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Abstract

Subterranean pools of oil and natural gas often span multiple leases so
that it is possible for neighboring hydrocarbon producers to interfere with
each other’s production. This chapter draws upon extensive production and
injection data from Slaughter field in West Texas to quantify the spillover
between leases. I then compare estimates of the spillover parameter across
different ownership structures to evaluate the effect of ownership concentration
on production, finding evidence of a race to extract when rights to the resource
in situ are not secure. Q30, C31

1 Introduction

The goal of this paper is to quantify the spillovers in production and injection in
oil and natural gas recovery in Slaughter field of West Texas. Oil and natural gas
deposits are concentrated spatially in reservoirs, yet it is often the case in Texas that
no single producer has rights to the entire reservoir (Libecap and Wiggins, 1985).
Because property rights to the oil and natural gas are administered according to
the “rule of capture,” ownership is not fully secured until the resource is extracted.

While in the ground, it is an example of a common good: rival but nonexclusive.



Under these circumstances the resources can be the subject of fierce competition as
neighboring producers race to extract. Economic rents are dissipated in the drilling
and operation of more wells than are needed to efficiently drain the reservoir (Weitz-
man, 1974). Additionally, owing to the dynamics of recovery, overly rapid extraction
can result in damage to the reservoir and lowered cumulative recovery (Dake, 2001).

The present age of the majority of Texan fields only compounds the common
pool inefficiencies. In order to maintain the productivity of a maturing field, oper-
ators shift production wells into injection. These injection wells pump substances
(e.g., water, carbon dioxide, natural gas) into the reservoir to drive the resource
towards neighboring production wells where it is then extracted. Injection is costly,
and it makes little sense to undertake injection when ownership of the reservoir is
highly fractured and neighboring wells are likely to be owned by competing operators.
The resulting miserly secondary injection can lead to substantial losses in recovery
(Libecap and Wiggins, 1985). Injection wells may also be used to offset the produc-
tion at neighboring wells. A neighbor’s production creates a cone of depression in the
resource bearing strata; oil and natural gas tend to flow towards this depression. To
prevent the resource from escaping the lease, injection wells may be drilled along the
border to halt resource emigration. These offset injection wells are unnecessary for
production and represent another economic cost of intra-field competition (Libecap,
1989).

The spatial interdependence of oil and natural gas production brings the potential
for economic inefficiency because competing producers discount the value of leaving

resource in situ for future periods resulting in a “race to extract.” The goal of this



paper is to demonstrate how a race to extract can be prevented through unitary
ownership. I use a spatial econometric model to explicitly characterize spillovers in
production while controlling for unobserved spatial autocorrelation. This type of
spatial model has been used recently to estimate spillovers in production of fossil
groundwater aquifers (Savage and Brozovic, 2011) (Brozovic et al., 2006) (Pfeiffer
and Lin, 2009). The model is estimated using extensive and novel data provided
by HPDI Corporation. The main result is as expected: when neighboring wells are
under unitary ownership, extraction proceeds at a comparatively slower pace than

when wells have competing operators.

2 Background

Spillovers in the production of oil and natural gas, where one producer’s extraction
interferes with that of another, have been pervasive since the initial discovery of the
resources (Yergin, 2008). Addressing these spillovers in production are economically
important because resource rents can be dissipated in excess effort and capital (Gor-
don, 1954) (Scott, 1955) (Hardin, 1968) (Weitzman, 1974) (Brown, 1974). Whereas
it might take only a few wells to efficiently drain a field, competing producers may
drill many more in order to extract and secure the resource so that it is not lost to
neighboring producers. The capital tied up in excess wells could be more efficiently
used elsewhere in the economy. Additionally, the common pool nature of the hy-
drocarbons undermines the producer’s incentive to conserve and so is dynamically

inefficient (Eswaran and Lewis, 1984) (Khalatbari, 1977) (Long, 1974) (Long, 1975)



(Dasgupta and Heal, 1979) (Reinganum and Stokey, 1985).

What is peculiar to oil recovery, however, is that the race to extract can cause
damage to the reservoir, limiting ultimate recovery (Libecap and Wiggins, 1985)
(Chermak and Patrick, 2001). Thus, the consequences of the common pool are not
limited to economic inefficiencies of too costly extraction, too soon, but to physical
inefficiencies as well. Overly rapid production destroys the resource. Oil and natural
gas exist in solution, and it is the expansion of natural gas that drives the oil to the
well-face and then up to the surface. Rapid extraction can cause the natural gas to
bubble out of the mixture. The natural gas is more mobile than oil, and is quickly
drawn off. Meanwhile, the oil becomes increasingly viscous, and so difficult to move
as to be permanently unrecoverable. It may well be that it is economically efficient
to sacrifice cumulative recovery in favor of present extraction (Clark, 1973), but this
aspect of oil and natural gas exploitation has yet to be studied by economists.

