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Abstract:

Especially in systems characterized by thresholds and irreversibilities, the ex ante
information available to a decision-maker has the potential to significantly affect optimal
management. Most past explorations of regime shifts have assumed that the optimizing
agent can either directly or indirectly observe or infer the past regime with certainty,
leading to specific characterizations of cases when management is precautionary or more
exploitive relative to the no-threshold cases. In this paper, we relax the assumption of
resolution of uncertainty, and show that the information effects result in qualitatively
different prescriptions for optimal management. In particular, even in the case of an
exogenous probability of a regime shift, the strategy is no longer to manage according to
the regime certainty solution, but rather to be non-precautionary. As such, persistent
regime risk has a similar effect to an increase in the discount rate, but the effects are
endogenous and may be complex.
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Introduction

Management of complex ecosystems is often fundamentally a problem of choosing
actions in the face of large degrees of uncertainty distinct from mere stochasticity of the
underlying physical processes that generate environmental outcomes. For example,
managers may have competing theories regarding the underlying structure of the system,
such as the shallow lakes model in Peterson, et al. (2003), may be uncertain about a key
structural parameter or parameters, as in the climate change model considered by Kelly
and Kolstad (1999), or may be subject to a partially-observable process in which an
underlying state cannot be observed, as in the invasive species scenario considered by
Haight and Polasky (2010). Recognizing this complexity, ecologists have proposed the
paradigm of “adaptive management”, under which the uncertainty of the underlying
dynamic process is recognized explicitly and management is prescribed as an
“experimental approach that allows policy makers to learn from their mistakes and apply
those lessons...” in the future (Thrower and Martinez, 2000, p. 88).

The adaptive management approach thus suggests the use of observable data to update
expectations about potentially uncertain parameters or states in the dynamic system as
information is generated along a management path (Ludwig and Walters, 1982). In
essence, problems of this sort essentially introduce a new margin over which managers
must trade off; namely, the potential for endogenous learning about the future through
deviations in the management strategies that would have otherwise been “optimal” if
current beliefs were to persist. In this manner, the manager can experiment by taking
actions that generate a beneficial data series in terms of information content, and process
this information to reduce uncertainty about the state of the system in the future, thus
providing a tangible economic benefit (Bond and Loomis, 2009; Bond, 2010). Examples
and the history of reasonably simple models of parametric uncertainty in primarily a
regression context can be found in Kendrick (2005), with Wieland (2000) providing a
dynamic programming application.

In systems characterized by thresholds and irreversibilities, however, the uncertainty may
be even deeper, in that the optimizing agent(s) may not know for certain which regime is
generating the ultimate outcomes, and the potential for experimentation and data
generation may be limited by the fact that there is an “absorbing process” that cannot
change once the threshold is crossed (or that can switch back to an original regime
according to some other process). Nevertheless, endogenous learning about the potential
and existence of a regime shift is possible, and management that incorporates this
learning will most likely result in outcomes that dominate strategies that assume beliefs
about the threshold are fixed (at least ex ante). Recent work has shed insight into optimal
management strategies when the information regime is constant for these types of
problems, but the implications of endogenous learning about the unknowns has not been
explored (Brozovic and Schlenker, 2011; Polasky, et al. 2011). Of particular interest are
the incentives related to precautionary behavior when parameter values are uncertain or
state variable values are unknown.



This paper presents an analysis of endogenous learning in a resource management
models that under some parameterizations admits thresholds and irreversibilities with an
exogenous probability of regime shift. The model is stochastic in the biological
processes, suggesting that regime uncertainty is persistent along the planning horizon, but
a Bayesian learning process is modeled to allow for updating of beliefs. The framework
is a discrete-time probabilistic state space model, perhaps familiar to most readers in the
particular case of linear equations and independent Gaussian noise as the Kalman filter
(Kalman, 1960). The state-space model is used to model the evolution of beliefs related
to the unobservable components (either parameters or physical states) of the optimization
problem, and is incorporated into the dynamic program to allow for active learning about
the system. As seen below, several papers in the literature incorporate a state-space
approach to update beliefs over either unknown parameters or unknown states; here, we
allow for both.

There is a fairly extensive literature dealing with the effects of regime shifts on optimal
management in a variety of ecosystems, though most include discontinuities in the
expected value of the state variable once a threshold is crossed or are deterministic with
respect to the regime shift (Reed, 1988; Clarke and Reed, 1994; Tsur and Zemel, 1996;
Nevdal, 2003; Brozovic and Schlenker, 2011; Polasky, et al., 2011).! In this paper, we
model a change in underlying biophysical process once a threshold is reached, rather than
a discrete shock to the stock, as well as a stochastic, exogenous regime shift.? As such,
we build on the research of Polasky, et al. (2011), who use a hazard rate in continuous
time to analyze a model in which the shift in biological regime is a random variable, but
the process over time is otherwise deterministic (i.e., there is no error term on the
equation of motion on the resource stock). In a complementary paper, Brozovic and
Schlenker (2011) examine the effects of uncertainty of threshold location on the optimal
management of a stochastic shallow lake/pollution loading model. Both note that that
while useful, endogenous learning is precluded from their respective specifications. The
method and examples presented here explicitly address the learning framework while
nesting the more restrictive information assumptions in these previous papers.

This paper contributes to the literature as follows. First, we contribute to the literature on
thresholds and regime shifts by nesting a few of the basic models of system dynamic
shifts into a broader framework that accounts for more realistic uncertainty regimes. In
particular, we use an unobservable state variable in conjunction with a hazard parameter
(rather than function) to model the probability of an exogenous regime shift, and show
that the results in the previous literature are critically dependent on the resolution of one-
period behind uncertainty in each subsequent time step. Second, we show how the state-
space methodology can be used to model parametric uncertainty, partially-observable
Markov decision processes, or both, depending on the problem at hand. In so doing, we
highlight the fact that assumptions regarding the information regime (or what the

1 A few examples of such ecosystems include freshwater lakes, coral reefs, grasslands and forests (both
within a system and between systems), EI Nino/La Nina-type ocean events, and climate change, just to
name a few. See Scheffer, et al. (2001) for an excellent review.

% The assumption of an exogenous regime shift allows for isolation of the incentive effects associated with
the information regime of the problem without confounding the incentives of an endogenous hazard.



optimizer knows, when, and how that information is used) can influence optimal
management strategies, and that endogenous adaptive management strategies can be
identified ex ante. This approach is fairly general, though not novel, and should be useful
in a number of exercises that admit complicated uncertainty structures. Finally, our
numeric results illustrate the feasibility of the approach and some key results of differing
assumptions on a particular specification of a renewable resource management problem
with exogenous regime shift probabilities.

