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1 Introduction

In recent decades, protected areas have proliferated globally. These areas aim to restrict land uses

and are often established on marginal lands in rural areas where poor households reside (Adams

et al., 2004; Wilkie et al., 2006; Joppa and Pfaff, 2009; Sachs et al., 2009; Andam et al., 2010).

These facts have led to increased efforts among scientists and practitioners to understand the

economic effects of protected areas on nearby human populations (e.g., Robalino (2007); Robalino

and Villalobos-Fiatt (2010)).

Few published studies, however, have the requisite data and methods to accurately estimate

protected areas’ causal effects on poverty (see reviews in Andam et al. (2010); Coad et al. (2008)).

To properly account for changes in poverty due to the establishment of protected areas, a study

should incorporate pre-protection, baseline measures of poverty (or proxies for them), and explicitly

control for the non-random nature in which protected areas are established. The few studies that

satisfy these criteria find that, contrary to conventional wisdom, the establishment of protected

areas is associated with poverty reductions around protected areas in Bolivia, Costa Rica and

Thailand (Canavire-Bacarezza and Hanauer, 2011; Andam et al., 2010; Sims, 2010). These studies,

however, are unable to answer the question of how protected areas induce reductions in poverty.

From a policy standpoint understanding the mechanisms through which protected areas affect

poverty is as important as identifying their average effects on poverty. In other words, we want to

understand why, and in what context, protected areas can be expected to reduce poverty. Armed

with such knowledge, decision-makers can design protected area networks to foster the mechanisms

that alleviate poverty and to discourage the mechanisms that exacerbate poverty. The absence of

credible estimates of causal mechanisms has been identified as a problem in all social policy fields,

not just environmental policy (e.g., Deaton (2009); Heckman (2010)).

Unfortunately, identifying causal mechanisms is much more difficult than identifying average

causal effects. First, one needs theory and field knowledge to help identify potential mechanisms.

Then one needs measures of the mechanisms themselves (or proxies), rich data to control for char-

acteristics of the lands and communities where protected areas are established that also affect the

mechanisms and poverty outcomes, and an empirical design capable of identifying causal mecha-

nism effects. Mechanisms are, by definition, affected by the causal factor of interest (e.g., protected
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status) and thus simply controlling for mechanisms within, for example, a regression framework

will generally lead to biased estimates (Rosenbaum, 1984).

To demonstrate how causal mechanisms of protected areas on poverty can be identified and

quantified, we build on a rich data set from Costa Rica. These data were previously used to es-

timate the impact of Costa Rica’s protected area system on poverty (Andam et al., 2010) and to

characterize the way in which this impact varied conditional on observable characteristics of the

local environment (Ferraro and Hanauer, 2011; Ferraro et al., 2011). We quantify the proportion

of Andam et al. (2010) estimated poverty alleviation that arises from tourism, infrastructure de-

velopment and ecosystem services mechanisms. We proxy for the respective mechanisms using the

creation of park entrances, changes in road networks and changes in forest cover.

Another way to view our study is that it provides the first causal study, to our knowledge, of

the poverty impacts of ecotourism at a national scale. The idea that nature-based tourism could

benefit the rural poor has been vigorously debated (e.g,. Wunder (2001); Kiss (2004)), but little

credible empirical evidence in favor or against the idea exists. Most studies or reviews are drawn

from single-protected area case studies in which dubious assumptions about counterfactual poverty

levels are implicitly invoked to permit causal inferences about protected area impacts.

Our analysis suggests that nearly half of the poverty reduction associated with the establishment

of protected areas is causally attributable to tourism. Infrastructure development accounts for a

relatively small proportion of the estimated poverty reduction. Ecosystem services from changes in

forest cover account for no net effect on poverty. The remaining estimated poverty reduction comes

from unidentified mechanisms, which may include mechanisms other than the three we identified

or pathways not captured by our mechanism proxies (e.g., tourism opportunities unaffected by

the presence or absence of a park entrance). We conduct several robustness checks that provide

evidence that our inferences are not likely to be an artifact of our empirical strategy.