The spillovers in production are essentially issues of property rights. When pro-
duction spillovers are large and involve a small number of agents, it is reasonable to
expect private contracting to solve the problem. In a series of papers, Libecap and
Wiggins describe the contracting failure in Texas. Libecap and Wiggins (1984) con-
sider three mechanisms through which leaseholder can address production spillovers:
lease consolidation, unitization, where competing leaseholders hire a single operator
to jointly develop the field, and prorationing agreements on output. The authors
examine five oil fields in Texas, and find that firm concentration is an important
determinant of private contracting. Bargaining costs increase with the number of

firms, inhibit unitization and consolidation, and in some cases, the ownership of the



field is so fractured as to even prevent prorationing agreements. Libecap and Wig-
gins (1985) study the impediments to unitization agreements. Comparing Wyoming,
Oklahoma and Texas, the authors find Texas to be particularly poor at unitizing
fields because the unananimity required for unitization creates a holdout problem.
Wiggins and Libecap (1985) model unitization negotiations, and test the model em-
pirically, finding that imperfect information about reserves when combined with dif-
fuse landholding prevents unitization. When contractual response fails, lease owners
will even split individual leases among competing operators to increase inflow onto
the property (Yuan, 2002). The work of Libecap and Wiggins nowhere expressly
quantifies the size of the spillovers and how these spillovers differ when ownership
of the resource is unitary or highly fractured. The present paper contributes to the
understanding of the economics of oil and natural gas production by showing that
unitary ownership does significantly abate the race to extract as previous theoretical
models have predicted.

Regulation is also important to consider when measuring possible interference
between leases. Regulation of hydrocarbon production in Texas is overseen by the
Texas Railroad Commission and comes in three flavors: command and control, taxes
and production quotas. Of the command and control regulations, well-spacing reg-
ulations and regulations on the inclination of drilling (slant and horizontal drilling)
are the most relevant in addressing issues of common pool production. Slant drilling
is prohibited without special permission. Additionally, the statewide spacing rule

disallows the drilling of wells within 467" of a property line or within 1200” of an



existing well.! Although well-spacing guidelines have the virtue of easy verifica-
tion and enforcement, one-size-fits-all regulations are not flexible enough to account
for the heterogeneity in permeabilities and flow dynamics. Owing to local geologic
conditions wells 100’ apart may communicate less than wells 3000” apart in more
permeable rock. Optimal well-spacing guidelines should account for the local geo-
logic parameters, and assign well spacing accordingly. By measuring the effect of
neighbor’s production on own production, this paper can provide evidence as to the
efficacy of spacing regulations.

Well-spacing exceptions may be granted to protect ownership rights, or to prevent
resource waste. In the former case, a producer would be allowed to drill closer to a
property line if drilling according to regulation would result in substantial portion of
the resource underlying the lease to be captured by neighboring producers. In the
latter case, exception may be granted if the oil could not otherwise be recovered. Yet
these two goals frequently conflict when production tracts are small, as is the case in
Slaughter field. Until the decision Halbouty vs. Texas Railroad Commission (1962)
small lease holders were given a greater production allowable, to cover the costs of
drilling plus a reasonable profit, even at the expense of neighbor’s production (Lowe,
2003). The alternative to well-spacing exceptions, preferred by most states, is forced
pooling.

Monthly quotas on production are assigned in Texas as a percentage of a max-
imum allowable production for the well. Maximum allowable production is based

on the depth of the well, and the lease size. In Texas, natural gas is subject to a

ITexas Administrative Code, Title XVI, Part 1, Chapter 3



royalty at of 7.5% of the value of production, while oil is subject to a lower royalty
of 4.6% of the value. While these taxes are not consistent with Pigouvian taxation
to address the problems of common pool production (Dasgupta and Heal, 1979),
economic theory predicts that these royalties slow the rate of extraction (Gamponia
and Mendelsohn, 1985).

The interaction between regulation, contracting, geology and firm production de-
cisions determines the nature of the spillover. This paper provides empirical evidence
as to how these complex interactions play out on Slaughter field. I find, after con-
trolling for secondary injection, that regulation and contracting have not been fully
successful in securing property rights. Indeed the empirical model uncovers evidence

consistent with a race to extract.

3 Methods

The goal of the chapter is to estimate the impact of neighbor’s production, y;, on
own production, y;, for a cross-section of leases indexed 7,7 = 1,2,3......, N. Doing
this via OLS regression would result in biased parameter estimates because of simul-
taneity. The problem is that production at j is not predetermined: lease 7 affects the
production of lease j, while the production of lease 7 simultaneously affects produc-
tion at lease i. Adding further difficulty is that production on a patch is partially
determined by unobserved geological characteristics such as porosity and permeabil-
ity, and these unobserved variables are likely to be correlated through space. This

makes it difficult to tease out what part of production is impacted by neighbors



production, and what part of production is the result of correlated but unobserved
geological characteristics. Disentangling genuine spatial dependence from autocorre-
lation is necessary for achieving the goals of this chapter. Fortunately, Kelejian and
Prucha (1998) and Kelejian and Prucha (1999) develop a computationally feasible
generalized method of moments procedure for controlling for spatial dependence and

spatial autocorrelation. The canonical model I estimate is

y=X8+\Wy+u
(1)
u=pMu-+e
where y is an N x 1 vector of the dependent variable, X is an N X k matrix of
the k independent variables, W and M are N x N spatial weighting matrix, 5 is
a k x 1 vector of regression parameters, A and p are scalar spatial parameters, u is
an n X 1 vector of regression disturbances, and finally, € are i.i.d. innovations. Full
technical assumptions necessary for estimation of the model, as well as the moment
condition exploited for estimation, can be found in Kelejian and Prucha (1998) Kele-
jian and Prucha (1999); however, two assumptions are important to understand the
intuition of the model. First, the contribution of nearby producing leases (a, b, c) on
the production at lease i are assumed to be a linear function of production, some
weighting function (in our case a function of distance) and vector of spillover param-
eters, (Aa, Ap, Ac), such that y; = A\w(i,a)y, + \w(i,b)yy + Aew(i, ¢)y.. In order to
estimate the model, we assume that A\, = A\, = A, = A (otherwise there would be
N parameters and N observations. The second assumption is that |A| < 1, which

insures that spatial spillovers are non-explosive. Similar assumptions hold for the



structure of the errors.

