Exercises on chapter 1

1. Let G be a group and H and K be subgroups. Let $HK = \{hk \mid h \in H, k \in K\}$.
 (i) Prove that HK is a subgroup of G if and only if $HK = KH$.
 (ii) If either H or K is a normal subgroup of G prove that HK is a subgroup of G. If both H and K are normal subgroups of G, prove that HK is a normal subgroup of G.
 (iii) Prove that $[H : H \cap K] \leq [G : K]$. (Note this makes sense even for infinite groups if we define the index $[G : K]$ to be the number of left cosets of K in G, or ∞ if there are infinitely many). Moreover, if $[G : K]$ is finite, then $[H : H \cap K] = [G : K]$ if and only if $G = HK$.
 (iv) If H, K are of finite index such that $[G : H]$ and $[G : K]$ are relatively prime, then $G = HK$.

2. Recall that a partially ordered set X is called a complete lattice if every non-empty subset of X has both a least upper bound and a greatest lower bound in X. Prove that the set of all normal subgroups of a group G partially ordered by inclusion forms a complete lattice.

3. Let N be a normal subgroup of index 2 in a finite group G. For example, $N = A_n$, $G = S_n$ for $n \geq 2$.
 (i) Let X be a G-set and $x \in X$. Prove that $G \cdot x = N \cdot x$ if $G_x \not\leq N$; otherwise the G-orbit $G \cdot x$ splits into two N-orbits of the same size.
 (ii) Compute the number of conjugacy classes in the alternating group A_6 together with their orders.

4. Prove that any infinite group has infinitely many subgroups.

5. Compute the group $\text{Aut}(C_8)$ of automorphisms of the cyclic group C_8 of order 8. Is it cyclic?

6. Let G be a finite group, $H \trianglelefteq G$ and $N \trianglelefteq H$.
 (i) Give a counterexample to show that it is not necessarily the case that $N \trianglelefteq G$.
 (ii) If $([N], [H : N]) = 1$, prove that N is the unique subgroup of H having order $|N|$. Deduce that $N \trianglelefteq G$.
 (iii) Show that A_4 has a unique subgroup of order 4 and that this is a normal subgroup of S_4.

7. A group G is called metabelian if there exists a normal subgroup N of G with N and G/N both abelian. Prove that every subgroup and every quotient of a metabelian group is metabelian.

8. This is a question about the dihedral group D_n of order $2n$. Recall this is the subgroup of $O(2)$ generated by two elements, g of order n (counterclockwise rotation through angle $2\pi/n$) and h (reflection in the x-axis) of order 2, subject to the one relation that $hg = g^{-1}h$.
 (i) For which n is the center $Z(D_n)$ trivial?
 (ii) For which n do the involutions (= elements of order 2) in D_n form a single conjugacy class?
(iii) Prove that the subgroup of all upper unitriangular 3×3 matrices with entries in the field \mathbb{F}_2 of two elements is isomorphic to D_4.

(iv) Is $D_6 \cong S_3 \times C_2$?

9. Suppose that G is an abelian group and $g, h \in G$ are elements of orders $n = |g|$ and $k = |h|$ respectively. If n and k are relatively prime, i.e. their greatest common divisor (n, k) is 1, show that $|gh| = nk$.

(ii) Let G be a finite group of order n. If G is cyclic prove that G has a unique subgroup of order d for each divisor d of n, and moreover this subgroup is cyclic. Conversely, if G has at most one cyclic subgroup of order d for each divisor d of n, prove that G is cyclic.

(iii) Explain why the equation $x^n = 1$ has at most n solutions in a field K.

(iv) Now let G be a finite subgroup of the group K^\times of units of some field K. Prove that G is cyclic.

10. A commutator in a group G is an element of the form $[g, h] = ghg^{-1}h^{-1}$ for $g, h \in G$. Prove that G' is the smallest normal subgroup of G such that G/G' is abelian.

(ii) Explain how to define a functor (“abelianization”) from the category groups to the category ab so that an object G maps to $G^{ab} := G/G'$.

(iii) Let G be a group and H be an abelian group. Show that the sets $\text{Hom}_{\text{groups}}(G, H)$ and $\text{Hom}_{\text{ab}}(G^{ab}, H)$ have the same size.

(iv) Compute G^{ab} for each of the groups $G = S_n (n \geq 1)$, $A_n (n \geq 2)$, $C_n (n \geq 1)$ and $D_n (n \geq 1)$.

11. Recall that the direct product $H \times K$ of two groups is just the Cartesian product with coordinatewise multiplication. It is sometimes called the “external” direct product since we have built a completely new group out of the two groups we started with. This is different from the notion of an “internal” direct product. A group G is said to be the internal direct product of H and K if H and K are subgroups of G and the map $H \times K \to G,(h,k) \mapsto hk$ is an isomorphism.