2 Data

In Andam et al. (2010), the unit of observation is the census tract. The 1973 census is used as the

baseline year and demographic data are geocoded to their respective census tracts to form a set of

covariates for each observation. In 1973 Costa Rica contained 4,694 census tracts with an average
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size of 8.82km2 (range: 0.00466-836 km2). To determine if a census tract is considered protected

for the analyses, a layer containing all protected areas established prior to 1980 is overlaid with

the census tracts. As in Andam et al. (2010), a census tract is considered protected if at least

10% of its area is occupied by protected land.1 Conversely, any census tract that contains less

that 1% protected land is considered unprotected and a binary treatment indicator is assigned

accordingly.2 A poverty index is derived for each tract from census data following Cavatassi et al.

(2004). Higher levels of poverty are associated with greater poverty index values (negative poverty

index values indicate low levels of poverty). The censuses from which the poverty index is derived

were conducted in 1973 and 2000. In the analyses, the poverty index calculation for 2000 is the

outcome of interest. To match tracts on baseline characteristics, we use the matching covariates

used in Andam et al. (2010), which include the 1973 poverty index and other baseline covariates that

affect both protected area location and economic growth (see Table 1). The authors’ calculation of

average treatment effect on the treated (ATT ) provides evidence that census tracts with protected

areas that were established prior to 1980 had greater levels of poverty reduction between 1973 and

2000 than comparable unprotected census tracts.

2.1 Mechanisms

A causal mechanism can be viewed as a variable which, once affected by treatment, impacts the

outcome of interest. In causal Directed Acyclic Graphs (DAGs) developed by Pearl (2009) and

highlighted by Morgan and Winship (2007), a mechanism (S) is drawn as a causal pathway (→)

that links treatment (T ) to outcome (Y ), T → S → Y . Therefore, a causal mechanism is a variable

whose quantity is directly affected by treatment, the result of which causes a direct change in the

outcome of interest. A causal mechanism can thus also be viewed as an intermediate outcome

variable in an elaborated theory of the causal relationship between T and Y .

1We use the 10% threshold in accordance with Andam et al. (2010). A 10% threshold was chosen because
protecting 10% percent of the worlds’ ecosystems was the goal of the 4th World Congress on National Parks and
Protected Areas (Andam et al., 2010). Andam et al. (2010) show that their results are robust to changes in this
threshold value (alternatively defined as 20% and 50%).

2Of the 4,691 census tracts, 249 are considered protected (treated) prior to 1980 and 4164 are considered potential
counterfactual observations. To avoid bias in the analysis, 278 tracts with protection between one and ten percent
are dropped from the analysis.
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2.1.1 Mechanisms in Costa Rica’s Protected Area System

The putative mechanism through which protected areas achieve environmental outcomes is land-

use restriction (e.g., preventing deforestation, logging, etc.). Such restrictions, which limit the

exploitation of natural resources, would be expected to negatively impact economic conditions in

surrounding areas. If land-use restrictions were the only mechanism (or the dominant mechanism)

through which protected areas affect surrounding populations in Costa Rica, we would expect

poverty to have been exacerbated, which has not been the case. Therefore, there must exist mecha-

nisms through which protected areas have positively influenced economic conditions in surrounding

populations. We consider three of the most plausible ones.