Execution of this Generalized Spatial Two-Stage Least Squares (GS2SLS) model
requires three stages. In the first stage, to control for simultaneity in production
decision, Wy is instrumented for by H = (X, WX, W2X,...). The implicit exclusion
restriction is that a neighbor’s X affects your production only through how the
neighbor’s X affects her own production. Identification comes through the spatial
structure—the interaction between X variables and the weighting matrix—and so
there is no excluded instrument. This first stage generates consistent results for
and A, but these estimates are inefficient because the information available in the
structure of the autocorrelated errors has yet to be exploited. In the second stage,
residuals, u, from the first stage are plugged into a moment condition to estimate
spatial autocorrelation parameter, p, and the innovation variance, 2. In the last
stage, the structure of the autocorrelation is exploited to arrive at more efficient
estimates of 4 and A.

Interpretation of the spatial parameters depends on the choice of weighting ma-
trix, W. The choice of weight matrix, in turn, is defined by the conceptual framework
one uses to interpret the spatial data. There are two possibilities: viewing the data
as a lattice of discrete spatial connections, or viewing the data as sample points from
a continuous surface (Anselin, 2002). In the former case, w;;, representing whether
i is connected with j takes on discrete values, 0 or 1. The drawback is that defining
the connections can be arbitrary. When the observations are viewed as a sample
from a continuous surface, w;; often takes the value of the (inverse) distance between

observation ¢ and j. When distance weighting is used, the spatial autoregressive pa-



rameter has the potential to be interpreted as a reservoir specific transfer coefficient,
which reveals geologic information on reservoir permeability, porosity, and viscosity?.
Of course strategic interaction between agents will result in biased estimates of the

transfer coefficient. To see this consider the primary model of the paper,

y=XB+ A \NeFy+ \yUy+u @

u=pMu+e.
Here M represents an inverse distance weight matrix controlling for autocorrelation
in unobservables. The goal is to see if there is a difference in estimated spillover
coefficients between leases that have the same owners and leases with different own-
ers. Weight matrix W from the previous specification is broken up into two separate
weight matrices, F' and U (“F” for “friendly”, “U” for “unfriendly”). Weights in F'
take on inverse distance weights only when leases ¢ and j have the same operator;
conversely, weights in U take on values when leases i and j have different opera-
tors. Estimates of friendly (Ar) and unfriendly spillovers (Ayy) can then be estimated
and compared. Without strategic interaction, spillover parameters should be iden-
tical and negative, the result of the cone of depression caused by production. With
strategic interaction, the estimates of spillovers should be biased upwards and should
diverge with A\ < Ay. The divergence occurs because the rights to the resource in
situ are less secure when competing operators own nearby leases. In fact, we may

even see a race to extract, which would manifest itself as apparently positive spillovers

2Well reaction functions specified by Theis and Darcy flow equations have been used in physical-
economic models of water recovery. See Savage and Brozovic (2011) Brozovic et al. (2006) Pfeiffer
and Lin (2009).
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in production, Ay > 0. The positive spillovers come from lease-owners shifting their
production profile towards the present. Discussion and results from this model can
be found in Section 5.5.

To identify the shift in the production profile due to security of ownership, a
variety of cross-sections per field must be analyzed. Field age and ownership struc-
ture of the fields affects the degree and nature of spillovers. Early in the life of a
highly decentralized field, the measured autoregressive parameter should be positive,
reflecting a race to extract. Later in the life of the decentralized field, the spillover
may decline toward zero as damage to the reservoir halts flow between wells. Con-
versely, in a highly concentrated area, the autoregressive parameter might be zero

over the entire life of the reservoir as a result of effective management.

4 Data

Data for analysis is provided by HPDI Corporation, which collects, compiles and
publishes oil and natural gas production data for 31 US States, 4 Canadian provinces
and the Federal offshore areas in the Gulf of Mexico and the Pacific. Previous research
has indicated that Texas is a state where common pool problems can be substantial
(Libecap and Wiggins, 1984) (Libecap and Wiggins, 1985) (Wiggins and Libecap,
1985). Not coincidently, Texas also has the most extensive data available, with time
series for production, injection and well tests going back even before 1960. Data on
leases size come from W-1 drilling permits, public information made available by the

Texas Railroad Commission.
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The focus of the analysis is Slaughter field in West Texas, located near the Texas-
New Mexico border. Wells are mapped in Figure 1. This field has a variety of
characteristics making it a worthy focus or research. First, it ranks in the top 20 fields
in the US country in terms of 2009 proved reserves for oil (EIA 2009), and is therefore
of economic interest. Second, in order to quantify the importance of unitization and
ownership concentration, it is necessary to have within field variation of ownership
concentration.® A local Herfindahl concentration index mapped for Slaughter field
in Figure 2 shows the field has variation in ownership concentration.

