \in \mathbb{Z} \).

Solution. We have seen how to construct the regular 3-gon and the regular 5-gon, hence the angles 60 degrees and 72 degrees. Their difference gives us a construction of the angle 12 degrees. Bisecting this angle twice gives us 3 degrees.
To see 1 degree is not constructible, suppose for a contradiction that it is. Doing it 20 times in a row gives us a construction of the angle 20 degrees. But we proved in class that the angle 20 degrees is not constructible, contradiction.
Hence the angle \(n \) degrees is constructible if and only if \(3|n \). For since we can construct 3 degrees, we can construct any multiple of 3 degrees. On the other hand, if we could construct \(n \) degrees for \(n \) not a multiple of 3, then since \(\gcd(n, 3) = 1 \) and we can write \(1 = an + 3b \) for integers \(a, b \) we could construct the angle 1 degree too, which we cannot!

- Exercises 5.3: 2, 3, 4.

2 Construct explicitly a field with 32 elements.

Solution. We need to find a monic polynomial \(f(x) \) of degree 5 that is irreducible in \(\mathbb{Z}_2[x] \). Then \(\mathbb{Z}_2[x]/(f(x)) \) will be a field with 32 elements.
We obviously must only think about the candidates that don’t have 0 or 1 as a root. Moreover, if a poly of degree 5 is reducible without linear factors, it must have an irreducible quadratic factor, and the only irreducible quadratic is \(x^2 + x + 1 \). So we want
to ensure our candidate is also not divisible by \(x^2 + x + 1 \), then it will for sure be irreducible.

Try \(x^5 + x^2 + 1 \).

3 The polynomial \(x^2 + 1 \) is irreducible in \(\mathbb{Z}_3[x] \) so \(K = \mathbb{Z}_3[x]/(x^2 + 1) \) is a field with nine elements. Let \(\alpha \in K \) be a root of \(f(x) \). Find irreducible polynomials in \(\mathbb{Z}_3[x] \) having roots (a) \(\alpha + 1 \) (b) \(\alpha - 1 \).

It might be more suggestive to write \(i \) instead of \(\alpha \) for the root of \(f(x) \): the field \(K \) is really just the field \(\mathbb{Z}_3[i] \) with a “square root of \(-1\)” adjoined.

Say \(x = i + 1 \). Then, \((x - 1) = i \) so \((x - 1)^2 = -1 \) so \(x^2 - 2x + 2 = 0 \). So \(i + 1 \) is a root of the polynomial \(x^2 + x + 2 \in \mathbb{Z}_3[x] \), which is easy to see is irreducible since it has no roots.

Say \(x = i - 1 \). Then, \((x + 1) = i \) so \((x + 1)^2 = -1 \) so \(x^2 + 2x + 2 = 0 \). So \(i - 1 \) is a root of the polynomial \(x^2 + 2x + 2 \), again irreducible.

4 Construct explicitly an isomorphism

\[\mathbb{Z}_2[x]/(x^3 + x + 1) \to \mathbb{Z}_2[x]/(x^3 + x^2 + 1) \]

Solution. Let \(R = \mathbb{Z}_2[x]/(x^3 + x^2 + 1) \). We know for each \(\alpha \in R \) that there is a homomorphism \(\text{ev}_\alpha \)

\[\mathbb{Z}_2[x] \to R \]

sending a polynomial \(f(x) \in \mathbb{Z}_2[x] \) to the number \(f(\alpha) \in R \). I want to pick \(\alpha \) so that \(\text{ev}_\alpha \) is onto and its kernel is \((x^3 + x + 1) \). Then it will induce an isomorphism \(\mathbb{Z}_2[x]/(x^3 + x + 1) \to R \) and we’ll be done.

So we need to find \(\alpha \in R \) such that \(\alpha^3 + \alpha + 1 = 0 \). A little trial and error gives that \(\alpha = \frac{x + 1}{x + 1} \) works:

\[\alpha^3 + \alpha + 1 = (x + 1)^3 + (x + 1) + 1 = x^3 + 3x^2 + 3x + 1 + x + 1 + 1 = x^2 + 1 + 3x^2 + 3x + 1 + x + 1 + 1 = 0. \]

Now we’re done. The isomorphism

\[\mathbb{Z}_2[x]/(x^3 + x + 1) \to \mathbb{Z}_2[x]/(x^3 + x^2 + 1) \]

is given explicitly by the map sending \(f(x) \in \mathbb{Z}_2[x]/(x^3 + x + 1) \) to \(f(x + 1) \in \mathbb{Z}_2[x]/(x^3 + x^2 + 1) \).