The next section discusses the parameterizations that can represent alternative
information regimes in dynamic problems, with a particular emphasis on a renewable
resource model with a potential “systems dynamic effect” , defined as a regime shift
characterized by continuity of stock levels at the time of shift as termed by Polasky, et al.
(2011). We then briefly review the state space methodology that can be used to model
Bayesian updating of beliefs over the uncertain parameters or states of the problem, and
show how this applies to the renewable resource model. Next, three numerical
simulations that vary parameter values and information regimes are presented: a
competing ecosystems model, a model of regime shift with known exogenous hazard, and
a regime shift model with unknown exogenous hazard. We discuss the incentives for
precautionary behavior embedded in each. The final section provides some context for
the results in terms of prior literature, and suggests some avenues for future research.

Treatment of Information in Dynamic Resource Management Models

A key component in models of complex systems is the treatment of the information
regime under which the manager is operating; in other words, what does the manager
know, and when does s/he know it? Recently, the natural resource economics literature
has begun to incorporate these ideas by augmenting the state space of dynamic programs
to include transition equations for both the resource itself and the beliefs about the state
of the system (Walters and Holling, 1990). Broadly termed “adaptive control”-type
models, applications have included fisheries (Ludwig and Walters, 1982), non-point
source pollution (Kaplan et al., 2003), climate change (Kelly and Kolstad, 1999), air
pollution (Cunha-e-Sa and Santos, 2008), invasive species (Springborn, 2008), shallow
lakes (Peterson et al., 2003; Bond and Loomis, 2009), and general environmental policy
(Brock and Carpenter, 2007; Bond, 2010). Most of these cases could be classified as
problems of parametric uncertainty, in which one or more parameters of a stochastic state
transition equation is not known to the manager, but rather characterized by a distribution
which is updated as more data about the system becomes available.

In the case of thresholds and irreversibilities, however, the problem is potentially even
more complicated, in that the unknown quantities are not parameters, but rather the
values of the state of the dynamic system itself. Such partially-observable Markov
systems are more rare in the literature (Haight and Polasky 2010 is a notable exception),
but represent a more realistic setting faced by real-world managers, in which the
evolution of the system is stochastic and there is uncertainty about the state-transition
mechanisms that govern it, including both key states and parameters of the system.



To illustrate the potential information regimes, consider the discrete-time analog to the
model in Polasky, et al. (2011), in which an optimizing agent maximizes the net present
value of (constant) net price times harvest in each period t, ph,, subject to the evolution of
a stochastic stock evolution process with i.i.d. zero mean and constant variance errors:

St =S +Gi(st)_ht + &L =12, (1)
and the standard initial conditions on the stock level. Assume that before the regime shift,
G, (s,) =G,(s,), while G,(s,) =G,(s,) thereafter, s, is observable in period t+1, and these

processes are known with certainty.® We assume G,(s,) > G,(s,) and

G, (s,) > G, (s,) Vs, >0, with G,(-) taking a logistic form and carrying capacity for
regime 1 greater than that for regime 2. In a departure from the original model, assume an
additional indicator state variable 1, €{0,1} that denotes if a regime change has occurred,
governed by the process

Hl:{o if 1,=0and f(st,§t+1;[$)<a, @

1 otherwise

with &, ~iid uniform(0,1), a and B are parameters, and f () is a function specific to the
problem under consideration.’

There are a variety of structural and information regimes that might be assumed for this
problem. For example, assume that f (s, <,.;B) = ¢, SO that the hazard rate is defined
as(1-«), and is interpreted as the exogenous probability of a shift in regime from
regime 1 (G,(-) ) to regime 2 (G, (-) ) when the true data generation process is regime 1.

At least four possible information regimes can be assumed, depending on the
assumptions regarding the ability to observe ¢,,, and whether or not « is known.

In the case of known hazard rate with observability of &,.,,, the problem is stochastic in

the regime switch but fully observable otherwise, and is essentially an identical
information treatment as the case of exogenous probability of regime shift with system
dynamics effect in Polasky, et al. (2011). In that model, the state equation on the resource
stock is assumed deterministic, but note that so long as s,,, is observable, the lack of a

stochastic process corresponds to the assumption of (perfect) observability of the regime
shift. As such, in this treatment, the model is a straightforward stochastic dynamic
programming problem with 2 states, and there is no need to include beliefs in the state
space (though it can be modeled as such, as seen in the next section).

® The assumption that the net growth functions are known with certainly can be relaxed given the
framework presented here. Also note that we assume no discontinuity in the state in order to focus on the
treatment of information in the problem. Such discontinuities could be incorporated through, say, including

an additional value of the discrete state | that is associated with the discontinuity, and a physical state
transition that accounts for the stock change at that level.
*In other words, G,(s,) =G,(s,) if 1, =0, G(s,) = G,(s,) otherwise.



Retaining the assumption of known « but relaxing the observability assumption on the
regime switch results in a model with no parametric uncertainty in the adaptive control
sense, but with an unobservable state variable 1, since the resource stock evolves

stochastically and is the only observed state of the system from period to period. We thus
have a partially-observable Markov sequence with constant, known parameters, and
assume that a manager’s optimal actions will depend on her beliefs about the current (and
future) growth regimes. As such, we augment the state space to include the probability
that the regime switched, and use an updating rule to describe the evolution of these
beliefs.

If, on the other hand, « is unknown, regardless of the observability of ¢,.,, we have a

case of both parametric uncertainty and a partially-observable Markov sequence, as the
error term on the resource stock transition equation precludes the manager from knowing
for sure which regime is operative. This is not to say, however, that the problems are
equivalent, since the ability to observe the random draw governing the stochastics of the
regime shift provides additional information over which to update the belief space, which
now consists of the joint probability that the regime shift has occurred and the value of
the unknown parameter.

These same information regimes are possible if one allows for various endogenous
specifications of the probability of the regime shift (e.g., s, < o,

Coa < T(s;;B), 0< f(s;;B) <1, etc...), degrees of irreversibility within the problem,

and/or other extensions depending on the problem. For example, in the case of a purely
stochastic process governing a switch “back”, one may rewrite the transition equation
related to the indicator as

_{O if (1,=0and f(s,¢.;;B)<a)or(l,=1land &, <y) )

t+1

1 otherwise
where & ~ uniform(0,1) and the probability of a reverse regime shift is given by
0 <y <1. The information regime in this case is defined by the assumptions regarding
the nature of the parameter vector (B, «, y) (with elements either known and constant or
unknown) and the observability of the stochastic elements of the problem (¢..,,¢,.,) . As

shown below, the information regime could have considerable effects on the optimal
management plan, just as the endogeneity of the regime switch did in Polasky, et al.
(2010) or the variance associated with the unknown threshold did in Brozovic and
Schlenker (2011). However, to fix ideas in what follows, we assume f(-) =¢,,, and

y =0, rendering regime 2 the absorbing state and the regime shift irreversible.

State Space Methodology

This section demonstrates a unifying state-space filtering framework for treatment of
alternative information regimes in resource management problems, and provides
examples within the context of exogenous hazards in the regime-switching renewable
resource problem above.