Slaughter Field was discovered in 1937. My earliest data only goes back to 1955.
Figure 3 shows the evolution of the number of productive wells on the field over
time. Figure 4 shows the field aggregated history of production. Peak oil production
occurred in the middle 1970s. Also evident is a sharp drop in natural gas production
between December 2004 and January 2005. This is apparently due to the weighty
tails of the distribution. When looking at a figure of logged average well production,
no such drop off in production is evident(Figure 5). A large part of the decline
in gas production at the end of 2004 can be attributed to a significant decline in
gas production on the Slaughter Estate Unit and Central Mallet Unit. These units,
under the operation of Occidental Permian Ltd., were the subject of legal controversy.
Carbon dioxide and hydrogen sulfide injections on the Slaughter Estate Unit—which
have aided in the recovery of oil- contaminated gas in the reservoir making it difficult

to process. Occidental Permian, however, owns the gas processing plant, and the

3Because the underlying permeabilities and porosities will differ across fields, the estimated
spillover parameter will not be comparable across fields, and so cross-field variation in ownership
can not be exploited to demonstrate the impact of ownership concentration on the spillover.
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Texas Supreme Court held in Helen Jones Foundation vs. Occidental Permian, 2011
that Occidental used the increased costs of processing as cover to avoid paying royalty
owners.

Summary statistics for Slaughter field can be found in Table 1, the bottom panel
displays summary statistics for the subset of the data used for regression analysis.
Production data is at the lease-level, while injection data is at the well level. Data for
production spans January 1955 to May 2009, injection data becomes extensive begin-
ning in the late 1980s. The regression sample represents a subsample of production

data for the month of January in 1990, 1995, 2000, and 2005.

5 Results

This section presents results from cross sectional and panel models of Slaughter field,
with and without injection. Cross sectional models are valuable in measuring how
the spillover parameter evolves with time, but are limited in the sense that they
cannot account for unobserved fixed effects specific to location. Panel models allow
for unbiased estimates when spatial fixed effects are present. Both cross-sectional
and panel models are run with and without injection. The goal of the various models
is to demonstrate a race to extract when ownership is comparatively less secure—that
is, well operators should increase their rate of extraction leaving less in the ground for
the future. As a descriptive exercise I first run specifications of my statistical model
with a local concentration index with a half-mile radius (herf) as the variable of

interest. These results are presented in table 7?7 and include lease-level fixed effects.
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Moran-I statistics for both oil and natural gas show significant evidence of spatial
autocorrelation.* Because the productivity of a lease is driven by geological charac-
teristics, which are unobserved in the dataset but likely to be highly correlated over
space, it is expected that the residuals are positively correlated in space. According
to OLS specifications for both oil and natural gas, drilling another well on the lease
tends to increase production, but at a diminishing rate (the square term is insignif-
icant). The affect of the number of wells on the lease is estimated less precisely
in the GLS specification-the standard errors are larger and the coefficients are not
distinguishable from zero. The age of the latest well on the lease does not mean-
ingfully impact lease-level production. Water injection enhances oil recovery, but
does not have a statistically noticeable affect on natural gas recovery. Gas injection
is negatively correlated with oil recovery, and has little effect on gas recovery when
controlling for spatial autocorrelation in the GLS specification. It appears then, that
gas injection is not very successful across leases in secondary recovery in Slaughter
field.

The variable of interest in the specification is the local Herfindahl concentration
index. As the concentration index falls, the rights to the resource in situ become less
secure, and the producer should extract at a higher rate. We, therefore, expect a neg-
ative correlation between concentration and lease-level extraction, and indeed this is
what table 15 indicates. It can be argued that concentration is endogenous because

naturally more productive areas face fiercer competition and thus lower concentra-

4The Moran statistics are calculated with the same inverse distance weight matrix used in the
statistical models of the next sections.
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tion.® By explicitly accounting for how the unobserved productivity is correlated in
space through the GLS specification, I hope to attenuate some of these problems;
and yet concentration is a choice variable for the economic agents involved. There-
fore in the rest of the paper, I use a different strategy to uncover a race to extract.
Treating the structure of ownership as predetermined, I investigate how neighbor’s
pumping affects own extraction. With no strategic interaction, the estimated effect
should be negative. A race to extract will manifest itself as a positive correlation

between neighbor’s extraction and own extraction.

5.1 Cross sectional model, single inverse distance weight ma-
trix, no injection

The initial cross sectional model I estimate is
Yi = A * Z Wiy + o + Bidepth; + Pawent; + Bywent; + Biage; + Bswtr; + ¢ (3)

where the weights are given by the inverse of distance between leases ¢ and j. The
spillover parameter of interest is \; estimates can be found in tables 2-5. The de-
pendent variables I consider are the log of month lease-level oil and natural gas
production. Independent variables are depth, the total depth of the most recent well
completed on the lease; went, the number of active producing wells on the lease

(and its square); age, the time since the most recent well was completed; wtr, the

5Tt could just as easily be the case that it is the more productive areas that are monopolized by
one owner; but this bias works in my favor, with the parameter for concentration taking a lower
bound to the true value.
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amount of water produced on the lease that month, a proxy for whether the lease is
constrained by disposal.