Tourism- Tourism is widely cited as a likely mechanism through which protected areas enhance

local economies (e.g., Wilkie et al. (2006); Adams et al. (2004); Menkhaus and Lober (1996)). Costa

Rica’s stable government, rich biodiversity and protected area system make the country a popular

destination for eco-tourists. Approximately 54% of international tourists to Costa Rica visit a

protected area (ICT, 2010). Indirect evidence that tourism may play a role as a mechanism for

poverty reduction comes from analyses of the heterogeneity of protected area impacts in Costa

Rica. By measuring the way in which the poverty reduction impacts from protected areas vary

with observable characteristics, Ferraro et al. (2011) provide indirect evidence for the reasons why

protected areas succeed or fail to achieve environmental and social objectives. Most importantly for

the purposes of our study, they find that reductions in poverty from the establishment of protected

areas are greatest at intermediate distances to cities. This range coincides with the location of a

majority of Costa Rica’s national parks, which receive the most tourists. Further indirect evidence

of tourism playing a causal mechanism comes from a recent study by Robalino and Villalobos-

Fiatt (2010), which finds workers near park entrances in Costa Rica receive higher wages and are

employed in higher-paid, non-agricultural activities than workers in similar areas farther from park

entrances.

Using global positioning system (GPS) data from Robalino and Villalobos-Fiatt (2010), we

proxy for the tourism mechanism by using observations of an establishment of a park entrance.

Of Costa Rica’s 39 protected areas that were established prior to 1980, 19 received at least one

park entrance prior to 2000 (total of 23 entrances). A protected census tract (see definition above)
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is considered exposed to a park entrance if it is occupied by a protected area in which at least

one entrance was established. According to this assignment rule, 122 census tracts are considered

exposed to a park entrance.

Infrastructure Development - Improved access and quality of infrastructure can be expected

to enhance economic outcomes (e.g., reduce production costs). Previous studies from Costa Rica

and Thailand have shown a relationship between access to urban infrastructure and poverty Andam

et al. (2010). We proxy for the infrastructure mechanism with road networks. Access to roads

increases access to markets and other resources (reducing transportation costs, etc.). In addition,

roads serve as a good indicator of the level of infrastructure development and urbanization. We

are therefore interested in how changes in road networks from the establishment of protected areas

have impacted poverty in surrounding communities. A priori, the effect of protected areas on

road networks is unclear: by restricting development, protected areas may reduce road network

development (a negative mechanism) or, by encouraging law enforcement and tourism activities,

they may increase road network development (a positive mechanism). We use changes in roadless

volume (Watts et al., 2007) between 1969 and 1991 to capture the impact of changes in access

to infrastructure. Roadless volume is an aggregation of the Euclidean distance to a road for each

one-hectare land parcel within a census tract, adjusted for the size of the land parcel. Roadless

volume is calculated by summing the product of the area of each land parcel (1 ha in this case) and

the distance from that parcel to the nearest road (1969 and 1991). Therefore, higher measurements

of roadless volume indicate fewer road networks within a municipality. Summary statistics for

baseline roadless volume and changes in roadless volume can be found in Table 1.

Ecosystem Services - Since the seminal paper by Costanza et al. (1997), there has been

great interest in quantifying the economic impacts of the services provided by intact ecosystems.

One of the arguments from protected area advocates for potential ‘win-win’ outcomes is that the

establishment of protected areas prevent ecosystem degradation (win) thereby providing a stream

of economic benefits (win) to surrounding communities (in addition to the global benefits such as

carbon sequestration). Given that the protected ecosystems are forest ecosystems, we proxy for

ecosystem services mechanisms with the change in forest cover caused by protection (i.e., the differ-

ence in protected census tracts between observed forest cover and estimated counterfactual levels in

the absence of protection). We are interested in how changes in forest cover from the establishment

7
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of protected areas have impacted surrounding communities. We measure the percentage of forest

cover within each census tract using GIS and forest cover boundaries from 1960 and 1986 (see Ta-

ble 1 for baseline and mechanism measurements of forest cover). Note that, because we proxy for

ecosystem services with changes in forest cover, which are also associated with potentially negative

poverty mechanisms through foregone agricultural and other productive uses, we can only measure

the net effect of the positive and negative channels through which this mechanism operates. For

example, if the mechanism effects are positive, we can only say that ecosystem services affected by

protection reduce poverty and this reduction is greater than any increase in poverty from forgone

forest uses. If the mechanism effects are negative, we can only say that ecosystem services affected

by protection have either no effect on poverty or their positive effect is smaller than the negative

effects from forgone forest uses. If the mechanism effect is zero, either: (1) the effects on poverty

from avoided ecosystem service losses and the opportunity costs of foregone productive uses are

statistically indistinguishable from zero; or (2) the effects from avoided ecosystem service losses

and of foregone agricultural uses are of opposite sign and approximately equal, thus cancelling each

other out.