(i) Prove that G is the internal direct product of H and K if and only if $H \leq G$, $K \leq G$, $G = HK$ and $H \cap K = \{1\}$.

(ii) For which n is the dihedral group D_n an internal direct product of two proper subgroups?

12. Suppose that K is a finite field with q elements.

(i) Explain why $|GL_n(K)|$ is equal to the number of distinct ordered bases (v_1, \ldots, v_n) for the vector space K^n. Hence compute $|GL_n(K)|$ and $|SL_n(K)|$.

(ii) Suppose for the remainder of the question that V is a $2n$-dimensional vector space over K equipped with a non-degenerate skew-symmetric bilinear form. Explain why there are $\frac{(q^{2n} - 1)(q^{2n} - q^{2n-1})}{(q^2 - q)}$ different non-degenerate 2-dimensional subspaces of V.

(iii) Recall that $Sp(V) \cong Sp_{2n}(K)$ is the group of all linear maps from V to V preserving the given non-degenerate skew-symmetric form. Prove that the stabilizer in $Sp(V)$ of a non-degenerate 2-dimensional subspace is isomorphic to $Sp_{2n-2}(K) \times Sp_2(K)$. Hence deduce that $|Sp_{2n}(K)| = q^{n^2}(q^{2n} - 1)(q^{2n-2} - 1) \cdots (q^2 - 1)$.

(iv) How many different non-degenerate skew-symmetric bilinear forms are there on the vector space V?

13. Prove that there is no simple group of order 120.
14. Suppose that G is a group of order p^3q for distinct primes p, q and that G has no normal Sylow subgroups. Compute $|G|$. Give an example of such a group.

15. Let p, q, r be distinct primes. Prove that there are no simple groups of order pqr.

16. Suppose that G is a non-abelian simple group with $|G| < 200$. Prove that $|G| = 60$ or $|G| = 168$. To make life easier – though you can solve this without it – you may assume without proof the following consequence of Burnside’s p^aq^b theorem which we will discuss later in the course: there is no simple group of order p^aq^b for p, q distinct primes.

17. Suppose that G is a simple group of order 60. Prove that $G \cong A_5$.

18. Recall a permutation group G acting on a set X is transitive if for each $x, y \in X$ there exists $g \in G$ with $gx = y$. Instead, G is called 2-transitive if for each $x_1 \neq x_2$ and $y_1 \neq y_2$ from X there exists $g \in G$ with $gx_1 = y_1, gx_2 = y_2$.
 (i) Show that A_n is a 2-transitive permutation group on $\{1, \ldots, n\}$ for $n \geq 4$.
 (ii) If G is a 2-transitive permutation group on X and $1 < K \leq G$, prove that K is transitive on X.

19. The goal of this problem is to prove that the group $G = GL_3(\mathbb{F}_2)$ of 3×3 invertible matrices over the field with two elements is a simple group.
 (i) What is the order $|G|$?
 (ii) Let $V = (\mathbb{F}_2)^3$ be the vector space that G acts on naturally. Prove that G acts 2-transitively on $V - \{0\}$.
 (iii) Hence by question 18 if $1 < K \leq G$ then K is transitive on $V - \{0\}$. Deduce that $7||K|$. (iv) Now let n_7 denote the number of Sylow 7-subgroups of K, so $n_7 = 1$ or $n_7 = 8$. If $n_7 = 8$ and $K \neq G$ prove that K has a unique Sylow 2-subgroup. Why does this imply that G itself has a unique Sylow 2-subgroup too? Obtain a contradiction by exhibiting more than one Sylow 2-subgroup in G explicitly.
 (v) If $n_7 = 1$ then G has just 6 elements of order 7. Obtain a contradiction. Hence G is simple.

20. For any field k, prove that $GL_n(k)$ is a semidirect product of $SL_n(k)$ by k^\times.

21. Let G be the subgroup of $GL_2(\mathbb{C})$ generated by the matrices
 \[
 \begin{pmatrix}
 \omega & 0 \\
 0 & \omega^2
 \end{pmatrix}, \quad \begin{pmatrix}
 0 & i \\
 i & 0
 \end{pmatrix}
 \]
 where $\omega = e^{2\pi i/3}$ is a primitive cube root of unity. Prove that G is a group of order 12 that is not isomorphic to A_4 or D_6.