A Primer on State Space Modeling®

A discrete-time state space model is a representation of a Bayesian probabilistic process
in which inferences about unobserved “states” of the filtering system, z, € R", are made

through processing of observable information y, e R™.° The model is defined by
2.1~ 9(2012,)
Yer ™ 9 (yt+1 |Zt+l)’

where ¢ (zt+l | zt) describes the dynamic process of the unobservable quantities and

(4)

9(Y.112,,) describes the distribution of the observables conditional on the
contemporaneous values of the unobservables. It is assumed that (4) is a Markov process,
and thus the history of the system through time t is completely characterized by z, and

Y

This type of model can be used in the context of dynamic programming models with
partially-observable Markov processes, parametric uncertainty, or both, to model the
evolution of beliefs about the unknown quantities as a state transition equation. To do so,
define the predictive distribution of z,,,as

g(Zt+l Iyt):J-g(ZtJrl |Zt)g (Zt |yt)dzt’ (5)
where g(z,|y,) is the prior over z, at time t (perhaps from a previous update of the

system). Equation (5) is known as the Chapman-Kolmogorov equation, which describes
the dynamics of the state of the system conditional on what can be observed at time t, and
is essentially a marginal distribution obtained by the integration of the conditional

distribution g(z,,, | z, ) times the prior.

Once the predictive distribution is obtained, Bayes’ rule can be used to update the prior
and obtain the new distribution of the unobservables z, , conditional on the observed

data y,,,:

t+1

_ g(yt+1 | Zt+l)g (Zt+l | yt)
- . (6)
Jg(ynl I Zt+1)g (Zt+l | yt)dZt+l

g (Zt+l | yt+l)

Equation (6), also known as the filtering distribution, thus provides an implicit equation
that can be used to update distributional information about the unobservable parameters
or dynamic programming state variables between time periods through modeling the

® The general framework described here relies heavily on Sarkka (2006). The reader is referred to this
resource for additional details.

® The terminology “state of the filtering system” is used as in the state-space literature, where the “state” is
a (possibly unobservable) parameter value and the measurements are the observable features of the system.
From a dynamic programming standpoint, both s,and I, are states of the program.



evolution of the sufficient statistics 0,,, of the distribution g(z,,, |y,..). We illustrate
the use of the general model in the context of thresholds and irreversibilities below.

Modeling an Exogenous, Known Hazard

Consider the case where g (zt | yt) represents the probability that the regime has switched
given the contemporaneous data on the renewable stock, and define the prior at time t as
Pr(l, =1|s,) = z,. As will be shown, we can model both ¢&,,, observable or unobservable
and o known or unknown using the state space specification and filtering methodology.

Begin with the case of a known, and let the state of the filtering system in period t+1 be
l,.,, with observable measurements s, ...s, , in each time period.” Our objective from

Cvt+l
filtering is to find Pr(l,., =1|s,...S,,), which is trivial in the case of perfect observation.

Nevertheless, it is instructive to set up the filter to trace through the predictive and
filtering steps.

The predictive distribution is given by Pr(l,,, =1]s,...s,), and the filtering distribution

t+1

as Pr(l,, =1]s,...S,,;). The former is defined by
Pr(l,, =1]s,...s,)
=Pr(l, =0)Pr(l,, =1|1,=0)+Pr(l, =) Pr(l,,, =1|1, =1) (7)
=@-7z)Pr(l,, =1|1,=0)+z Pr(l,, =11, =1).
Pr(l,,, =1| 1, =1) =1for the purely irreversible case, regardless of observability of the

process governing the switch. In the case of purely exogenous known hazard with
observable ¢,,,, Pr(l,, =1|1,=0,s,...s,) =Pr(l,,, =1|1,=0,&,,,), and thus
Pr(l,,,=1]1,=0,,,,) €{0,5}. As such, Pr(l,, =1]s,...s,) €{r,,1}depending on the
realization of the stochastic term. Note that uncertainty over the unknown state is
perfectly resolved if £, > «, in which case a switch has certainly happened; otherwise,
the predictive distribution is equal to the prior. However, if &,,, cannot be observed
directly, 0<Pr(l,_ =1]s,...s,) = 1-7,)(1 - ) + 7, <1, with strict inequalities so long as

0< a<1. Inthe presence of confounding errors on the resource transition equation, then,
it is possible that the maximizing agent does not know if the regime has shifted or not.

Regardless of the assumption on observability of the process governing the shift, the
filtering distribution can be used to obtain the posterior of the distribution once the new
data arrives in the form of s, . Through straightforward application of Bayes’ rule,

t+1 °

" It is not necessary to assume measurement in each time period, though this assumption is maintained
throughout the paper.



g(SH—l | It+]_ :1) Pr(|t+l :1|SO"'St)

Z 9(Sp [l =a)Pr(l,, =als,...s) ,
a<{0,1}

where g(-) is the distribution (or kernel of the distribution) of s,,, and g(s,, |l,,, =1) is
the likelihood of observing s, , conditional on I, , =1. With observability, (8) implies
that Pr(l,,, =1]s,...s,,) =1if &, = a,and the data adds no additional information. If
¢,.1 < a or with unobservable ¢, , however, this is no longer strictly the case, and

Bayes’ rule gives an efficient information processing rule for modeling the evolution of
beliefs about the state of the system, dependent on all observations up to time t+1
(perhaps embodied by the priors in the case of t=1), the (assumed known) hazard rate,
and the (assumed known) distribution of &,,,.°

Pr(lm :1|SO"'St+1) =

(8)

t+1

Equations (7) and (8) thus provide the necessary information to create a difference
equation that describes the evolution of 7, over the course of the optimization problem by

assuming that the posterior distribution in (8) becomes the new prior before each new
decision is made.

Modeling an Exogenous, Unknown Hazard

The next layer of complexity to consider is an unknown hazard rate; that is, « in (2) is
not known with certainty, but rather can be characterized by a (discrete or continuous)
probability distribution function g(«). As in the last section, the objective is to find an

expression for the (now bivariate) filtering distribution
(1, = ], .1 1Sy ---Siy)s J €{0,13. The notation makes clear that in this case, the model

admits both a partially-observable dynamic process in physical (s, ) space and parametric
uncertainty through the unknown «.

Begin with a joint prior distribution over both parameters in time t; say,

7 =9(1 = j,@), j €{0,1}, and denote the sufficient statistics of this distribution @,
As before, we use the filtering mechanism to create the probability updating equation
g(l,, = J,.. 1Sy ---Se.y) using the predictive and filtering distributions. The former now
takes the form

9l =J 2 lS---8) = Z J‘ﬂ-l:j,a,tg(ltﬂ = Jia, |1 =k o, )da,, ©)
kef0,13
while the latter generalizes to
g(|1+1:j!at+1|so---st+1): g(SO"'SHllIHl:J’at+l)g(|t+1:J’at+l|SO"'St) (10)
z IQ(SO...St+1 [ =Ka)9(l, =K o, [8;...8)de

kef0,13

® Note that the case of unobserved ¢, and deterministic evolution of the resource is also nested within this

framework, as in this case the likelihood g(s , |l , =1) €{0,1}.

t+1 t+1



In the case of a discrete number of support points on ¢,
summation over those points.

the integration becomes

+1!