Clearly, our proxy variables do not capture all dimensions of our hypothesized mechanisms

(e.g., infrastructure could be improved through improved road surfacing or through the provision

of electricity, which would not be picked up in our mechanism variable). Moreover, there may be

other mechanisms through which protected areas affect poverty in surrounding communities. Our

methods, which are described in detail in the next section, do not require an exhaustive list of

mechanisms and permit us to quantify the aggregate contribution of unidentified mechanisms.

3 Methods

3.1 Mechanism Concepts

To estimate the effect of protected areas on poverty, Andam et al. (2010) use a quasi-experimental

design that assumes selection into treatment (protection) takes place on observable pre-treatment

characteristics that may also affect poverty (i.e., confounding factors). They demonstrate how a

failure to control for these characteristics substantially biases estimates of the treatment effect. In

quasi-experimental designs, estimating the effect of a mechanism is confounded by the fact that

8
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the mechanism is necessarily observed post-treatment and is potentially affected by treatment.

Because a mechanism is affected by the treatment, controlling for it as if it were independent

leads to biased estimates (Rosenbaum, 1984). Thus, one cannot simply estimate mechanism effects

from the difference between the estimates of a specification (e.g., regression or matching) with and

without the mechanism variable. The mechanism must be handled like an outcome variable (hence

the concept of surrogate [outcome] variables in the epidemiology literature, see e.g., Mealli and

Rubin (2003)).

3.2 Setup

To estimate the causal mechanisms through which protected areas have affected poverty, we use

an augmented potential outcomes framework (we follow the framework and much of the notation

of Flores and Flores-Lagunes (2011)). In the traditional potential outcome framework, there are

two potential outcomes, Yi(1) and Yi(0), for each unit i ∈ N (e.g., census tracts) under treatment

(T = 1) and control conditions (T = 0). In other words, every unit has one outcome if it were

exposed to the treatment and another outcome if treatment were withheld from it. The difference

between these two potential outcomes, τi = Yi(1) − Yi(0), is the impact of the treatment on unit

i. Unfortunately, for any given unit i only one of the two potential outcomes is observed. In

practice, either unit i’s outcome under treatment is observed given it was treated (Y obs
i | T = 1)

or unit i’s outcome in the absence of treatment is observed given it was in the control condition

(Y obs
i (0) | T = 0). This inability to observe both potential outcomes is the fundamental problem for

the estimation of causal effects. In order to calculate the average treatment effect in the absence of

random assignment, it is necessary to invoke the conditional independence assumption (also known

as ignorability, unconfoundedness or selection on observables), which states that potential outcomes

are independent (⊥⊥) of treatment given a set of covariates X that jointly determine outcomes and

selection into treatment :

Assumption 1 Yi(1), Yi(0)⊥⊥Ti|Xi,

Random assignment ensures independence, without condition, because each individual has an

equal probability (or more generally, a probability known to the experimenter) of assignment to

treatment. For conditional independence to hold under non-random assignment, one must condition

9
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on (e.g., matching) or control for (e.g., regression) all covariates (X), thus rendering any remaining

differences in outcomes between groups a function of treatment (or sampling error).

3.2.1 Principal Strata

Further complications arise when post-treatment mechanisms are introduced. Suppose S is a

post-treatment mechanism that is measured at an intermediate period between administration of

treatment and measurement of outcome.3 Because, by definition, S is affected by treatment it is

not unconditionally independent of treatment4 and thus must be handled in a manner similar to the

outcome of interest (Y ). Therefore, as with Y , S has two potential outcomes Si(1) and Si(0) for each

i, depending on assignment to treatment or control, respectively. This simply states that because

mechanisms are affected by treatment, with the exception of some special cases, the mechanism

outcome for each individual is dependent on the administered treatment. The implications, within

the potential outcomes framework, are that four potential outcomes must now be considered for

each individual: (Yi(1), Yi(0), Si(1), Si(0)).