22. Recall that the quaternions \mathbb{H} are defined to be the real vector space of dimension 4 with basis $1, i, j, k$ with associative, bilinear multiplication (making it into a ring or more precisely an \mathbb{R}-algebra with identity element 1) defined on the basis elements by $i^2 = j^2 = k^2 = -1$, $ij = k, jk = i$ and $ki = j$.
 (i) Prove that every non-zero quaternion is a unit with inverse
 \[\frac{1}{a^2 + b^2 + c^2 + d^2}(a - bi - cj - dk)\]
 Hence \mathbb{H} is a division algebra (a non-commutative field).
 (ii) Define the norm $N : \mathbb{H}^\times \to \mathbb{R}^+$ by $N(a + bi + cj + dk) = a^2 + b^2 + c^2 + d^2$. Check that this is a group homomorphism and moreover every $h \in \mathbb{H}^\times$ has a polar decomposition $h = rs$ where $r \in \mathbb{R}^+$ and $s \in \ker N$ (which is the sphere S^3).
(iii) Let A be the set of all matrices of the form \[
\begin{pmatrix}
z & w \\
-\bar{w} & \bar{z}
\end{pmatrix}
\] where z and w are complex numbers and $z \mapsto \bar{z}$ denotes complex conjugation. Prove that A is a subring of the ring $M_2(\mathbb{C})$ of 2×2 complex matrices and that $A \cong \mathbb{H}$.

(iv) Using your answer to (iii), prove that the normal subgroup $\ker N$ of \mathbb{H}^\times is isomorphic to the group $SU(2)$ – the special unitary group consisting of all 2×2 complex matrices \[
\begin{pmatrix}
p & q \\
r & s
\end{pmatrix}
\] of determinant 1 such that $pq + rs = 0$ and $pr + qs = 1 = q\bar{q} + s\bar{s}$.

(v) Deduce that $\mathbb{H}^\times = SU(2) \rtimes \mathbb{R}^+$.

23. Recall that the quaternion group Q_4 is the subgroup $\{\pm 1, \pm i, \pm j, \pm k\}$ of \mathbb{H}^\times.

(i) Prove that Q_3 is isomorphic to the group $\langle x, y \mid x^4 = 1, x^2 = y^2, yxy^{-1} = x^{-1} \rangle$.

(ii) Prove that Q_3 is not isomorphic to the semidirect product $C_4 \rtimes C_2$ of a cyclic group of order 4 by a cyclic group of order 2. Deduce that $Q_3 \not\cong D_4$.

24. Let G be a finite group, $N \leq G$ and P be a Sylow p-subgroup of G for some prime p. Prove that PN/N is a Sylow p-subgroup of G/N and $P \cap N$ is a Sylow p-subgroup of N.

25. Prove that all of the following groups are abelian:

(i) A group G all of whose elements are of order 1 or 2.

(ii) A group G with $|\text{Aut}(G)| = 1$.

(iii) A group G of order p^2 (p prime).

26. Let p be a prime. How many subgroups does the group $C_p \times C_p$ have? (Don’t forget the trivial ones!)

27. How many different groups of order 18 are there up to isomorphism? (There are only two groups of order 9, namely, C_9 and $C_3 \times C_3$.)

28. We will prove in class that $PSL_2(\mathbb{F}_5)$, the quotient of the special linear group $SL_n(\mathbb{F}_5)$ by its center $\{\pm I_2\}$, is a simple group of order 60. Hence it is isomorphic to the group A_5. Prove that $SL_2(\mathbb{F}_5)$ is a non-split extension of C_2 by A_5.

29. Suppose that G and H are finite groups with $|G|, |H| = 1$. Is it true that every subgroup of $G \times H$ is of the form $G' \times H'$ for $G' \leq G$ and $H' \leq H$?

30. Let $1 < m < n - 1$, and G be the symmetric group S_n acting on the set X of m-element subsets of $\{1, \ldots, n\}$.

(i) Show that G is not 2-transitive on X.

(ii) What is the stabilizer of a point?

(iii) Using your answer to (ii) determine for which m the action of G on X is primitive.

31. This exercise is concerned with a useful counterexample! Let p be a prime and define the group C_{p^∞} to be the subgroup of \mathbb{C}^\times consisting of all p^n-th roots of 1 for all $n \geq 0$. Note that C_{p^∞} is an example of an infinite p-group: all its elements are of order a power of p.

(i) Let C_p denote the subgroup of C_{p^∞} consisting of all p-th roots of 1. By considering the map $z \mapsto z^p$, prove that $C_{p^\infty}/C_p \cong C_{p^\infty}$.

(ii) Prove that every finitely generated subgroup of C_{p^∞} is cyclic, but C_{p^∞} is not cyclic itself.

