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Abstract: 
 
Especially in systems characterized by thresholds and irreversibilities, the ex ante 
information available to a decision-maker has the potential to significantly affect optimal 
management. Most past explorations of regime shifts have assumed that the optimizing 
agent can either directly or indirectly observe or infer the past regime with certainty, 
leading to specific characterizations of cases when management is precautionary or more 
exploitive relative to the no-threshold cases. In this paper, we relax the assumption of 
resolution of uncertainty, and show that the information effects result in qualitatively 
different prescriptions for optimal management. In particular, even in the case of an 
exogenous probability of a regime shift, the strategy is no longer to manage according to 
the regime certainty solution, but rather to be non-precautionary. As such, persistent 
regime risk has a similar effect to an increase in the discount rate, but the effects are 
endogenous and may be complex. 
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Introduction 
 
Management of complex ecosystems is often fundamentally a problem of choosing 
actions in the face of large degrees of uncertainty distinct from mere stochasticity of the 
underlying physical processes that generate environmental outcomes. For example, 
managers may have competing theories regarding the underlying structure of the system, 
such as the shallow lakes model in Peterson, et al. (2003), may be uncertain about a key 
structural parameter or parameters, as in the climate change model considered by Kelly 
and Kolstad (1999), or may be subject to a partially-observable process in which an 
underlying state cannot be observed, as in the invasive species scenario considered by 
Haight and Polasky (2010). Recognizing this complexity, ecologists have proposed the 
paradigm of “adaptive management”, under which the uncertainty of the underlying 
dynamic process is recognized explicitly and management is prescribed as an 
“experimental approach that allows policy makers to learn from their mistakes and apply 
those lessons...” in the future (Thrower and Martinez, 2000, p. 88). 
 
The adaptive management approach thus suggests the use of observable data to update 
expectations about potentially uncertain parameters or states in the dynamic system as 
information is generated along a management path (Ludwig and Walters, 1982). In 
essence, problems of this sort essentially introduce a new margin over which managers 
must trade off; namely, the potential for endogenous learning about the future through 
deviations in the management strategies that would have otherwise been “optimal” if 
current beliefs were to persist. In this manner, the manager can experiment by taking 
actions that generate a beneficial data series in terms of information content, and process 
this information to reduce uncertainty about the state of the system in the future, thus 
providing a tangible economic benefit (Bond and Loomis, 2009; Bond, 2010). Examples 
and the history of reasonably simple models of parametric uncertainty in primarily a 
regression context can be found in Kendrick (2005), with Wieland (2000) providing a 
dynamic programming application. 
 
In systems characterized by thresholds and irreversibilities, however, the uncertainty may 
be even deeper, in that the optimizing agent(s) may not know for certain which regime is 
generating the ultimate outcomes, and the potential for experimentation and data 
generation may be limited by the fact that there is an “absorbing process” that cannot 
change once the threshold is crossed (or that can switch back to an original regime 
according to some other process). Nevertheless, endogenous learning about the potential 
and existence of a regime shift is possible, and management that incorporates this 
learning will most likely result in outcomes that dominate strategies that assume beliefs 
about the threshold are fixed (at least ex ante). Recent work has shed insight into optimal 
management strategies when the information regime is constant for these types of 
problems, but the implications of endogenous learning about the unknowns has not been 
explored (Brozovic and Schlenker, 2011; Polasky, et al. 2011). Of particular interest are 
the incentives related to precautionary behavior when parameter values are uncertain or 
state variable values are unknown.  
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This paper presents an analysis of  endogenous learning in a resource management 
models that under some parameterizations admits thresholds and irreversibilities with an 
exogenous probability of regime shift. The model is stochastic in the biological 
processes, suggesting that regime uncertainty is persistent along the planning horizon, but 
a Bayesian learning process is modeled to allow for updating of beliefs. The framework 
is a discrete-time probabilistic state space model, perhaps familiar to most readers in the 
particular case of linear equations and independent Gaussian noise as the Kalman filter 
(Kalman, 1960). The state-space model is used to model the evolution of beliefs related 
to the unobservable components (either parameters or physical states) of the optimization 
problem, and is incorporated into the dynamic program to allow for active learning about 
the system. As seen below, several papers in the literature incorporate a state-space 
approach to update beliefs over either unknown parameters or unknown states; here, we 
allow for both. 
 
There is a fairly extensive literature dealing with the effects of regime shifts on optimal 
management in a variety of ecosystems, though most include discontinuities in the 
expected value of the state variable once a threshold is crossed or are deterministic with 
respect to the regime shift (Reed, 1988; Clarke and Reed, 1994; Tsur and Zemel, 1996; 
Nævdal, 2003; Brozovic and Schlenker, 2011; Polasky, et al., 2011).1 In this paper, we 
model a change in underlying biophysical process once a threshold is reached, rather than 
a discrete shock to the stock, as well as a stochastic, exogenous regime shift.2 As such, 
we build on the research of Polasky, et al. (2011), who use a hazard rate in continuous 
time to analyze a model in which the shift in biological regime is a random variable, but 
the process over time is otherwise deterministic (i.e., there is no error term on the 
equation of motion on the resource stock). In a complementary paper, Brozovic and 
Schlenker (2011) examine the effects of uncertainty of threshold location on the optimal 
management of a stochastic shallow lake/pollution loading model. Both note that that 
while useful, endogenous learning is precluded from their respective specifications. The 
method and examples presented here explicitly address the learning framework while 
nesting the more restrictive information assumptions in these previous papers. 
 
This paper contributes to the literature as follows. First, we contribute to the literature on 
thresholds and regime shifts by nesting a few of the basic models of system dynamic 
shifts into a broader framework that accounts for more realistic uncertainty regimes. In 
particular, we use an unobservable state variable in conjunction with a hazard parameter 
(rather than function) to model the probability of an exogenous regime shift, and show 
that the results in the previous literature are critically dependent on the resolution of one-
period behind uncertainty in each subsequent time step.  Second, we show how the state-
space methodology can be used to model parametric uncertainty, partially-observable 
Markov decision processes, or both, depending on the problem at hand. In so doing, we 
highlight the fact that assumptions regarding the information regime (or what the 

                                                 
1 A few examples of  such ecosystems include freshwater lakes, coral reefs, grasslands and  forests (both 
within a system and between systems), El Nino/La Nina-type ocean events, and climate change, just to 
name a few. See Scheffer, et al. (2001) for an excellent review. 
2 The assumption of an exogenous regime shift allows for isolation of  the incentive effects associated with 
the  information  regime of the problem without confounding the incentives of an endogenous hazard.  
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optimizer knows, when, and how that information is used) can influence optimal 
management strategies, and that endogenous adaptive management strategies can be 
identified ex ante. This approach is fairly general, though not novel, and should be useful 
in a number of exercises that admit complicated uncertainty structures. Finally, our 
numeric results illustrate the feasibility of the approach and some key results of differing 
assumptions on a particular specification of a renewable resource management problem 
with exogenous regime shift probabilities. 
 