There are basically no fundamental conceptual differences between (10) and (8), save for
the addition of an unknown (possibly continuous) random variable « which adds some
complexity to the relationships, and an application to an endogenous hazard rate is
straightforward.® In some cases, there may be closed form solutions to (10), in that the
evolution of the sufficient statistics of g(l,,, = j,&,,,|S,...S.;) can be modeled

explicitly. Examples include cases where the distributions of « and &,,, are conjugate,

and thus the resultant posterior is of identifiable form; for example, Gaussian priors
would enable the use of a slightly modified Kalman filter that admits closed-form
solutions, as would the assumption of discrete distribution on the hazard rate. In the case
of lack of closed-form solutions, numerical techniques may be used to model the
evolution of belief space, so long as sufficient statistics could be identified. There is little
doubt that such techniques are generally complicated (and suffer from the curse of
dimensionality when used in a dynamic programming context), but the advance of
computational methods and associated computing speeds have increased the feasible set
of problems that can be solved this way (e.g., Rust, 1997; Han et al., 2006). In addition,
significant insights might be gained from simple problems that focus on a discrete belief
space. It is to such examples that we now turn, with a focus on the implications of these
assumptions on precautionary behavior within the renewable resource model.

Numerical Examples

In most cases, analytical insight into the more complicated of these problems is not
likely, especially given the large expansion of the state space associated with the
introduction of the joint priors in belief space. Even using modern numerical
approximation methods such as flexible polynomial forms for the unknown value
function, may prove taxing for realistic problems (Judd 1999, Miranda and Fackler,
2002), especially given the natural probabilistic restrictions on the state space. Here,
however, we restrict attention to relatively simple problems where basic methods are
feasible.' In addition, because analytical solutions to a subset of these problems are
possible, the numerical results of the restricted models were externally validated.

In order to explore the effects of non-observability and parametric uncertainty on the
optimal management of the renewable resource three stochastic models are presented
under alternative parameterizations and information assumptions. All take the form:

° Recall that in a Bayesian rather than frequentist framework, the underlying true parameter is interpreted as
random.

19In particular, we use a linear splines and discretized controls over the state space in each case, resulting
in rather crude but comparable approximations to the true value function. The numerical models were
coded using the COMPECON toolbox of Miranda and Fackler (2002). The author is grateful to Paul
Fackler for sharing his code for building the simplex in the model with four state variables.

10



max Z§‘ph

hlaoto

ot s, +G,(s,) - h+gt+1if|t+1—0
b s, +G,(s,) —h+e,, ifl

0if1,=0 & ¢, <a
“17 71 otherwise

s,>0, 0<Pr(l,=1) <1

t+1

In each case, we assume parameter values as in Table I, with growth in each regime

assumed to be logistic and occurring after harvest is made: G, = (1— (s,—h)— j(s h,)

M The assumption of an unknown 1, is maintained, with differences in each model

defined by alternative assumptions over « , the parameter which determines the
probability of a regime shift/hazard rate. Additionally, we assume that the decision-maker
in the problem updates over the unknown distributions using the state-space framework
presented in the previous section.'?

Competing Ecosystems Model

The first specification assumes a known o =1, which implies stationary of regime over
the planning horizon. As such, it is essentially a competing ecosystems model, in which
the decision maker may be unsure of which state transition regime is operative. This case
is presented to illustrate the incentives related to endogenous learning without
confounding the incentives related to the regime shift.

The Bellman equation becomes
v (St’ﬂt) = mhax ph, + 5{(1_ ”t) E |:V (St+1(G1)’ ”t+1(G1))] +mE [V (St+l(GZ)’ 72-'[+1(GZ)):|}! (11)

where the notation indicates the dependence of the next-period state variables on the
assumed growth regime, which in turn depends on stock levels and harvest at time t. In
addition, beliefs depend on the prior belief state in t as well.

Figure 1 presents the approximate value function for this problem. Given the nature of
the information updating process, beliefs at the limits (i.e., 7, =0and =, =1) do not

update under any realizations of the future stock, and thus V (s,,0)and V (s,,1) are

equivalent to the value functions under regime certainty, with corresponding steady-state
stock and control values of approximately (0.72, 0.25) and (0.52, 0.175), respectively.

For stock levels greater than the steady-state in each case, the value functions are linearly
increasing in the stock with identical slopes, a result of the assumption that instantaneous

1 Numerically, the assumption of growth after harvest simplifies coding given the natural non-negativity of
stocks. This does change steady-state values relative to logistic growth in s;alone, but does not alter the
incentives in each information regime.
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net benefits are linear in harvest. For stock levels less than the steady-state, the value
function is concave as a result of the assumptions on the growth function and the non-
negativity constraint on harvest. In these cases of known regime, the optimal solution is
a most-rapid approach path (MRAP) that drives the stock to the steady-state level as soon
as possible (immediately if the starting stock level is greater than the steady state).

For intermediate beliefs over the true regime, the value function is similarly shaped with
respect to the stock, but is scaled up or down in accordance with the linear weights in the
Bellman equation. The intuition is that in the presence of uncertainty over the true
regime, there is a trade-off in potentially lost benefits if the decision-maker operates
according to, say, regime 1 certainty, but the system is characterized by regime 2. As
such, the ex ante expected value is decreasing in 7, as is the point in stock space where

the value function turns linear. Ceteris paribus, then, one would expect optimal control
and stock values to increase as the belief that regime 1 is the true regime is strengthened.
These beliefs are updated based on the observed stock in each period, thus endogenizing
the probabilities on the right-hand side of (11) and changing the nature of the solution
from a MRAP to a more gradual driving of the stock towards the levels associated with
the limiting beliefs.

This is confirmed in the simulations presented in Figure 2, which depict the optimal paths
corresponding to &,,, =0 Vt for cases in which initial beliefs are incorrect relative to the

true regime, with starting stock levels equal to 0.5.%* In panel I, the true data generation
regime has growth G, (-) with 7, = 0.99, while panel Il assumes growth regime G, (-)

with 7, = 0.01. In each case, the optimal control in the first period is essentially identical

to the regime certainty case, which (were the beliefs true) would result in driving the
resource stock to the corresponding steady state level. However, since the true regime is
not consistent with beliefs, this results in stock levels in period 2 to be high (relative to
expectations) in panel I, and low in panel I11. Learning from these observations, the
decision-maker updates probabilities accordingly, placing slightly more weight on the
true regime, and subsequently acts accordingly.