(iii) (An alternative definition.) By considering the map $q \mapsto e^{2\pi i q}$, prove that C_{p^∞} is isomorphic to the subgroup $\{[\frac{\alpha}{p^n}] \mid \alpha \in \mathbb{Z}, n \geq 0\}$ of the quotient group \mathbb{Q}/\mathbb{Z} (rational numbers modulo 1).
32. Determine which of the following groups are solvable and/or nilpotent.
 (i) The alternating groups A_n for $n \geq 3$.
 (ii) The symmetric groups S_n for $n \geq 2$.
 (iii) The dihedral groups D_n for $n \geq 4$. (Hint: what is the center of D_n?)
 (iv) The group of upper unitriangular $n \times n$ matrices over a field F.
 (v) The group of invertible upper triangular $n \times n$ matrices over a field F.
 (vi) A group of order pq where $p \neq q$ are primes.

33. True or false? If true give a proof, if false give a counterexample...
 (i) If G is a finite nilpotent group, and m is a positive integer dividing $|G|$, then there exists a subgroup of G of order m.
 (ii) If N is a normal subgroup of G and N and G/N are nilpotent, then G is nilpotent.
 (iii) $S_4/V_4 \cong S_3$.
 (iv) Let G be a finite group. Then G is nilpotent if and only if $N_G(H) \geq H$ whenever $H \leq G$.
 (v) The group $(\mathbb{Q}, +)$ has a proper subgroup of finite index.

34. Let G be a finite group.
 (i) Prove that if G is solvable, then G contains a non-trivial normal abelian subgroup.
 (ii) Prove that if G is not solvable then it contains a normal subgroup H such that $H' = H$.

35. Compute the order of the group $\langle a, b, c, d \mid bab^{-1} = a^2, bdb^{-1} = d^2, c^{-1}ac = b^2, dcd^{-1} = c^2, bd = db \rangle$.

36. Suppose that X is a subset of Y. Let $F(X)$ be the free group on X and $F(Y)$ be the free group on Y. Using universal properties, prove that the inclusion $X \hookrightarrow Y$ induces an injective homomorphism $F(X) \hookrightarrow F(Y)$.

37. Prove that the group with presentation $\langle a, b \mid a^6 = 1, b^2 = a^3 = (ab)^2 \rangle$ is of order 12.

38. The goal of this problem is to derive a presentation for the symmetric group S_n. Let G_n be the group with generators $\{s_1, s_2, \ldots, s_{n-1}\}$ subject to the relations $s_i^2 = 1, s_is_j = s_js_i$ for $|i - j| > 1$ and $s_is_{i+1}s_i = s_{i+1}s_is_{i+1}$. Let S_n denote the symmetric group, and t_i denote the basic transposition $(i \ i + 1)$ in S_n.
 (i) Prove that the t_i satisfy the same relations as the s_i.
 (ii) Embed S_{n-1} into S_n as the subgroup consisting of all permutations fixing n. Prove that $\{1, t_{n-1}, t_{n-2}t_{n-1}, \ldots, t_1t_2\ldots t_{n-1}\}$ is a set of S_n/S_{n-1}-coset representatives.
 (iii) By considering the subgroup G_{n-1} of G_n generated by s_1, \ldots, s_{n-2} only and using induction, prove that $G_n \cong S_n$.

39. Let G and H be groups. Suppose that G has the presentation $G = \langle X \mid R \rangle$ and H has the presentation $H = \langle Y \mid S \rangle$. (Why does any group have at least one presentation?) The free product $G \ast H$ is the group with generators $X \sqcup Y$ (disjoint union) subject to the relations $R \sqcup S$.
 (i) There are obvious maps $G \to G \ast H$ and $H \to G \ast H$. Construct them.
 (ii) Prove that $G \ast H$ together with these maps is a coproduct of G and H in the category of groups.
 (iii) Deduce that the group $G \ast H$ is independent of the presentations of G and H chosen (up to canonical isomorphism).
(iv) Consider the matrices
\[A = \begin{pmatrix} -1 & 0 \\ 1 & 1 \end{pmatrix} \quad B = \begin{pmatrix} -1 & 1 \\ 0 & 1 \end{pmatrix} \]
in $GL_2(\mathbb{C})$. Prove that $A^2 = B^2 = 1$ but that AB has infinite order.

(v) Deduce that the subgroup of $GL_2(\mathbb{C})$ generated by the matrices A and B is isomorphic to the free product $C_2 * C_2$.

40. Since I know you love the word “unitriangular”. Let q be a power of a prime p.

(i) Prove that the upper unitriangular matrices are a Sylow p-subgroup of the group $GL_n(\mathbb{F}_q)$.

(ii) How many different Sylow p-subgroups are there in $GL_n(\mathbb{F}_q)$?