The next section discusses the parameterizations that can represent alternative 
information regimes in dynamic problems, with a particular emphasis on a renewable 
resource model with a potential “systems dynamic effect” , defined as a regime shift 
characterized by continuity of stock levels at the time of shift as termed by Polasky, et al. 
(2011). We then briefly review the state space methodology that can be used to model 
Bayesian updating of beliefs over the uncertain parameters or states of the problem, and 
show how this applies to the renewable resource model. Next, three numerical 
simulations that vary parameter values and information regimes are presented: a 
competing ecosystems model, a model of regime shift with known exogenous hazard, and 
a regime shift model with unknown exogenous hazard. We discuss the incentives for 
precautionary behavior embedded in each. The final section provides some context for 
the results in terms of prior literature, and suggests some avenues for future research. 
 
Treatment of Information in Dynamic Resource Management Models  
 
A key component in models of complex systems is the treatment of the information 
regime under which the manager is operating; in other words, what does the manager 
know, and when does s/he know it? Recently, the natural resource economics literature 
has begun to incorporate these ideas by augmenting the state space of dynamic programs 
to include transition equations for both the resource itself and the beliefs about the state 
of the system (Walters and Holling, 1990). Broadly termed “adaptive control”-type 
models, applications have included fisheries (Ludwig and Walters, 1982), non-point 
source pollution (Kaplan et al., 2003), climate change (Kelly and Kolstad, 1999), air 
pollution (Cunha-e-Sa and Santos, 2008), invasive species (Springborn, 2008), shallow 
lakes (Peterson et al., 2003; Bond and Loomis, 2009), and general environmental policy 
(Brock and Carpenter, 2007; Bond, 2010). Most of these cases could be classified as 
problems of parametric uncertainty, in which one or more parameters of a stochastic state 
transition equation is not known to the manager, but rather characterized by a distribution 
which is updated as more data about the system becomes available. 
 
In the case of thresholds and irreversibilities, however, the problem is potentially even 
more complicated, in that the unknown quantities are not parameters, but rather the 
values of the state of the dynamic system itself. Such partially-observable Markov 
systems are more rare in the literature (Haight and Polasky 2010 is a notable exception), 
but represent a more realistic setting faced by real-world managers, in which the 
evolution of the system is stochastic and there is uncertainty about the state-transition 
mechanisms that govern it, including both key states and parameters of the system. 
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To illustrate the potential information regimes, consider the discrete-time analog to the 
model in Polasky, et al. (2011), in which an optimizing agent maximizes the net present 
value of (constant) net price times harvest in each period t, ,tph subject to the evolution of 

a stochastic stock evolution process with i.i.d. zero mean and constant variance errors: 
 1 1( ) ,  1,2,t t i t t ts s G s h i       (1) 

and the standard initial conditions on the stock level. Assume that before the regime shift, 

1( ) ( ),i t tG s G s  while 2( ) ( )i t tG s G s thereafter, 1ts  is observable in period t+1, and these 

processes are known with certainty.3 We assume 1 2( ) ( )t tG s G s and 

1 2( ) ( ) 0t t tG s G s s    , with ( )iG  taking a logistic form and carrying capacity for 

regime 1 greater than that for regime 2. In a departure from the original model, assume an 
additional indicator state variable {0,1}tI   that denotes if a regime change has occurred, 

governed by the process 

 
 1

1

0  0 and  , ;
,

1 
t t t

t

if I f s
I

otherwise

 


 
 


β
 (2) 

with t  ~ iid uniform(0,1),  and β are parameters, and ( )f   is a function specific to the 

problem under consideration.4  
 
There are a variety of structural and information regimes that might be assumed for this 
problem. For example, assume that  1 1, ;t t tf s   β , so that the hazard rate is defined 

as (1 ) , and is interpreted as the exogenous probability of a shift in regime from 

regime 1 ( 1( )G  ) to regime 2 ( 2 ( )G  ) when the true data generation process is regime 1. 

At least four possible information regimes can be assumed, depending on the 
assumptions regarding the ability to observe 1t   and whether or not  is known. 

  
In the case of known hazard rate with observability of 1t  , the problem is stochastic in 

the regime switch but fully observable otherwise, and is essentially an identical 
information treatment as the case of exogenous probability of regime shift with system 
dynamics effect in Polasky, et al. (2011). In that model, the state equation on the resource 
stock is assumed deterministic, but note that so long as 1ts  is observable, the lack of a 

stochastic process corresponds to the assumption of (perfect) observability of the regime 
shift. As such, in this treatment, the model is a straightforward stochastic dynamic 
programming problem with 2 states, and there is no need to include beliefs in the state 
space (though it can be modeled as such, as seen in the next section). 
 

                                                 
3 The assumption that the net growth functions are known with certainly can be relaxed given the 
framework presented here. Also note that we assume no discontinuity in the state in order to focus on the 
treatment of information in the problem. Such discontinuities could be incorporated through, say, including 

an additional value of the discrete state 
t

I that is associated with the discontinuity, and a physical state 

transition that accounts for the stock change at that level. 
4 In other words, 
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Retaining the assumption of known  but relaxing the observability assumption on the 
regime switch results in a model with no parametric uncertainty in the adaptive control 
sense, but with an unobservable state variable tI , since the resource stock evolves 

stochastically and is the only observed state of the system from period to period. We thus 
have a partially-observable Markov sequence with constant, known parameters, and 
assume that a manager’s optimal actions will depend on her beliefs about the current (and 
future) growth regimes. As such, we augment the state space to include the probability 
that the regime switched, and use an updating rule to describe the evolution of these 
beliefs.  
 
If, on the other hand,  is unknown, regardless of the observability of  1t  , we have a 

case of both parametric uncertainty and a partially-observable Markov sequence, as the 
error term on the resource stock transition equation precludes the manager from knowing 
for sure which regime is operative. This is not to say, however, that the problems are 
equivalent, since the ability to observe the random draw governing the stochastics of the 
regime shift provides additional information over which to update the belief space, which 
now consists of the joint probability that the regime shift has occurred and the value of 
the unknown parameter. 
 
These same information regimes are possible if one allows for various endogenous 
specifications of the probability of the regime shift (e.g., ,ts   

1 ( ; ),  0 ( ; ) 1,t t tf s f s    β β  etc...), degrees of irreversibility within the problem, 

and/or other extensions depending on the problem. For example, in the case of a purely 
stochastic process governing a switch “back”, one may rewrite the transition equation 
related to the indicator as  

 
    1 1

1

0  0 and  , ;  or 1 and  
,

1 

t t t t t
t

if I f s I
I

otherwise

    


     


β
 (3) 

where ~ (0,1)t uniform  and the probability of a reverse regime shift is given by 

0 1.   The information regime in this case is defined by the assumptions regarding 
the nature of the parameter vector ( , , ) β (with elements either known and constant or 

unknown) and the observability of the stochastic elements of the problem 1 1( , )t t   . As 

shown below, the information regime could have considerable effects on the optimal 
management plan, just as the endogeneity of the regime switch did in Polasky, et al. 
(2010) or the variance associated with the unknown threshold did in Brozovic and 
Schlenker (2011). However, to fix ideas in what follows, we assume 1( ) tf    and  

0  , rendering regime 2 the absorbing state and the regime shift irreversible. 
  