Tables 2-5 present regression results of the model for the month of January in
1990, 1995, 2000, and 2005. The columns entitled “OLS” present results for equation
3. The “GLS” column omits the variables for spatial dependence, but allows errors
to be correlated according to the same inverse distance weight matrix. The column
“25LS” is estimated according to equation 3, but with y; instrumented with w;; *
X;, with X; = {depth;, went;, wcnt?, agej, wtr;}. Finally, the “GS2SLS” column
presents results from the model given by equation 1.

There are two parameters of particular interest in Table 2 and Table 3 . A, the
parameter for the spatial autoregressive lag, conflates the geophysical and strategic
effects of neighbor’s extraction. As mentioned earlier, the geophysical effects are
expected to be wholly negative: own extraction causes a cone of depression to extend
out from the well and causes oil to migrate from nearby leases, reducing production at
other nearby leases. Everyone knows this, and so neighbors react by extracting at a
higher rate to counteract the affects of the nearby pumping. In this case the strategic
effect is positive and may be large enough to countervail the negative geophysical
effects. The other parameter, p, measures the spatial autocorrelation of the errors. A
priori, it is expected that p > 0 because it captures unobserved geological variables
which are positively correlated through space.

Conditional on inverse distance weighting, I find consistent evidence of positive
spatial autocorrelation in errors. Assuming that unobserved geological productivity

is spatially correlated, these estimates are immanently reasonable. The parameter for
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the spatial autoregressive lag () is also positive and significant across specifications.
This indicates an increase in neighbors’ production (or a diminution in the distance
to neighbor’s lease) results in an increase in own oil production, which is consistent
with a race to extract.

The story for lease level natural gas production is not as clear cut. Estimates
for the coefficient on spatial autoregressive lag (\) and spatial autoregressive error
(p) are not as close across specifications or cross-sections. There is no evidence of
autocorrelation of errors in 1990; the coefficient is positive and significant thereafter.
The preferred specification for measuring A is the GS2SLS estimate, which is negative
and significant in 1995 but statistically non-distinguishable from zero in all other
years.

Cross sectional models may be flawed because it is unlikely that the independent
variables used in estimation are truly exogenous. Take for example the variable went.
It is easy to imagine that E(went; x ¢;) # 0: if a lease is especially productive, or
the lease owner expects that it will be, then more wells may be drilled. It is possible
to control for these unobserved lease-level time invariant productivity differences by

pooling the data and estimating the model adding fixed effects.

5.2 Cross sectional model: simultaneous inverse distance

weight matrices, with injection

In this model the weight matrices differ according to whether plots are operated by
the same owners or different owners. Weights are given as the inverse distance when

two plots have a common operator (the “friendly” weight matrix); similarly they
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are also give as the inverse distance when two plots have different operators (the
“unfriendly” weight matrix). Results from these regressions are presented in tables
6-9 for Slaughter field.

Focusing first on GS2SLS specifications of oil production in Slaughter Field, there
does not appear to be a clear pattern in the relationship between A\r and Ay ; friendly
spillovers are positive and significant across years, larger than unfriendly spillovers in
1990 and equal to unfriendly spillovers in 2005. There is evidence that the errors are
strongly correlated over space. There is also significant autocorrelation in Slaughter
gas production. Friendly spillovers are positive and significant in 1990; no other
spillover parameters are significant at the 95% confidence level, and point estimates

between friendly spillovers and unfriendly spillovers are close.

5.3 Panel Model, single inverse distance weight matrix, no
injection

Table 10 presents fixed effects estimated for the pooled data. The fixed effects models
for lease-level gas production indicate positive and significant spatial autocorrelation
in the time-varying aspect of the errors. There is also evidence of a race to extract
in natural gas production, as the estimates for A are positive and stable, although
the preferred GS2SLS estimate is insignificant.

Turning to the oil results, it is apparent that the OLS and 2SLS estimation yield
parameter estimates for A that are positive and significant and very close to previous

cross-sectional estimates. The parameter for the spatial autocorrelation in errors (p)

is a third to half the size of estimates in Tables 2 and 3. This difference cannot be
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wholly attributed to the importance of lease fixed effects in controlling for spatial
autocorrelation,® nevertheless, it is expected for the error to attenuate because fixed
effects diminishes the unexplained variation in the model. What is striking is the
insignificance of A in the GS2SLS specification when controlling for lease-level fixed
effects.

There are two ways to interpret the insignificance. The first is that the spatial
dependence in production is a statistical illusion. Cross sectional GS2SLS estimation
is not powerful enough to properly distinguish true production spillovers from time
invariant differences in lease productivities. But going deeper, fixed effects estimation
differences out the variation in ownership structures, which are precisely the effects

that I seek to isolate.

5.4 Panel model, separate inverse distance weights by own-

ership, no injection

To isolate the spillovers that result from different ownership structures, I estimate
the fixed effects models in two specifications which differ in the weight matrix used.

In particular, I separately estimate

y=XBi+A\Wiy+u
(4)
u; = piMu; + ¢

6The models have different regressors. The variable depth is time invariant and cannot be used
in fixed-effect specification.
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where ¢ = {F,U} indexes the weight matrix to be used in the specification. M
represents the inverse distance weighting matrix used previously. Wg represents the
inverse distance weights, but take values only when the neighboring leases are pro-
duced by a common operator ( i.e., the weights take values only for “friendly” leases.)
Similarly, Wy, takes inverse distance values when neighboring leases do no share a
common operator (the leases are said to be “unfriendly”) A priori, we would expect
leases with common owners to more fully account for the spillovers in production ,
so that Ap < A\y. Equation 4 thus provides a testable hypothesis.