The end result for panel I are control and resource stock paths that are slowly increasing
towards the steady state levels for regime 1 as the endogenized weights in (11) adjust
towards the true value. The speed of adjustment is directly related to the size of the
adjustment in belief space, as can be seen by the increased slopes on the control and stock
paths as the absolute value of the slope of the belief path increases. In panel 11, since the
initial control based on incorrect beliefs drove the stock path higher than the steady-state

level associated with G, () , the stock level is gradually declining. Note, however, that as

in panel I, extraction is increasing over the planning horizon. The explanation is that the
positive relationship between extraction and z, conditional on the stock level dominates

B3 If initial beliefs were essentially correct, the paths would be numerically indistinguishable from the
regime certainty case. Intermediate beliefs produce state and control paths that fall in between these polar
cases.
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the positive relationship between the extraction and the stock level conditional on r,,
primarily due to the rapidity of the updating of beliefs.

Known, Exogenous Hazard

The second model assumes 0 < & < 1,and that the decision-maker knows the hazard rate
(1- &) that determines the probability of a regime shift from regime 1 to regime 2. If one
assumes that either a) &,,, is observable or b) &,, =0and this fact is known, the model is

equivalent to the exogenous probability of regime shift model in Polasky, et al. (2011)
(see Appendix A). In this case, the optimal solution assuming an initial state 1, =0 s for
the manager to apply the MRAP solution in the regime 1 certainty solution; in other
words, a known, exogenous hazard with observability over the regime in time t does not
affect optimal management.**

Our insight here is that this result is a consequence of a) the equivalence of the marginal
value of a unit of stock at the steady-state of each regime due to the linearity of net
benefits with respect to harvest; and b) the resolution of uncertainty over the operative
regime in time period t from the standpoint of time period t+1. Starting with the latter, the
assumption that the uncertainty about t is resolved in the subsequent period implies that
the belief updating process is independent of the control variable, and that subsequent
weights on each regime will be either z,,, =0or 7, =1. As such, there is no dynamic
trade-off to be made in the belief dimension; that is, from the perspective of time t, the
decision-maker need not trade off between decisions today and value differences induced
by differences in beliefs tomorrow (as documented in the previous subsection). Coupled
with the fact that the marginal value of increasing s, is equivalent in each regime, it

makes no difference to the decision maker at the control margin if the system is currently
in regime 1 or regime 2 when 7z, =0, as there is no penalty for being wrong given the

resolution of uncertainty, and thus no trade-off and no change in behavior.

If the deterministic or observability conditions are not met, however, this result no longer
holds. Using the state-space specification of this now partially-observable Markov
decision model, the Bellman equation for this problem becomes

\% (St’”t) = mh?X pht + 5{(1_ ﬂt)(aE I:V (Sm(Gl)’”m(Gl))] +(l-a)E [V (St+1(Gz)’7Tt+1(Gz))])

+mE [V (St+1(GZ)’ ”t+1(GZ)):|}’

and the operative regime at any time period (save perhaps t=0) is not known. Just as in
the previous section, the probability weights 7, are now endogenized, are no longer

independent of h;, and will change as decisions are made and beliefs updated along a

4 Appendix A also documents the main results in Polasky, et al. (2011) using the indicator state-variable
framework.
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management path.™ Compared to the competing ecosystems model, however, the
predictive distribution associated with the unknown indicator state will cause the
expectation of next-period beliefs 7., to increase given that 0 < & <1,and thus ex ante
values at a particular physical/belief state will be lower than in the previous case (see
panel Il in Figure 1).

Figure 3 shows the optimal path in this case, again assuming ¢,,, =0 Vt with 7, =0and
s, = 0.5, with the true regime starting with I, = 0 and shifting in period t=26. The first
item of note is that relative to the regime 1 certainty case, the optimal control in the first
period increases from 0.025 to 0.045, suggesting that the optimal initial decision is to
drive the resource stock level lower than the regime 1 certainty case. The reason is that
unless there is a strong negative shock to the resource, z,,, will increase, and there

continues to be a positive relationship between extraction and 7 to account for the
optimality of a lower steady state under regime 2 growth. This manifests itself in the
second argument of the value function, as the agent takes into account the additional
information margin. Even if there remains an equivalence of the marginal value of the
state s, , as there would be if 7z, =0, the agent must trade off instantaneous benefits today
with the (likely lower) expected values of the system tomorrow given the change in
expected beliefs, and thus the problem becomes truly dynamic in the belief dimension. In
this sense, the optimal initial control is non-precautionary, even though the probability of
a regime shift is exogenous.

Continuing along the optimal path, given the assumptions of the simulation, the state path
gradually declines with the control value until such time as the regime shifts. Unlike the
competing ecosystems case, then, the positive relationship between extraction and z,
conditional on the stock level is dominated by the positive relationship between the
extraction and the stock level conditional onz,. Note that the belief path is concave with
respect to time, contributing to this result. Following the regime shift in t=26, there is a
discrete jump downwards in both the state and control path as the observation of the
resultant (lower) state causes 7, to increase relatively rapidly. At this point in the
simulation, the belief in regime 2 is relatively high (~0.81), which results in quick
(downward) convergence to the steady-state solution for regime 2, which persists for the
remainder of the simulation as 7, reaches the limit belief of 1 as t — oo, *®

> Note that regardless of the source of information or the updating rule used by the decision-maker, so long
as beliefs over the unknown state differ from time period to time period, the control decision will change.
This is consistent with the model assuming observability...if beliefs change from regime 1 to regime 2
between t and t+1, h; and hy,; differ.

16 Additional simulations (not shown) confirm this qualitative pattern of results when the regime shift
occurs at different times over the planning horizon. Differences occur in the rapidity of convergence of
beliefs and the amount of time it takes the resource state/control variables to reach the regime 2 steady-state
level as a result of the shift taking place when beliefs in regime 1 are relatively stronger than in the
presented simulation.
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In a case where the regime does not shift despite the exogenous hazard (not shown), the
qualitative state, control, and belief paths are similar, but are smooth given the lack of a
change in the data generation process. One key difference, however, is that the state and
control variables converge to a higher level even when the belief in regime 2 is very close
to one, as growth in the resource stock is still governed by (G,), yet the optimal control

rule under this belief is to extract at a higher level in an attempt to drive the state variable
to the regime 2 certainty steady state. Interestingly, this is a case in which the limiting
belief will (in a proababilistic sense) ultimately be “correct”, i.e., !im I, =1, but the belief
for any finite t is incorrect in that 7, is (infinitely) close to one yet the true data generating
regime is consistent with 7z, = 0.