State Space Methodology 
 
This section demonstrates a unifying state-space filtering framework for treatment of 
alternative information regimes in resource management problems, and provides 
examples within the context of exogenous hazards in the regime-switching renewable 
resource problem above. 
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A Primer on State Space Modeling5 
 
A discrete-time state space model is a representation of a Bayesian probabilistic process 
in which inferences about unobserved “states” of the filtering system, ntz  , are made 

through processing of observable information .mty  6 The model is defined by  

 
 
 

1 1

1 1 1

~

~ ,
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g

 

  

t t

t t t

z z | z

y y | z
 (4) 

where  1g t tz | z  describes the dynamic process of the unobservable quantities and 

 1 1g  t ty | z  describes the distribution of the observables conditional on the 

contemporaneous values of the unobservables. It is assumed that (4) is a Markov process, 
and thus the history of the system through time t  is completely characterized by tz  and 

.ty  

 
This type of model can be used in the context of dynamic programming models with 
partially-observable Markov processes, parametric uncertainty, or both, to model the 
evolution of beliefs about the unknown quantities as a state transition equation. To do so, 
define the predictive distribution of 1tz as 

      1 1 ,g g g d  t t t t t t tz | y z | z z | y z  (5) 

where  g t tz | y  is the prior over tz at time t (perhaps from a previous update of the 

system). Equation (5) is known as the Chapman-Kolmogorov equation, which describes 
the dynamics of the state of the system conditional on what can be observed at time t, and 
is essentially a marginal distribution obtained by the integration of the conditional 
distribution  1g t tz | z times the prior. 

 
Once the predictive distribution is obtained, Bayes’ rule can be used to update the prior 
and obtain the new distribution of the unobservables 1tz  conditional on the observed 

data 1ty : 

    
 

1 1 1
1 1

1 1 1 1

( )
.

( )

g g
g

g g d
  

 
   




t t t t
t t

t t t t t

y | z z | y
z | y

y | z z | y z
 (6) 

 
Equation (6), also known as the filtering distribution, thus provides an implicit equation 
that can be used to update distributional information about the unobservable parameters 
or dynamic programming state variables between time periods through modeling the 

                                                 
5 The general framework described here relies heavily on Särkkä (2006). The reader is referred to this 
resource for additional details. 
6 The terminology “state of the filtering system” is used as in the state-space literature, where the “state” is 
a (possibly unobservable) parameter value and the measurements are the observable features of the system. 
From a dynamic programming standpoint, both st

 and It
  are states of the program. 
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evolution of the sufficient statistics 1tθ  of the distribution  1 1g  t tz | y . We illustrate 

the use of the general model in the context of thresholds and irreversibilities below. 
 
Modeling an Exogenous, Known Hazard 
 
Consider the case where  g t tz | y represents the probability that the regime has switched 

given the contemporaneous data on the renewable stock, and define the prior at time t as  
Pr( 1 | ) .t t tI s    As will be shown, we can model both 1t   observable or unobservable 

and   known or unknown using the state space specification and filtering methodology.  
 
Begin with the case of   known, and let the state of the filtering system in period t+1 be 

1tI  , with observable measurements 1 1ts s  in each time period.7 Our objective from 

filtering is to find 1 0 1Pr( 1 | )t tI s s   , which is trivial in the case of perfect observation. 

Nevertheless, it is instructive to set up the filter to trace through the predictive and 
filtering steps. 
 
The predictive distribution is given by 1 0Pr( 1 | ),t tI s s    and the filtering distribution 

as 1 0 1Pr( 1 | ).t tI s s    The former is defined by  

 
1 0

1 1

1 1

Pr( 1 | )

Pr( 0) Pr( 1 | 0) Pr( 1) Pr( 1 | 1)

(1 ) Pr( 1 | 0) Pr( 1 | 1).

t t

t t t t t t

t t t t t t

I s s

I I I I I I

I I I I 



 

 


       
      


 (7) 

 

1Pr( 1 | 1) 1t tI I    for the purely irreversible case, regardless of observability of the 

process governing the switch. In the case of purely exogenous known hazard with 
observable 1t  , 1 0 1 1Pr( 1 | 0, ) Pr( 1 | 0, ),  t t t t t tI I s s I I        and thus 

1 1Pr( 1 | 0, ) {0,1}.t t tI I     As such, 1 0Pr( 1 | ) { ,1}t t tI s s    depending on the 

realization of the stochastic term. Note that uncertainty over the unknown state is 
perfectly resolved if 1 ,t    in which case a switch has certainly happened; otherwise, 

the predictive distribution is equal to the prior. However, if 1t  cannot be observed 

directly, 1 00 Pr( 1 | ) (1 )(1 ) 1,t t t tI s s          with strict inequalities so long as 

0 1  . In the presence of confounding errors on the resource transition equation, then, 
it is possible that the maximizing agent does not know if the regime has shifted or not. 
 
Regardless of the assumption on observability of the process governing the shift, the 
filtering distribution can be used to obtain the posterior of the distribution once the new 
data arrives in the form of 1ts  . Through straightforward application of Bayes’ rule,  

                                                 
7 It is not necessary to assume measurement in each time period, though this assumption is maintained 
throughout the paper.  
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 1 1 1 0
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1 1 1 0
{0,1}

( | 1) Pr( 1 | )
Pr( 1 | ) ,

( | ) Pr( | )
t t t t

t t
t t t t
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g s I I s s
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g s I a I a s s
  

 
  



 
 

 



 (8) 

where ( )g   is the distribution (or kernel of the distribution) of 1ts   and 1 1( | 1)t tg s I    is 

the likelihood of observing 1ts   conditional on 1 1.tI    With observability, (8) implies 

that 1 0 1Pr( 1 | ) 1t tI s s   if 1 ,t   and the data adds no additional information. If 

1t   or with unobservable 1t  , however, this is no longer strictly the case, and 

Bayes’ rule gives an efficient information processing rule for modeling the evolution of 
beliefs about the state of the system, dependent on all observations up to time t+1 
(perhaps embodied by the priors in the case of t=1), the (assumed known) hazard rate, 
and the (assumed known) distribution of 1.t 

8 

 
Equations (7) and (8) thus provide the necessary information to create a difference 
equation that describes the evolution of t over the course of the optimization problem by 

assuming that the posterior distribution in (8) becomes the new prior before each new 
decision is made.  
 