Result from estimation of models with weight matrices given according to Equa-
tion 4 are given in Tables 11 and 12. Again, the preferred specification is GS2SLS.
For oil production, the parameter measuring the spatial spillover among friendly
wells is positive and statistically significant. What is surprising is that the param-
eter for friendly spillover is larger and significantly different than the parameter for
unfriendly spillovers (which is not significantly different from 0). Results are quali-
tatively similar for natural gas production. Combined, these results seem to indicate
that leases under common stewardship are more likely to engage in a race to extract.

One plausible explanation for the unexpected results is that no account has been
made for how injection impacts recovery. Injection is more likely and more effective
when contiguous leases are controlled by a common operator. If these types of
leases are more successful in injection, then recovery across the leases may be highly
correlated, contributing to what looks like spatial dependence. Moreover, the impact
of injection will not be swept up with lease-level fixed effects because injection varies

over time. This can be tested for by adding injection into the model. The variables
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for injection are defined as the sum of injection that occurred within a half-mile

radius of the well within the past year.

5.5 Panel model, simultaneous inverse distance weights by

ownership, with injection

The next model I estimate is

y=XB+AXNpiWry+ \gWyy+u )
u = pMu+e.

Tables 13 and 14 present estimations controlling for gas and water injection for
the spillover parameters Arp and Ay for oil and gas, respectively. This model is
slightly different from equation 4 in that the effect of spillovers from friendly wells
is estimated in the same model as spillovers from unfriendly wells. In the columns
labeled “GS2SLS” in both tables 13 and 14 we see evidence of a race to extract,
in that the spillover estimate for unfriendly wells comes up as positive and signifi-
cant, and is larger than the estimate for the spillover from friendly wells. Take for
example table 13. The spillovers from nearby leases managed by the same operator
is insignificantly different from zero, evidence that the operator is fully accounting
for the externality in production. Meanwhile, the spillover from unfriendly wells is
significant and positive. After controlling for spatial autocorrelation, this indicates
that when a neighboring competing operator increases production, you also tend to

increase production—a classic race to extract.
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5.6 Panel model, simultaneous inverse distance weights by

ownership and well age, with injection

We observe that there is a large " positive” spillover when neighboring wells are owned
by competing operators— evidence of a race to extract. However, it is possible that
it is not ownership per se that drives the results. Well age is an important variable
to consider in modeling reservoir dynamics. Young wells are likely to have much
more capacity to communicate with neighboring wells, than comparatively older
wells, simply because, all things being equal, younger wells will be in higher energy
parts of the reservoir and more potential for drawdown. To test for this, I allow the
spillover parameter to be vary across wells of different ages, and these parameters
are allowed to be different for both friendly and unfriendly operators. The model I

estimate is

Yy = Xﬁ + Za<)‘F,aWFya + )\U,aWUya) +u

u = pMu+e.

(6)

Production at neighboring wells, y, has been separated into 4 vectors depending
on what age bin production falls. I arbitrarily choose 4 bins, so that each production
been of well age represents a quartile, a € 1,2,3,4. We expect that the spillover
parameter should decline with as neighboring wells increase in age. The decline
occurs for two reasons. First, since the neighboring wells are older, there is likely
less capacity at those wells for drawdown because with time the pressure in the
surrounding reservoir and at the well face tends toward equilibrium. Second, it is

reasonable to expect that the age of wells is correlated across space; therefore, when
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neighboring wells are older, it is likely that your own well is older, and that you have
less capacity to adjust own production, although this effect would be accounted for
to some degree by the linear term in age. Results for regressions with oil as the
dependent variable are in table 6, while gas results are in table ?7.

Looking first at results for oil, the Moran-I statistic indicates significant positive
spatial autocorrelation in the errors, making inference on the OLS parameters unten-
able. After controlling for other covariates an, an extra day of production (age) does
not meaningfully affect oil production. The OLS and GS2SLS specifications also
indicate that gas injection is negatively correlated with production when controlling
for spillovers; however, local gas injection is positive in the GLS specification while
local water injection is negative and statistically significant. The instability of the
parameter estimates for injection is likely due to to the complex spatial dynamics of
the reservoir. A sudden within drop off in production could precipitate a local within
increase in injection to compensate; a positive relationship is also easy to explain.
The countervailing pressures in injection explain why estimates are not significant in
the GS2SLS specification. The specifications for oil do pick up significant positive
autocorrelation in oil production between leases.

Results for explanatory variables for natural gas are similar to those for oil. The
age of the well does not seem to significantly impact production; the number of wells
on the lease increases production, although the negative square term, indicates that
this is at a decreasing rate. Injection is generally insignificant. Injection is likely to
be even more difficult to identify with gas production, since produced gas can be

re-injected into the reservoir. The Moran-I statistic on the OLS regression indicates
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negative spatial correlation, while the GLS and GS2SLS specification pick up the
expected positive spatial autocorrelation in errors.