Unknown, Exogenous Hazard

The final model illustrated here assumes that « can take on one of two distinct values,
say a €{a,,,},but the decision-maker is uncertain which is the true value. Let

a1 Fi-0a-ay 1) 1 HE Bellman equation for this problem contains four
state variables, and takes the form
V(s,0,)= max ph, +SE[V (5,1,0,.,)]

0, = (ﬂ.l=0,a=a1,t’7z.l

= ph + 8 (7 E[V (54(G)). 0,4 (G)) |1, =0& =, ]

7 g gy B [V (5:1(G,). 0,4 (G,)) |, =1& x = al:l (12)

71 00may B[V (504(G1). 0,14 (G)) | |, = 0& = o, |

) g geay B [V (5.4(G;),0,,(G,)) I, =1&a = az:lv
where the last prior probability is calculated as (1- 7, « = 7121 goat = Fi-04eay0)- THE
specific form of (12) is very similar to the model in the previous subsection, but
conditioned on the values of the unknown hazard parameter. In the case of 1, =1, the

expectation over the unknowns is independent of «, since it is known that only regime 2
growth is possible.

A priori, one might expect that relaxing the assumption of a known hazard rate may not
affect the results given that there is no means for the decision-maker to manipulate the
system and learn about this parameter before a regime shift. However, as shown below,
the introduction of this parametric uncertainty has significant consequences for the
evolution of beliefs about the operative regime, and as these beliefs imply differences in
expected future values, they can affect the degree of (non)-precaution in behavior.

We model the case of « {1,0.9}, which is a mixture of the previous two cases presented.
Under these values, the agent has a prior belief that the system can either switch
according to an exogenous hazard (the case with @ =0.9), or is fixed in regime and will
not switch. Given the non-observability of the regime indicator, the model allows for the
possibility that the agent is unsure as to the present regime, but to be consistent with
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earlier results, we assume 7z, ., =7, .00, = 0.5f0r the simulation presented here. As

such, the agent begins with prior Pr(l, =0) =1, but is uniformly unsure about the hazard
parameter value.

Figure 4 presents the results, once again assuming ¢&,,, =0 Vt and a regime switch in

t=26. As in the previous case, initial extraction is greater than in the regime 1 certainty
case, but is not steadily decreasing as the simulation progresses. The reason can be seen
in the evolution of beliefs prior to the regime shift. First, note that z,_, ,_, ,is zero for the

entire planning horizon given the structure of the updating equations, and thus Pr(I, =1)
is completely characterized by one variable, 7,_, , .o,. As the simulation progresses, this

probability first increases then decreases (after t=12) as no detectable regime shift is
observed, while the marginal belief that |, = 0follows a symmetric, opposite pattern.

However, this occurs while the probability of no possible shift is monotonically
increasing and Pr(l, =0& o =0.9) is monotonically decreasing. The introduction of the

parametric uncertainty, then, introduces the possibility of non-monotonic beliefs even
absent stochastic shocks to the physical system, as the cumulative effects of no apparent
shift tend to counteract the predictive distributions tendency to increase the probability
that I, =1.

As such, the resource stock path is first gradually decreasing before the maximum
Pr(1, =1) for the reasons discussed earlier, then gradually increasing thereafter towards

the certainty equivalent solution to the regime 1 certainty case. As such, the incentive is
to be more exploitative in the beginning of the horizon, consistent with the known,
exogenous hazard case, but this incentive is mitigated after a point where the pattern of
data suggests a reasonably high probability that a regime shift cannot occur, thus creating
an incentive structure consistent with the competing ecosystem model case.

Once the data pattern is disrupted by the actual regime shift in t=26, belief patterns
rapidly reflect the change, with z,_, ., rapidly declining and =,_, , ., rapidly

increasing. The resultant stock path is thus gradually decreasing to the regime 2 certainty
steady-state level, in accordance with the previous analysis. The one difference is that
since Pr(l, =1) is small at the time of shift, optimal extraction increases, rather than

decreases, as the stock approaches the steady state.
The Effects of Information Structure

Taken together, these three cases illustrate that the assumptions over the information
regime are non-trivial when it comes to characterizing the nature of optimal management
in the presence of irreversible threshold effects. In general, risk over the true data
generation regime results in lower stock levels, ceteris paribus, than the certainty regime
solutions when the belief in regime 1 is strong, but the overall path of resource
exploitation depends on the evolution of the subjective beliefs of the decision maker.
These effects generally take two forms: 1) the tradeoff between the risk of over- and
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under- exploitation given 0 < Pr(l, =1) <1, as characterized by the fact that
oV ()
oPr(l,, =1)
period uncertainty is not immediately resolved, as characterized by the fact that
oPr(l,,=1)
oh,
paramount and the effect of 2) is minimized; in the case of even an exogenous probability
of regime shift, both effects are in play. Note that 1) would hold in the case of exogenous

arrival of information as well (e.g., information regimes such as that assumed in
Melkonyan, 2011).

< 0;and 2) the intertemporal tradeoffs in the belief dimension when past-

# 0. In the case of the competing ecosystems model, the effect in 1) is

Discussion and Conclusions

In this paper, a renewable resources model with thresholds and irreversibility was
analyzed under conditions where the decision-maker is not certain of the regime state of
the system, due to either a stochastic data generation process or the lack of observability
of the switching event. The probability of crossing the threshold is assumed to be
exogenous, and beliefs over the unknown state are modeled in a state-space Bayesian
framework, rendering the problem as a partially-observable Markov decision model. The
context extends the analysis of Polasky et al. (2011) to a more generalized treatment of
the information available to the optimizer at the time of the extraction decision. In
addition, we show that if the probability of a regime shift/hazard rate is zero, then the
specification presented here can be interpreted as a competing ecosystem model as in
Peterson, et al. (2003).

Polasky et al. (2011) show that when past regime uncertainty at time t+1 is assumed, an
exogenous probability of regime shift coupled with a systems dynamic effect (a change in
regime with no discontinuity in resource stocks) results in no change in optimal
management from the regime certainty case, but decreased exploitation when the
probability is stock-dependent. Our results showed that the former can be explained by
the lack of a tradeoff about being the agent being “wrong” in his/her beliefs; once the
stochastic crossing event either happens or does not, the decision-maker knows which
regime is prevailing, and thus there is no trade-off to make. The latter occurs because,
ceteris paribus, there is always a positive expected economic benefit to reducing the
hazard rate in accordance with the “Precautionary Principle” when the second, absorbing
regime has a lower steady-state stock level (and thus steady-state current value) than the
regime 1 certainty steady-state level. In the case of stock effect (a discontinuity in the
expected stock), there is an additional incentive to exploit before the shift, as a portion of
the stock can be destroyed and thus is not recoverable, even when regime uncertainty is
resolved.