Modeling an Exogenous, Unknown Hazard 
 
The next layer of complexity to consider is an unknown hazard rate; that is,  in (2) is 
not known with certainty, but rather can be characterized by a (discrete or continuous) 
probability distribution function ( ).g   As in the last section, the objective is to find an 
expression for the (now bivariate) filtering distribution 

1 1 0 1( , | ),  {0,1}.t t tg I j s s j    The notation makes clear that in this case, the model 

admits both a partially-observable dynamic process in physical ( ts ) space and parametric 

uncertainty through the unknown .  
 
Begin with a joint prior distribution over both parameters in time t; say, 

 , , , ,  {0,1},I j t tg I j j      and denote the sufficient statistics of this distribution .tθ  

As before, we use the filtering mechanism to create the probability updating equation

1 1 0 1( , | )t t tg I j s s     using the predictive and filtering distributions. The former now 

takes the form 

 1 1 0 , , 1 1
{0,1}

( , | ) ( , | , , ) ,t t t I j t t t t t t
k

g I j s s g I j I k da       


      (9) 

while the latter generalizes to 

 0 1 1 1 1 1 0
1 1 0 1

0 1 1 1 1 1 0 1
{0,1}

( | , ) ( , | )
( , | ) .

( | , ) ( , | )
t t t t t t

t t t

t t t t t t t
k

g s s I j g I j s s
g I j s s

g s s I k g I k s s d

 
  

    
  

     


 
 

  
 
 

(10) 

                                                 
8 Note that the case of unobserved 

t
 and deterministic evolution of the resource is also nested within this 

framework, as in this case the likelihood 
1 1

( | 1) {0,1}.
t t

g s I
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In the case of a discrete number of support points on 1t  , the integration becomes 

summation over those points.  
 
There are basically no fundamental conceptual differences between (10) and (8), save for 
the addition of an unknown (possibly continuous) random variable  which adds some 
complexity to the relationships, and an application to an endogenous hazard rate is 
straightforward.9 In some cases, there may be closed form solutions to (10), in that the 
evolution of the sufficient statistics of 1 1 0 1( , | )t t tg I j s s     can be modeled 

explicitly. Examples include cases where the distributions of  and 1t  are conjugate, 

and thus the resultant posterior is of identifiable form; for example, Gaussian priors 
would enable the use of a slightly modified Kalman filter that admits closed-form 
solutions, as would the assumption of discrete distribution on the hazard rate. In the case 
of lack of closed-form solutions, numerical techniques may be used to model the 
evolution of belief space, so long as sufficient statistics could be identified. There is little 
doubt that such techniques are generally complicated (and suffer from the curse of 
dimensionality when used in a dynamic programming context), but the advance of 
computational methods and associated computing speeds have increased the feasible set 
of problems that can be solved this way (e.g., Rust, 1997; Han et al., 2006). In addition, 
significant insights might be gained from simple problems that focus on a discrete belief 
space. It is to such examples that we now turn, with a focus on the implications of these 
assumptions on precautionary behavior within the renewable resource model. 
 
Numerical Examples 
In most cases, analytical insight into the more complicated of these problems is not 
likely, especially given the large expansion of the state space associated with the 
introduction of the joint priors in belief space. Even using modern numerical 
approximation methods such as flexible polynomial forms for the unknown value 
function, may prove taxing for realistic problems (Judd 1999, Miranda and Fackler, 
2002), especially given the natural probabilistic restrictions on the state space. Here, 
however, we restrict attention to relatively simple problems where basic methods are 
feasible.10 In addition, because analytical solutions to a subset of these problems are 
possible, the numerical results of the restricted models were externally validated.  
 
In order to explore the effects of non-observability and parametric uncertainty on the 
optimal management of the renewable resource three stochastic models are presented 
under alternative parameterizations and information assumptions. All take the form: 

                                                 
9 Recall that in a Bayesian rather than frequentist framework, the underlying true parameter is interpreted as 
random. 
10 In particular, we use a linear splines and discretized controls over the state space in each case, resulting 
in rather crude but comparable approximations to the true value function. The numerical models were 
coded using the COMPECON toolbox of Miranda and Fackler (2002). The author is grateful to Paul 
Fackler for sharing his code for building the simplex in the model with four state variables. 
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In each case, we assume parameter values as in Table I, with growth in each regime 

assumed to be logistic and occurring after harvest is made: 
1

1 ( ) ( )i t t t t
i

G s h s h
k

 
    
 

.11  The assumption of an unknown tI is maintained, with differences in each model 

defined by alternative assumptions over  , the parameter which determines the 
probability of a regime shift/hazard rate. Additionally, we assume that the decision-maker 
in the problem updates over the unknown distributions using the state-space framework 
presented in the previous section.12 
 
Competing Ecosystems Model 
The first specification assumes a known 1,  which implies stationary of regime over 
the planning horizon. As such, it is essentially a competing ecosystems model, in which 
the decision maker may be unsure of which state transition regime is operative. This case 
is presented to illustrate the incentives related to endogenous learning without 
confounding the incentives related to the regime shift. 
 
 The Bellman equation becomes  
         1 1 1 1 1 2 1 2, max 1 ( ), ( ) ( ), ( ) ,

t
t t t t t t t t t

h
V s ph E V s G G E V s G G                  (11) 

where the notation indicates the dependence of the next-period state variables on the 
assumed growth regime, which in turn depends on stock levels and harvest at time t. In 
addition, beliefs depend on the prior belief state in t as well.  
 
Figure 1 presents the approximate value function for this problem. Given the nature of 
the information updating process, beliefs at the limits (i.e., 0t  and 1t  ) do not 

update under any realizations of the future stock, and thus  ,0tV s and  ,1tV s  are 

equivalent to the value functions under regime certainty, with corresponding steady-state 
stock and control values of approximately (0.72, 0.25) and (0.52, 0.175), respectively. 
For stock levels greater than the steady-state in each case, the value functions are linearly 
increasing in the stock with identical slopes, a result of the assumption that instantaneous 

                                                 
11 Numerically, the assumption of growth after harvest simplifies coding given the natural non-negativity of 
stocks. This does change steady-state values relative to logistic growth in st

 alone, but does not alter the 
incentives in each information regime. 
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net benefits are linear in harvest. For stock levels less than the steady-state, the value 
function is concave as a result of the assumptions on the growth function and the non-
negativity  constraint on harvest. In these cases of known regime, the optimal solution is 
a most-rapid approach path (MRAP) that drives the stock to the steady-state level as soon 
as possible (immediately if the starting stock level is greater than the steady state).  
 
For intermediate beliefs over the true regime, the value function is similarly shaped with 
respect to the stock, but is scaled up or down in accordance with the linear weights in the 
Bellman equation. The intuition is that in the presence of uncertainty over the true 
regime, there is a trade-off in potentially lost benefits if the decision-maker operates 
according to, say, regime 1 certainty, but the system is characterized by regime 2. As 
such, the ex ante expected value is decreasing in t , as is the point in stock space where 

the value function turns linear. Ceteris paribus, then, one would expect optimal control 
and stock values to increase as the belief that regime 1 is the true regime is strengthened. 
These beliefs are updated based on the observed stock in each period, thus endogenizing 
the probabilities on the right-hand side of (11) and changing the nature of the solution 
from a MRAP to a more gradual driving of the stock towards the levels associated with 
the limiting beliefs. 
 