The parameters for spatial autoregressive lag are graphed in figure 10 for oil and
figure 11 for gas. The older the age of the neighboring well the more the spillover
parameter should attenuate, and so we see a negative slope in the graphs in both
cases. Additionally, there should be more of a race to extract when wells are owned
by competing ("unfriendly” ) operators, and so we would expect that the unfriendly
line lies above the friendly line on the graphs. This is generally the case for oil,
with the exception being spillovers from wells within the first quartile of age. Unlike
oil the spillovers parameters for natural gas are, with the exception of the first pe-
riod, negative, here the friendly spillover tends to lie above estimates for unfriendly
spillovers, and is closer to zero. Pinning down the interpretation of the spillover
parameter requires a full spatial dynamic model of joint resource recovery, as well as

controls for cumulative recovery, which is not attempted at present.

6 Conclusion

The spatial interaction between wells is an important consideration in efficiently
draining oil an natural gas from expansive underground reservoirs. Yet previous
research has shown that the present structure of lease-ownership in Texas impedes
efficient field development because rights to the resources in situ are not fully de-
lineated. This insecurity perverts economic incentives so that the resources are ex-

tracted too quickly, with too much of the rents depleted by costly excess capital.
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This paper exploits recent advances in spatial econometrics to quantify the produc-
tion spillovers between leases. Results show evidence of a race to extract across a
variety of specifications. The most extensive model show that after controlling for
injection and fixed effects, consolidated ownership reduces spillovers and tends to
slow the rate of extraction as compared to areas where ownership is highly fractured.

These results are directly in line with economic theory.
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Table 1: Summary Statistics (Slaughter)

Full Sample

variable Obs. Mean Std. Dev. Min Max

log gas 61427 6.00 3.75 0 14.3

log oil 61427 8.07 2.19 0 13.5

log water 61427 7.81 5.30 0 15.1

GOR 61427 -2.06 3.07 -12.53 9.9

age 61427 6324.72 7100.95 0 39870.0

age sq 61427 9.04E+4+07 1.75E408 0 1.59E+409

well count 61427 28.04 48.21 1 652.0

well count sq. 61427 3110.75  10426.54 1 425104.0

total depth 430431 608.42 1721.06 0 12384.0

lease acreage 421938 3507.56 2803.63 0 8684.3
Regression Sample

log gas 387 6.37 3.16 0 14.0

log oil 387 7.54 2.25 0 12.5

log water 387 8.01 4.76 0 14.3

GOR 387 -1.17 2.15  -9.25 5.4

age 387 8384.34 7521.19 0 36862.0

age sq 387 1.27TE+08 2.16E+08 0 1.36E409

well count 387 23.39 41.65 1 243.0

well count sq. 387 2276.80 7588.24 1 59049.0

total depth 6125 306.90 1290.07 0 10700.0

lease acreage 6055 3673.79 2834.06 0 8684.3

Notes: This table reports summary statistics tests for the HPDI data available for Slaughter field in
the top panel, and for the regression sample in the bottom panel. The regression sample represents
a subsample of production data for the month of January in 1990, 1995, 2000, and 2005. Note that
injection observations far outnumber production observations because injection is reported at the well
level. In all regressions, injection is summed over the past year within a half mile of each production
observation. Log gas, log oil, and log water are log of one plus monthly lease level gas, oil and water
production, respectively. Water and oil production are reported in log barrels, while gas is reported in
log thousand cubic feet. GOR is gas to oil ratio, which is also logged. Age is the age of the most recent
well drilled on the lease. Well count is the number of active producing wells on the lease. Total depth is
the total depth of the most recently completed well on the lease. Lease acreage is the only variable not
provided by HPDI, it is taken from the Texas Railroad Commission and measures the area of the lease.
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Table 13: Fixed Effects, Simultaneous Weighting:
Oil

OLS GLS 25LS  GS2SLS

constant -0.0098 -0.0144 -0.0104 -0.0151
0.0149 0.2356 0.0154 0.0060

went 0.0130 0.1402 0.0130 0.0160
0.0034 0.0398  0.0057 0.0135

went2  -0.0076  -0.0498 -0.0076  -0.0117
0.0016  0.0140 0.0026 0.0061

age 0.0000  0.0000  0.0000 0.0000
0.0000  0.0000 0.0000 0.0000

wtr 0.5428 0.1363  0.5432 0.3350
0.0337 0.1382 0.0365 0.0516

ginj  -0.0069 0.0710 -0.0070  -0.0237
0.0026  0.0202 0.0057 0.0089

winj 0.0093 -0.0694 0.0091 0.0149
0.0021  0.0129 0.0048 0.0075

AF 0.0087 0.0070  -0.0061
0.0016 0.0026  0.0053
AU 0.0041 0.0043  0.0056
0.0004 0.0006  0.0008

moran 201.3414
p 0.1206 0.0938
0.0054 0.0035
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Table 14: Fixed Effects, Simultaneous Weighting;:
Gas