Similarly, Carpenter et al. (1999) and Ludwig et al. (2003) argue that precaution is
always optimal in the presence of threshold uncertainty alone in a shallow-lake-type
model with reversibilities, though Brozovic and Schlenker (2011) demonstrate that this
result critically depends on a deterministic data generation process, and that precaution
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may be dominated by a countervailing effect when the uncertainty regarding the
threshold location is very high. As explained in that paper, the intuition is that as the
manager has “less control” of the system from a probabilistic standpoint, the marginal net
benefits of lower pollution loadings decreases."” In effect, this is the same incentive
facing the manager with an exogenous hazard in the renewable resource model with
observability; in each case, a lack of ability to meaningfully trade-off the potentially poor
outcome of a regime shift in the future with current actions dissipates the precautionary
incentive.

The results presented here showed that these conclusions are critically dependent on the
information regime assumed; namely, that the problem is essentially static in the belief
dimension. If instead beliefs evolve in accordance with a (possibly endogenous) updating
rule, then optimal management in the presence of an exogenous regime shift is no longer
identical to the optimal rules under certainty of regime. Rather, it was shown that stock
levels are kept lower than the regime-certainty case, and that they tend to decrease over
time until they reach the limiting (lower-stock) solution of the lower-growth regime. As
such, under persistent regime risk, optimal management is not consistent with
precautionary behavior, but rather greater levels of exploitation and lower stock levels
during the period before a true (but unknown) regime shift.

The intuition is that the learning essentially endogenizes the tradeoffs between being right
or wrong about the true regime, in conjunction with the dynamic incentive created as a
result of the updating process. In the cases presented here, the former will always result

in non-precautionary behavior given the shape of the value function, while the latter has
an ambiguous effect depending on the information regime assumed and the state of the
system. This ambiguity is demonstrated by the effects of the decision-maker’s beliefs
about regime 2 when the hazard rate is unknown, which can be non-monotonic even in
the state-transition certainty-equivalent case of ¢,, =0 Vt. As such, the initial exploitive

incentive that develops can be mitigated as the belief in no possible shift increases,
similar to the result in Brozovic and Schlenker (2011), though a complete reversal does
not appear possible.'®

From a policy standpoint, this suggests a countervailing effect to the unambiguous
precaution result in Polasky et al. (2011) when the probability of regime shift is
endogenous and there is no expected stock collapse at the time of the shift. In other
words, if as society we “know we don’t know” and operate accordingly, the relative
magnitudes of the endogenous risk effect and the uncertain regime effect will determine
if a reduction in emissions is justified, even if there is only a system dynamics effect.
This same effect would even further induce increased exploitation in the case of an

7 In these models, the manager is assumed to admit preferences that are strictly concave in the pollution
stock, thus strengthening the risk-aversion type result. In addition, it should be noted that the control action
in these models affects the probabilities of crossing/re-crossing the threshold, and thus would fall into the
class of endogenous hazard models.

18 Differences in model structure explain the difference in sign on the risk effect vs. the information effect.
The main point is that the information effect is an additional margin working against the deterministic
solution.
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exogenous probability of regime shift with a stock effect, and for much the same reason;
namely, the process governing beliefs tends to lower future ex ante expected values of the
system, increasing the incentive to extract sooner. This incentive is similar to an increase
in the discount rate, and seems especially applicable to the argument surrounding global
climate change given the uncertainty surrounding those processes.

A few notes about assumptions and possible extensions are in order. In this paper, we
assumed irreversibility over the regime switch and a risk-neutral decision-maker, as well
as well-defined probability distributions over the stochastic elements of the model. Future
research is needed to more fully explore the implications of these assumptions, as they
will undoubtedly further muddle the policy prescriptions that follow from the analysis. In
fact, in terms of climate change, well-defined probability distributions may be especially
problematic, and models which incorporate ambiguity/second-order probabilities may be
more appropriate (see, e.g., Kilbanoff et al., 2009 and Millner, et al., 2010).

In addition, our characterization of the information regime was itself grossly simplified,
with a maximum of two possible hazard rates and two possible regimes. While this
renders the problem tractable, it ignores additional information issues such as the effect
of a declining variance of an unknown parameter over a continuous prior. As model
complexity increases, however, both the analytical and numerical techniques to analyze
them become more non-standard, and the curse of dimensionality becomes a very real
limiting factor. Nevertheless, given the demonstrated importance of the structure of
information for ex ante decision-making under uncertainty, risk, and learning in
environmental and resource problems, this line of research should be extended.
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Appendix A

Equivalence of Specifications with Observability

To show that this model is a generalization of the models in Polasky et al. (2011),
consider the (relatively) simple case of a deterministic resource state-transition equation
with exogenous, known hazard rate 0 < (1—«a) <1. This is a two-state, one control,

infinite horizon, discrete time stochastic dynamic optimization problem of the form
max Z5t ph,

1 3(: t=0

ot B s, +G,(s)—h, ifl,, =0
" s +Gy(s) —hy i I, =1 (13)
0ifl, =0 & §t+1<a
171 otherwise
s, >0, 1,€(0,1)
where &' is the discount factor for period t. In this problem, the regime switches exactly
once, this switch is irreversible, and the exogenous probability of switching in each
period conditional on not having switched previously is 1—«a. As such, it is the discrete-
time analog to the exogenous regime shift with system dynamics in Polasky, et al. (2011).
The discrete-time Bellman equation takes the form
V (s,,0) = ph,+ 5[ aV (5, +G,(s) —h,0)+(L—a)V (5, +G,(s) —h.1) |
V (s,,1) = ph +6V (s, +G,(s,) —h,.1),
and is standard in that it does not use the state-space framework.

(14)

To show that the state-space specification nests this case, note that if 7, , =0, the
Bellman equation becomes

V (5,0) = ph, + SE[ V (5, +Gy(s) ~ .75, ) |1, = O]
:pht+5|: (S +G(S) ht’ +1|(St’h| 71 )) (15)
+(l-a)V (St +Gz(st)_htv77t+1,| (s hy |7Z.t,l !Gz))]

Since there is no error term on the state equations, the filtering distribution (8) reduces to
a spike at zero or one given a new piece of data s, ,, resulting in perfect prediction of l...

We can thus rewrite (15) as
V (s,,0) = ph, +§[av (s, +G,(s)—h,0)+(L-a)V (s, +Gz(st)—ht,1)], (16)
which holds not only for t=0 but also any t for which z,, =0. Similarly,
V(s,,1) = ph, +6V (s, +G,(s) —h,1). (17)

Equations (16) and (17) are equivalent to (14), thus demonstrating that the state-space
representation generalizes the irreversibility formulations used in Polasky et al. (2011).
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Equivalence of Control Rules of Exogenous, Known Hazard Model with Observability
and Regime Certainty Case assuming Systems Dynamics Effects

We now show that the optimal management of this problem is equivalent to the optimal
management in each regime, assuming that regime persists at all times in the future.