This is confirmed in the simulations presented in Figure 2, which depict the optimal paths 
corresponding to 1 0 t t     for cases in which initial beliefs are incorrect relative to the 

true regime, with starting stock levels equal to 0.5.13 In panel I, the true data generation 
regime has growth  1G   with 0 0.99,  while panel II assumes growth regime  2G   

with 0 0.01.  In each case, the optimal control in the first period is essentially identical 

to the regime certainty case, which (were the beliefs true) would result in driving the 
resource stock to the corresponding steady state level. However, since the true regime is 
not consistent with beliefs, this results in stock levels in period 2 to be high (relative to 
expectations) in panel I, and low in panel II. Learning from these observations, the 
decision-maker updates probabilities accordingly, placing slightly more weight on the 
true regime, and subsequently acts accordingly.  
 
The end result for panel I are control and resource stock paths that are slowly increasing 
towards the steady state levels for regime 1 as the endogenized weights in (11) adjust 
towards the true value. The speed of adjustment is directly related to the size of the 
adjustment in belief space, as can be seen by the increased slopes on the control and stock 
paths as the absolute value of the slope of the belief path increases. In panel II, since the 
initial control based on incorrect beliefs drove the stock path higher than the steady-state 
level associated with  2G  , the stock level is gradually declining. Note, however, that as 

in panel I, extraction is increasing over the planning horizon. The explanation is that the 
positive relationship between extraction and t conditional on the stock level dominates 

                                                 
13 If initial beliefs were essentially correct, the paths would be numerically indistinguishable from the 
regime certainty case. Intermediate beliefs produce state and control paths that fall in between these polar 
cases. 
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the positive relationship between the extraction and the stock level conditional on t , 

primarily due to the rapidity of the updating of beliefs. 
 
Known, Exogenous Hazard 
 
The second model assumes 0 1,  and that the decision-maker knows the hazard rate 
(1 )  that determines the probability of a regime shift from regime 1 to regime 2. If one 

assumes that either a) 1t  is observable or b) t+1 0  and this fact is known, the model is 

equivalent to the exogenous probability of regime shift model in Polasky, et al. (2011) 
(see Appendix A). In this case, the optimal solution assuming an initial state 0 0I  is for 

the manager to apply the MRAP solution in the regime 1 certainty solution; in other 
words, a known, exogenous hazard with observability over the regime in time t does not 
affect optimal management.14  
 
Our insight here is that this result is a consequence of a) the equivalence of the marginal 
value of a unit of stock at the steady-state of each regime due to the linearity of net 
benefits with respect to harvest; and b) the resolution of uncertainty over the operative 
regime in time period t from the standpoint of time period t+1. Starting with the latter, the 
assumption that the uncertainty about t is resolved in the subsequent period implies that 
the belief updating process is independent of the control variable, and that subsequent 
weights on each regime will be either 1 0t   or 1 1.t   As such, there is no dynamic 

trade-off to be made in the belief dimension; that is, from the perspective of time t, the 
decision-maker need not trade off between decisions today and value differences induced 
by differences in beliefs tomorrow (as documented in the previous subsection). Coupled 
with the fact that the marginal value of increasing ts is equivalent in each regime, it 

makes no difference to the decision maker at the control margin if the system is currently 
in regime 1 or regime 2 when 0t  , as there is no penalty for being wrong given the 

resolution of uncertainty, and thus no trade-off and no change in behavior. 
 
If the deterministic or observability conditions are not met, however, this result no longer 
holds. Using the state-space specification of this now partially-observable Markov 
decision model, the Bellman equation for this problem becomes 

        
  

1 1 1 1 1 2 1 2

1 2 1 2

, max 1 ( ), ( ) (1 ) ( ), ( )

( ), ( ) ,

t
t t t t t t t t

h

t t t

V s ph E V s G G E V s G G

E V s G G

      

 

   

 

          

   
 

and the operative regime at any time period (save perhaps t=0) is not known. Just as in 
the previous section, the probability weights t are now endogenized, are no longer 

independent of ht, and will change as decisions are made and beliefs updated along a 

                                                 
14 Appendix A also documents the main results in Polasky, et al. (2011) using the indicator state-variable 
framework. 
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management path.15 Compared to the competing ecosystems model, however, the 
predictive distribution associated with the unknown indicator state will cause the 
expectation of next-period beliefs 1t  to increase given that 0 1,  and thus ex ante 

values at a particular physical/belief state will be lower than in the previous case (see 
panel II in Figure 1). 
 
Figure 3 shows the optimal path in this case, again assuming 1 0 t t     with 0 0  and 

0 0.5,s   with the true regime starting with 0 0I  and shifting in period t=26. The first 

item of note is that relative to the regime 1 certainty case, the optimal control in the first 
period increases from 0.025 to 0.045, suggesting that the optimal initial decision is to 
drive the resource stock level lower than the regime 1 certainty case. The reason is that 
unless there is a strong negative shock to the resource, 1t   will increase, and there 

continues to be a positive relationship between extraction and  to account for the 
optimality of a lower steady state under regime 2 growth. This manifests itself in the 
second argument of the value function, as the agent takes into account the additional 
information margin. Even if there remains an equivalence of the marginal value of the 
state ts , as there would be if  0,t  the agent must trade off instantaneous benefits today 

with the (likely lower) expected values of the system tomorrow given the change in 
expected beliefs, and thus the problem becomes truly dynamic in the belief dimension. In 
this sense, the optimal initial control is non-precautionary, even though the probability of 
a regime shift is exogenous. 
 
Continuing along the optimal path, given the assumptions of the simulation, the state path 
gradually declines with the control value until such time as the regime shifts. Unlike the 
competing ecosystems case, then, the positive relationship between extraction and t
conditional on the stock level is dominated by the positive relationship between the 
extraction and the stock level conditional on t . Note that the belief path is concave with 

respect to time, contributing to this result. Following the regime shift in t=26, there is a 
discrete jump downwards in both the state and control path as the observation of the 
resultant (lower) state causes t to increase relatively rapidly. At this point in the 

simulation, the belief in regime 2 is relatively high (~0.81), which results in quick 
(downward) convergence to the steady-state solution for regime 2, which persists for the 
remainder of the simulation as t reaches the limit belief of 1 as .t  16  

 