OLS GLS 2S5LS GS2SLS

constant  -0.013 -0.858 -0.019  -0.009
0.057 0.293 0.057  0.019

went  0.051  0.217 0.051  0.054
0.013 0.044 0.021  0.025

went2  -0.022 -0.036 -0.023  -0.019
0.006 0.020 0.010  0.011

age  0.000 0.000 0.000  0.000
0.000 0.000 0.000  0.000

wtr  0.871 1.354 0.847  0.543
0.120 0408 0.136  0.111

ginj  -0.023 0.051 -0.022  0.008
0.010 0.074 0.021  0.021

winj  0.011 -0.107 0.010  -0.013
0.008 0.052 0.018  0.017

ya 0.007 0.004 0.010
0.004 0.006 0.007
AU 0.004 0.005 0.004
0.001 0.002 0.001

moran -685.593
p 0.068 0.045
0.003 0.002
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Table 15: Regression on Local Herfindahl Index

liq gas
OLS GLS OLS GLS
constant 0.0000  0.1262 0.0000  -0.0870
0.0169  0.0645 0.0573 0.1340
went 0.0139 0.0188 0.0523  -0.0061
0.0039  0.0339 0.0133 0.0998
went2 -0.0062  0.0151 -0.0202 0.0212
0.0018  0.0152 0.0062 0.0440
age -0.0001  0.0000 -0.0001 0.0001
0.0000  0.0000 0.0000 0.0001
wtr 0.5920  0.6180 0.9354 1.6088
0.0383 0.1319 0.1302 0.4158
ginj -0.0106 -0.0454 -0.0264 0.0606
0.0029  0.0188 0.0099 0.0487
winj 0.0074  0.0367 0.0044  -0.0269
0.0024  0.0193 0.0083 0.0511
herf -1.4696 -4.3574 -2.8451 -19.1496

0.5710  2.9428 1.9396 9.5801

moran 10990.7500 1351.1970
p 0.0376 0.0391
0.0019 0.0013
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Table 16: Oil Spillover by Age
OLS GLS 2SLS  GS2SLS

constant 0.0052 0.2362 -0.0123 0.0069
0.0147 0.3114  0.0204 0.0084

went 0.0137 0.1526  0.0129 0.0214
0.0034 0.0440 0.0057  0.0168

went2  -0.0079 -0.0482 -0.0079  -0.0150
0.0016 0.0170  0.0026 0.0071

age 0.0000  0.0000  0.0000 0.0000
0.0000  0.0000  0.0000 0.0000

wtr 0.5333 0.5301 0.5419 0.0058
0.0333  0.1830  0.0380 0.0022

ginj  -0.0066 0.0592 -0.0073 -0.0129
0.0025 0.0309 0.0057  0.0097

winj 0.0091 -0.0558  0.0076 0.0124
0.0021  0.0237  0.0049 0.0081

AF1 0.0088 -0.0047  0.0302
0.0016 0.0072 0.0049
AF2 0.0711 0.0046  -0.0002
0.0572 0.0004  0.0003
Arpg  -0.5457 -0.0002 0.0002
0.5325 0.0002 0.0001
Ars -0.6970 -0.0005 0.0000
0.8834 0.0001 0.0000
AUt 0.0037 0.0057  0.0045
0.0004 0.0011 0.0008
A2 0.0320 0.0103  0.0247
0.0084 0.0269  0.0160
Avs  -0.0609 -0.0044  0.0008
0.2087 0.0013  0.0007
Avs  -0.0535 0.0125 0.0012
0.1293 0.0009  0.0006

moran 317.9857
P 0.1250 0.1170
0.0053 0.0040
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Table 17: Gas Spillover by Age

OLS GLS 2SLS GS2SLS

constant 0.0185 -2.3327 -0.0114 -0.0605
0.0558 1.3353  0.0460 0.0267

went 0.0491 -0.8593  0.0506 0.0554
0.0129 0.1637  0.0212 0.0256

went2 -0.0219 0.1199 -0.0229 -0.0161
0.0060 0.0717  0.0098 0.0113

age 0.0000 -0.0001  0.0000 0.0000
0.0000 0.0001  0.0000 0.0000

wtr 0.8644 -0.3713  0.8499 0.0532
0.1267 1.3790  0.1415 0.0222

ginj -0.0259 0.0109 -0.0229 0.0235
0.0097 0.2275  0.0211 0.0224

winj 0.0145 0.1186  0.0101 -0.0287
0.0081 0.1581  0.0176 0.0179

AF1 0.0059 0.0011 0.0115
0.0040 0.0137 0.0081

AF2 0.0055 0.0138 -0.0203
0.1369 0.0025 0.0083

AFs3 -0.1013 0.0011 -0.0031
0.6226 0.0008 0.0013

AF4 -0.0370 0.0105 -0.0217
0.1455 0.0072 0.0108

AUt 0.0007 0.0048 0.0089
0.0012 0.0027 0.0020

AUz 0.0464 0.0109 -0.0203
0.0144 0.0499 0.0281

Aus 0.2683 -0.0145 -0.0162
0.2439 0.0052 0.0068

A4 0.0692 0.0170 -0.0962
0.0441 0.0350 0.0490

moran -725.9618
p 0.09375 0.046875
0.004000141 0.00171428
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Figure 1: Well locations. Slaughter field is in green. To the north in gray is Levelland

field which is geologically similar, but separated from Slaughter by an anhydrite salt
dome.
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Figure 2: Local Herfindal Concentration Index: Slaughter Field. Herfindahl concen-
tration index computed for each cell in a 30 x 30 grid. Lighter colors indicate higher
ownership concentration.
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Figure 3: Total Wells in Production: Slaughter Field.
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Figure 4: Aggregate Production: Slaughter Field.
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Figure 5: Log of Well Average Production: Slaughter Field.
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Figure 6: Table Plotted
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Figure 7: Table Plotted
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