The necessary conditions of the problem, assuming either an exogenous or endogenous
hazard rate, can be derived through differentiation of

V(.7 )= max ph, + 5{[1—@, J(a(S)EVH() + (- a(s)EV?() )+, EV? ()]
with respect to the control and each state variable, with notation
EV'()=EV (s, +G;(s,) + h +&,,,i —1). Assuming no information effects (i.e.,
or

tl,) 0Ty, _ OTy.y,

oh, &, o,
conditions are

p+ 5{[1—@, ](a(st)E [—%;(')j +(1-a(s))E [—%‘:’(')B +7,,E (—%:(')j}sﬁo

t t t

=0), which is the case for observable regime shifts, these

oV (507 ) s
o,

5 {[1—@.](a'(st)Ev1(->+a(soE(a\g;(') (1+G;(st>)]—a'<st>Ev2(->+<1—a(st»E(a\g:(') (1+G;(st))n

.- (%:(')(u G;(st))j}

t

%25{—(a(st)|§vl(.) +(1-a(s)) EVZ(-)) N EVZ(-)}

(18)

oV (s, ) . o .
Note that — ~V (s,,0)-V (s,,1),and the third equation in (18) implies that
7,1

V(s,0)-V(s,1)
oo

EVZ(.): E{V (St+1'1)}z +Ev(st+Gl(St)+ht+gt+l!0)' (19)

Differentiation and substitution of (19) into the first two equations of (18) results in the
following conditions:

o {[1_@"](0{(50%_ aé;(')j* (1a(st»E(ag;(.)ij,E(a\g;(.)} o
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oV (s, m,)

0s,
5{[1_ 7,1 :I[a’(st)Evl(') +a(s)E (8\;() (1+ Gll(st))]
(8)EV() + (1_a(st))[av (st,o)/ast5;av (s.,1)/ s, N E(a\g;(.) (l+Gl’(St))m

+7T, E (8\/ (St,O)/GSt —v (S“l)/aSt +E (aVl() (1+ G{(St))Jj}
' ox 0s

t

Thus, so long as the marginal value of the renewable state in each regime is identical, and
a'(s) =0, the problem reduces to managing the system according to the most rapid

approach path for each regime. This is the result shown in Polasky et al. (2011), but
critically depends on an unrestricted harvest when switching from one regime to the other
in the case of linear harvest.

Decreased Exploitation assuming Systems Dynamics Effects and Endogenous, Known
Hazard Model with Observability

With an endogenous hazard, assuming a prior reflecting certainty over regime 1, the first-
order conditions become:

0=p-B{a(s)V,(s+G,(s)—h,0) + 1 - a(s)V,(s + G,(s) —h,0)}

20
= p—B{V,(s+G,(s) - h,0)} (20)

V,(s,0) = B[ &'(s)[V (s +G,(s) —h,0) ~V (s + G,(s) —h,1) ] +V,(s + G,(5) - ,0)(1+ G|(s)) |
(21)

At the new steady state for this regime, from (20), V,(s+G,(s) —h,0) = p/ g, if harvest is
unconstrained, and substitution into (21) yields

plp= ﬂ[a'(s) [V(s+G,(s)—h,0) -V (s+G,(s)-h,1)]+(p/B) 1+ Gl’(s))]. Moving the
non-bracketed term over yields

p/B—pA+G[(s)) = Bl a'(s)[V (s +G,(s) —h,0) -V (s + G,(s) —h,1)]]. Solving,

G/(s)= % - %[V (s+G,(s)—h,0)-V(s+G,(s)— h,l)] , S0 that marginal growth is
lower than in the original case, and thus stock levels are greater.

Increased Exploitation assuming Stock Effect and Exogenous, Known Hazard Model with
Observability

Similarly, for a stock regime shift where s
written as

.., =0if I, =1, the Bellman equation can be
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V(s,0) = ph+ Sa(s)E[V (s+G(s)—h,0)],

with first order conditions
0=p-Ba(s)E[V,(s+G(s)—h,0)] (22)

V,(s,0) = /(S)E [V (s + G(s) - h,0)] + a(S)E [V, (s + G(s) = h,0)(1+ G'(s))].  (23)

From (23), E[V,(s+G(s)—h,0)] = p/(Ba(s)) if harvest is unconstrained, and
substitution into (23) yields
V (s,0) = ,B[a’(s)E [V (s+G(s)—h,0)]+a(s)(p/Ba(s)) @+ G'(s))] .

At the steady state,
p/Ba(s) = B[ a'(S)E[V (s+G(s)—h,0)]+a(s)(p/ Ba(s)) (1+G'(s)) ] . Note that if ais
constant and doesn’t depend on's, then 1/ 8 =[a(1+G'(s))], or

1/(ef) =1+ G’(s))]—>G’(s)=%. Furthermore, 1;;ﬂ >% so long as a <1.

As such, G'(s) is positive and greater in magnitude than the case where there is no

hazard, suggesting that the steady state stock level is lower and exploitation is higher.
The intuition, as in Polasky et al. (2011), is that the hazard term increases the discount
rate.

Ambiguous Exploitation assuming Stock Effect and Endogenous, Known Hazard Model
with Observability

In the case of an endogenous shift (actually, the more general case which naturally

reduces to above when «'(s) =0), p/B—pa(S)EV()]-a(s)p
a(s)p
1-p

ambiguous compared to 7 This term can be rewritten as

1-a(s)B Pa(S)E[V()]
a(s)p a(s)p

=G'(s), which is

=G/'(s) . The closer a'(s) is to zero, ceteris paribus, the more

likely that the LHS is greater than % and thus the exploitation incentive is greater.
Note as well that steady state value is V (s,0) = _PGE) :
1-pa(s)
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Table I: Parameter Values used in Numerical Analysis

Parameter Description Value(s)
o One-period discount factor 0.95
p Price of resource stock 1
a Probability of No Regime Shift (1-hazard) (1,0.9)

Mean of Error on State Transition 0
Std. Dev. of Error on State Transition 0.0250
k, Carrying Capacity in Regime 1[G, (k,)=0] 1
ks Carrying Capacity in Regime 2 [G, (k2 )=01] 07
Number of Grid Points in Each State Dimension 11
Number of Grid Points in Control Dimension 201
Number of Quadrature Points for Integration 5
State Bounds on Physical State (0,1)

Note that G, (k,)>0 and G, (k,)<0.
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Figure 1: Optimal Value Functions for the Competing Ecosystems Model (Panel I)
and Exogenous, Known Hazard Model without Observability (Panel II)
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Figure 2: Simulated Optimal Paths for Competing Ecosystems Model, Error Terms

on Transition Set Equal to Zero
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Figure 3: Simulated Optimal Paths for Regime Shift Model with Known, Exogenous
Hazard = 0.1, Error Terms on Transition Set Equal to Zero
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Figure 4: Simulated Optimal Paths for Regime Shift Model with Unknown,
Exogenous Hazard = (0,0.1), Error Terms on Transition Set Equal to Zero
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