                                                 
15 Note that regardless of the source of information or the updating rule used by the decision-maker, so long 
as beliefs over the unknown state differ from time period to time period, the control decision will change. 
This is consistent with the model assuming observability...if beliefs change from regime 1 to regime 2 
between t and t+1, ht and ht+1 differ. 
16 Additional simulations (not shown) confirm this qualitative pattern of results when the regime shift 
occurs at different times over the planning horizon. Differences occur in the rapidity of convergence of 
beliefs and the amount of time it takes the resource state/control variables to reach the regime 2 steady-state 
level as a result of the shift taking place when beliefs in regime 1 are relatively stronger than in the 
presented simulation. 
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In a case where the regime does not shift despite the exogenous hazard (not shown), the 
qualitative state, control, and belief paths are similar, but are smooth given the lack of a 
change in the data generation process. One key difference, however, is that the state and 
control variables converge to a higher level even when the belief in regime 2 is very close 
to one, as growth in the resource stock is still governed by 1( )G , yet the optimal control 

rule under this belief is to extract at a higher level in an attempt to drive the state variable 
to the regime 2 certainty steady state. Interestingly, this is a case in which the limiting 
belief will (in a proababilistic sense) ultimately be “correct”, i.e., lim 1,t

t
I


 but the belief 

for any finite t is incorrect in that t is (infinitely) close to one yet the true data generating 

regime is consistent with 0.t   

 
Unknown, Exogenous Hazard 
 
The final model illustrated here assumes that  can take on one of two distinct values, 
say 1 2{ , },   but the decision-maker is uncertain which is the true value. Let

1 1 20, , 1, , 0, ,( , , ).I t I t I t            tθ The Bellman equation for this problem contains four 

state variables, and takes the form 
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 (12) 

where the last prior probability is calculated as 
1 1 20, , 1, , 0, ,(1 ).I t I t I t                The 

specific form of (12) is very similar to the model in the previous subsection, but 
conditioned on the values of the unknown hazard parameter. In the case of 1,tI   the 

expectation over the unknowns is independent of  , since it is known that only regime 2 
growth is possible.  
 
A priori, one might expect that relaxing the assumption of a known hazard rate may not 
affect the results given that there is no means for the decision-maker to manipulate the 
system and learn about this parameter before a regime shift. However, as shown below, 
the introduction of this parametric uncertainty has significant consequences for the 
evolution of beliefs about the operative regime, and as these beliefs imply differences in 
expected future values, they can affect the degree of (non)-precaution in behavior.   
 
We model the case of {1,0.9},  which is a mixture of the previous two cases presented. 
Under these values, the agent has a prior belief that the system can either switch 
according to an exogenous hazard (the case with 0.9  ), or is fixed in regime and will 
not switch. Given the non-observability of the regime indicator, the model allows for the 
possibility that the agent is unsure as to the present regime, but to be consistent with 
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earlier results, we assume 0, 1,0 0, 0.9,0 0.5I I       for the simulation presented here. As 

such, the agent begins with prior 0Pr( 0) 1,I   but is uniformly unsure about the hazard 

parameter value. 
 
Figure 4 presents the results, once again assuming 1 0 t t     and a regime switch in 

t=26. As in the previous case, initial extraction is greater than in the regime 1 certainty 
case, but is not steadily decreasing as the simulation progresses. The reason can be seen 
in the evolution of beliefs prior to the regime shift. First, note that 1, 1,0I    is zero for the 

entire planning horizon given the structure of the updating equations, and thus Pr( 1)tI   

is completely characterized by one variable, 1, 0.9, .I t    As the simulation progresses, this 

probability first increases then decreases (after t=12) as no detectable regime shift is 
observed, while the marginal belief that 0tI  follows a symmetric, opposite pattern. 

However, this occurs while the probability of no possible shift is monotonically 
increasing and Pr( 0 & 0.9)tI   is monotonically decreasing. The introduction of the 

parametric uncertainty, then, introduces the possibility of non-monotonic beliefs even 
absent stochastic shocks to the physical system, as the cumulative effects of no apparent 
shift tend to counteract the predictive distributions tendency to increase the probability 
that 1tI  . 

 
As such, the resource stock path is first gradually decreasing before the maximum 
Pr( 1)tI   for the reasons discussed earlier, then gradually increasing thereafter towards 

the certainty equivalent solution to the regime 1 certainty case. As such, the incentive is 
to be more exploitative in the beginning of the horizon, consistent with the known, 
exogenous hazard case, but this incentive is mitigated after a point where the pattern of 
data suggests a reasonably high probability that a regime shift cannot occur, thus creating 
an incentive structure consistent with the competing ecosystem model case. 
 
Once the data pattern is disrupted by the actual regime shift in t=26, belief patterns 
rapidly reflect the change, with 1, 1,I t    rapidly declining and 1, 0.9,I t   rapidly 

increasing. The resultant stock path is thus gradually decreasing to the regime 2 certainty 
steady-state level, in accordance with the previous analysis. The one difference is that 
since Pr( 1)tI   is small at the time of shift, optimal extraction increases, rather than 

decreases, as the stock approaches the steady state. 
 
The Effects of Information Structure 
 
Taken together, these three cases illustrate that the assumptions over the information 
regime are non-trivial when it comes to characterizing the nature of optimal management 
in the presence of irreversible threshold effects. In general, risk over the true data 
generation regime results in lower stock levels, ceteris paribus, than the certainty regime 
solutions when the belief in regime 1 is strong, but the overall path of resource 
exploitation depends on the evolution of the subjective beliefs of the decision maker. 
These effects generally take two forms: 1) the tradeoff between the risk of over- and 
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under- exploitation given 0 Pr( 1) 1,tI   as characterized by the fact that 

1

( )
0;

Pr( 1)t

V

I 

 


 
and 2) the intertemporal tradeoffs in the belief dimension when past-

period uncertainty is not immediately resolved, as characterized by the fact that 

1Pr( 1)
0.t

t

I

h
 




In the case of the competing ecosystems model, the effect in 1) is 

paramount and the effect of 2) is minimized; in the case of even an exogenous probability 
of regime shift, both effects are in play. Note that 1) would hold in the case of exogenous 
arrival of information as well (e.g., information regimes such as that assumed in 
Melkonyan, 2011). 
 
Discussion and Conclusions 
 
In this paper, a renewable resources model with thresholds and irreversibility was 
analyzed under conditions where the decision-maker is not certain of the regime state of 
the system, due to either a stochastic data generation process or the lack of observability 
of the switching event. The probability of crossing the threshold is assumed to be 
exogenous, and beliefs over the unknown state are modeled in a state-space Bayesian 
framework, rendering the problem as a partially-observable Markov decision model. The 
context extends the analysis of Polasky et al. (2011) to a more generalized treatment of 
the information available to the optimizer at the time of the extraction decision. In 
addition, we show that if the probability of a regime shift/hazard rate is zero, then the 
specification presented here can be interpreted as a competing ecosystem model as in 
Peterson, et al. (2003). 
 
Polasky et al. (2011) show that when past regime uncertainty at time t+1 is assumed, an 
exogenous probability of regime shift coupled with a systems dynamic effect (a change in 
regime with no discontinuity in resource stocks) results in no change in optimal 
management from the regime certainty case, but decreased exploitation when the 
probability is stock-dependent. Our results showed that the former can be explained by 
the lack of a tradeoff about being the agent being “wrong” in his/her beliefs; once the 
stochastic crossing event either happens or does not, the decision-maker knows which 
regime is prevailing, and thus there is no trade-off to make. The latter occurs because, 
ceteris paribus, there is always a positive expected economic benefit to reducing the 
hazard rate in accordance with the “Precautionary Principle” when the second, absorbing 
regime has a lower steady-state stock level (and thus steady-state current value) than the 
regime 1 certainty steady-state level. In the case of stock effect (a discontinuity in the 
expected stock), there is an additional incentive to exploit before the shift, as a portion of 
the stock can be destroyed and thus is not recoverable, even when regime uncertainty is 
resolved. 
 
Similarly, Carpenter et al. (1999) and Ludwig et al. (2003) argue that precaution is 
always optimal in the presence of threshold uncertainty alone in a shallow-lake-type 
model with reversibilities, though Brozovic and Schlenker (2011) demonstrate that this 
result critically depends on a deterministic data generation process, and that precaution 
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may be dominated by a countervailing effect when the uncertainty regarding the 
threshold location is very high. As explained in that paper, the intuition is that as the 
manager has “less control” of the system from a probabilistic standpoint, the marginal net 
benefits of lower pollution loadings decreases.17 In effect, this is the same incentive 
facing the manager with an exogenous hazard in the renewable resource model with 
observability; in each case, a lack of ability to meaningfully trade-off the potentially poor 
outcome of a regime shift in the future with current actions dissipates the precautionary 
incentive. 
 
The results presented here showed that these conclusions are critically dependent on the 
information regime assumed; namely, that the problem is essentially static in the belief 
dimension. If instead beliefs evolve in accordance with a (possibly endogenous) updating 
rule, then optimal management in the presence of an exogenous regime shift is no longer 
identical to the optimal rules under certainty of regime. Rather, it was shown that stock 
levels are kept lower than the regime-certainty case, and that they tend to decrease over 
time until they reach the limiting (lower-stock) solution of the lower-growth regime. As 
such, under persistent regime risk, optimal management is not consistent with 
precautionary behavior, but rather greater levels of exploitation and lower stock levels 
during the period before a true (but unknown) regime shift.  
 
The intuition is that the learning essentially endogenizes the tradeoffs between being right 
or wrong about the true regime, in conjunction with the dynamic incentive created as a 
result of the updating process. In the cases presented here, the former will always result 
in non-precautionary behavior given the shape of the value function, while the latter has 
an ambiguous effect depending on the information regime assumed and the state of the 
system. This ambiguity is demonstrated by the effects of the decision-maker’s beliefs 
about regime 2 when the hazard rate is unknown, which can be non-monotonic even in 
the state-transition certainty-equivalent case of 1 0 t t    .  As such, the initial exploitive 

incentive that develops can be mitigated as the belief in no possible shift increases, 
similar to the result in Brozovic and Schlenker (2011), though a complete reversal does 
not appear possible.18  
 
From a policy standpoint, this suggests a countervailing effect to the unambiguous 
precaution result in Polasky et al. (2011) when the probability of regime shift is 
endogenous and there is no expected stock collapse at the time of the shift. In other 
words, if as society we “know we don’t know” and operate accordingly, the relative 
magnitudes of the endogenous risk effect and the uncertain regime effect will determine 
if a reduction in emissions is justified, even if there is only a system dynamics effect. 
This same effect would even further induce increased exploitation in the case of an 

                                                 
17 In these models, the manager is assumed to admit preferences that are strictly concave in the pollution 
stock, thus strengthening the risk-aversion type result. In addition, it should be noted that the control action 
in these models affects the probabilities of crossing/re-crossing the threshold, and thus would fall into the 
class of endogenous hazard models. 
18 Differences in model structure explain the difference in sign on the risk effect vs. the information effect. 
The main point is that the information effect is an additional margin working against the deterministic 
solution. 
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exogenous probability of regime shift with a stock effect, and for much the same reason; 
namely, the process governing beliefs tends to lower future ex ante expected values of the 
system, increasing the incentive to extract sooner. This incentive is similar to an increase 
in the discount rate, and seems especially applicable to the argument surrounding global 
climate change given the uncertainty surrounding those processes. 
 
A few notes about assumptions and possible extensions are in order. In this paper, we 
assumed irreversibility over the regime switch and a risk-neutral decision-maker, as well 
as well-defined probability distributions over the stochastic elements of the model. Future 
research is needed to more fully explore the implications of these assumptions, as they 
will undoubtedly further muddle the policy prescriptions that follow from the analysis. In 
fact, in terms of climate change, well-defined probability distributions may be especially 
problematic, and models which incorporate ambiguity/second-order probabilities may be 
more appropriate (see, e.g.,  Kilbanoff et al., 2009 and Millner, et al., 2010).  
 
In addition, our characterization of the information regime was itself grossly simplified, 
with a maximum of two possible hazard rates and two possible regimes. While this 
renders the problem tractable, it ignores additional information issues such as the effect 
of a declining variance of an unknown parameter over a continuous prior. As model 
complexity increases, however, both the analytical and numerical techniques to analyze 
them become more non-standard, and the curse of dimensionality becomes a very real 
limiting factor. Nevertheless, given the demonstrated importance of the structure of 
information for ex ante decision-making under uncertainty, risk, and learning in 
environmental and resource problems, this line of research should be extended.
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Appendix A 
 
Equivalence of Specifications with Observability 
To show that this model is a generalization of the models in Polasky et al. (2011), 
consider the (relatively) simple case of a deterministic resource state-transition equation 
with exogenous, known hazard rate 0 (1 ) 1.    This is a two-state, one control, 
infinite horizon, discrete time stochastic dynamic optimization problem of the form 
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where t is the discount factor for period t. In this problem, the regime switches exactly 
once, this switch is irreversible, and the exogenous probability of switching in each 
period conditional on not having switched previously is 1 .  As such, it is the discrete-
time analog to the exogenous regime shift with system dynamics in Polasky, et al. (2011). 
The discrete-time Bellman equation takes the form 
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and is standard in that it does not use the state-space framework.  
 

To show that the state-space specification nests this case, note that if 0, 0,I   the 

Bellman equation becomes 
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Since there is no error term on the state equations, the filtering distribution (8) reduces to 
a spike at zero or one given a new piece of data 1,ts   resulting in perfect prediction of It+1. 

We can thus rewrite (15) as 
      1 2,0 ( ) ,0 (1 ) ( ) ,1 ,t t t t t t t tV s ph V s G s h V s G s h             (16) 

 which holds not only for t=0 but also any t for which , 0.t I   Similarly,  

    2,1 ( ) ,1 .t t t t tV s ph V s G s h     (17) 

Equations (16) and (17) are equivalent to (14), thus demonstrating that the state-space 
representation generalizes the irreversibility formulations used in Polasky et al. (2011).  
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Equivalence of Control Rules of Exogenous, Known Hazard Model with Observability 
and Regime Certainty Case assuming Systems Dynamics Effects 
 
We now show that the optimal management of this problem is equivalent to the optimal 
management in each regime, assuming that regime persists at all times in the future. 
 
The necessary conditions of the problem, assuming either an exogenous or endogenous 
hazard  rate, can be derived through differentiation of  

    1 2 2
, , ,, max 1 ( ) ( ) (1 ( )) ( ) ( )

t
t t I t t I t I

h
V s ph s EV s EV EV                 

with respect to the control and each state variable, with notation  

  1( ) ( , 1).i
t i t t tEV EV s G s h i       Assuming no information effects (i.e., 

1, 1, 1,

,

0t I t I t I

t t t Ih s

  


    
  

  
), which is the case for observable regime shifts, these 

conditions are 
 

 

 

1 2 2

, ,

,

1
1 2

, 1

( ) ( ) ( )
1 ( ) (1 ( )) 0

,

( )
1 ( ) ( ) ( ) 1 ( ) ( ) ( ) (1 ( ))

set

t I t t t I
t t t
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 (18) 
 

Note that 
     ,

,

,
,0 ,1 ,t t I

t t
t I

V s
V s V s





 


and the third equation in (18) implies that  

         2
1 1 1

,0 ,1
( ) ,1 ( ,0).t t

t t t t t

V s V s
EV E V s EV s G s h 

 


        (19) 

 
Differentiation and substitution of (19) into the first two equations of (18) results in  the 
following conditions: 

1 1 1
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Thus, so long as the marginal value of the renewable state in each regime is identical, and 
( ) 0,s  the problem reduces to managing the system according to the most rapid 

approach path for each regime. This is the result shown in Polasky et al. (2011), but 
critically depends on an unrestricted harvest when switching from one regime to the other 
in the case of linear harvest. 
 
Decreased Exploitation assuming Systems Dynamics Effects and Endogenous, Known 
Hazard Model with Observability 
 
With an endogenous hazard, assuming a prior reflecting certainty over regime 1, the first-
order conditions become: 

 
 
 

1 1

1

0 ( ) ( ( ) ,0) (1 ( )) ( ( ) ,0)

( ( ) ,0)

s s

s

p s V s G s h s V s G s h

p V s G s h

  



       

   
 (20) 

 

 1 2 1 1( ,0) ( ) ( ( ) ,0) ( ( ) ,1) ( ( ) ,0)(1 ( ))s sV s s V s G s h V s G s h V s G s h G s             
 (21) 
 
At the new steady state for this regime, from (20), 1( ( ) ,0) / ,sV s G s h p     if harvest is 

unconstrained, and substitution into (21) yields

   1 2 1/ ( ) ( ( ) ,0) ( ( ) ,1) / (1 ( )) .p s V s G s h V s G s h p G s               Moving the 

non-bracketed term over yields 

 1 1 2/ (1 ( )) ( ) ( ( ) ,0) ( ( ) ,1) .p p G s s V s G s h V s G s h              Solving,  

 1 1 2

1
( ) ( ( ) ,0) ( ( ) ,1)G s V s G s h V s G s h

p

 

        , so that marginal growth is 

lower than in the original case, and thus stock levels are greater. 
 
Increased Exploitation assuming Stock Effect and Exogenous, Known Hazard Model with 
Observability 
 
Similarly, for a stock regime shift where 1 0ts   if 1 1,tI   the Bellman equation can be 

written as 
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 ( ,0) ( ) ( ( ) ,0) ,V s ph s E V s G s h     

 
with first order conditions 
  0 ( ) ( ( ) ,0)sp s E V s G s h     (22) 

 
    ( ,0) ( ) ( ( ) ,0) ( ) ( ( ) ,0)(1 ( )) .s sV s s E V s G s h s E V s G s h G s          (23) 

 
From (23),    ( ( ) ,0) / ( )sE V s G s h p s    if harvest is unconstrained, and 

substitution into (23) yields

   ( ,0) ( ) ( ( ) ,0) ( ) / ( ) (1 ( ))sV s s E V s G s h s p s G s           .  

 
At the steady state, 

   / ( ) ( ) ( ( ) ,0) ( ) / ( ) (1 ( ))p s s E V s G s h s p s G s            . Note that if  is 

constant and doesn’t depend on s, then  1/ (1 ( )) ,G s    or 

    1
1/ (1 ( )) ( ) .G s G s



      Furthermore, 

1 1 
 
 

   so long as 1.   

As such, ( )G s is positive and greater in magnitude than the case where there is no 
hazard, suggesting that the steady state stock level is lower and exploitation is higher.  
The intuition, as in Polasky et al. (2011), is that the hazard term increases the discount 
rate. 
 
Ambiguous Exploitation assuming Stock Effect and Endogenous, Known Hazard Model 
with Observability 
 
 
In the case of an endogenous shift (actually, the more general case which naturally 

reduces to above when ( )s =0), 
 / ( ) ( ) ( )

( )
( )

p s E V s p
G s

s p

  

  

 , which is 

ambiguous compared to 
1 



. This term can be rewritten as 

 ( ) ( )1 ( )
( )

( ) ( )

s E Vs
G s

s s p

 
  

    . The closer ( )s  is to zero, ceteris paribus, the more 

likely that the LHS is greater than 
1 



, and thus the exploitation incentive is greater. 

Note as well that steady state value is 
( )

( ,0)
1 ( )

pG s
V s

s



.  
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Table I: Parameter Values used in Numerical Analysis 
 
Parameter Description Value(s)

  One-period discount factor 0.95
p Price of resource stock 1
  Probability of No Regime Shift (1-hazard) (1,0.9)

 Mean of Error on State Transition 0
 Std. Dev. of Error on State Transition 0.0250

k1 Carrying Capacity in Regime 1 [  1 1 0G k  ] 1

k2 Carrying Capacity in Regime 2 [  2 2 0G k  ] 0.7
 Number of Grid Points in Each State Dimension 11
 Number of Grid Points in Control Dimension 201
 Number of Quadrature Points for Integration 5
  State Bounds on Physical State (0,1)
Note that  1 2 0G k   and  2 1 0.G k 
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Figure 1: Optimal Value Functions for the Competing Ecosystems Model (Panel I) 
and Exogenous, Known Hazard Model without Observability (Panel II) 
 

 
 
Panel I: Competing Ecosystems Model 
 

 
Panel II: Exogenous, Known Hazard Model without Observability 
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Figure 2: Simulated Optimal Paths for Competing Ecosystems Model, Error Terms 
on Transition Set Equal to Zero 
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Panel II: True Growth Regime = Regime 2 
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Figure 3: Simulated Optimal Paths for Regime Shift Model with Known, Exogenous 
Hazard = 0.1, Error Terms on Transition Set Equal to Zero  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
True Growth Regime = 1 for t=1..26 
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Figure 4: Simulated Optimal Paths for Regime Shift Model with Unknown, 
Exogenous Hazard = (0,0.1), Error Terms on Transition Set Equal to Zero 
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True Growth Regime = 1 for t=1..26 
 
 
 
 