There are now four compound potential outcomes of interest for i: Yi(1, Si(1)), the outcome

when the unit is exposed to the treatment and the mechanism is affected by the treatment, which

represents the total effect of treatment and is equivalent to Yi(1) in the traditional potential out-

comes framework. Yi(1, Si(0)), the outcome when the unit is exposed to the treatment but the

mechanism is not affected by the treatment (in other words, the outcome the unit would experience

were we to expose it to the treatment but hold the value of the mechanism at its no-treatment

value; in the language of Flores and Flores-Lagunes, the mechanism is “blocked”); Yi(0, Si(0)), the

outcome when the unit is not exposed to the treatment and the mechanism is not affected, which is

equivalent to Yi(0) in the traditional potential outcomes framework (i.e., post-treatment mechanism

is not affected in absence of treatment); and Yi(0, Si(1)), the outcome when the unit is not exposed

to the treatment but the mechanism is affected as it would be if the unit were treated. In general,

only Yi(1, Si(1)) and Yi(0, Si(0)) are observed in practice, leaving Yi(1, Si(0)) and Yi(0, Si(1)) as

counterfactuals that require estimation.

To help conceptualize the joint potential outcomes and identify the casual mechanism effect,

3Note that the three mechanisms of interest are denoted formally as Sj , where j = 1, 2, 3. For ease of exposition
throughout a majority of this discussion, the subscript is omitted.

4This is true under random assignment of treatment as well.
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we use the principal strata framework developed by Frangakis and Rubin (2002) (see also, Rubin

(2004); Mealli and Rubin (2003)). Defining a principal stratum is similar to the concept of matching

individuals (or groups of individuals) based on similar potential outcomes in a standard quasi-

experimental setting. Two units from different treatments (e.g., protected, unprotected) share a

principal stratum if they share potential mechanism outcomes (formally a principal stratum is

defined where {S(0) = s0, S(1) = s1}.

To identify units from disparate treatments but similar principal strata, an extension to the

conditional independence of Assumption 1 is necessary

Assumption 2 Si(1), Si(0)⊥⊥Ti|Xi.

In other words, we assume that, conditional on X, protection is not assigned based on expec-

tations that tourism, infrastructure or ecosystem services will be different under treatment and

control conditions. We call Assumption 2 conditional mechanism isolation. Assumption 2 states

that potential mechanism outcomes are independent of treatment given a set of covariates (X) that

jointly determine selection into treatment and mechanism outcomes, and, therefore, isolated from

confounders. Under Assumption 2, we can identify units within similar principal strata: units from

disparate treatments with similar values of X lie within common strata and, therefore, share similar

potential mechanism outcomes. Assumptions 1 and 2 imply that potential outcomes and potential

mechanism values are independent of treatment given covariates X. Combining Assumptions 1 and

2 we have

Assumption 3 Yi(1, Si(1)), Yi(1, Si(0)), Yi(0, Si(0)), Yi(0, Si(1)), Si(1), Si(0)⊥⊥Ti|Xi.

A necessary condition for satisfying Assumption 3 is that the covariates (X) must jointly de-

termine selection into treatment, outcomes of interest and mechanism outcomes. Upon cursory

examination, Assumption 3 may seem untenable. However, when one considers that the primary

purpose of X is to control for the non-random process of selection into treatment and that treatment

directly affects mechanisms, Assumption 3 seems more reasonable. Assumption 3 implies

E [Si(1)|Xi = x, T = 1] = E [Si(1)|Xi = x, T = 0] (1)

E [Si(0)|Xi = x, T = 1] = E [Si(0)|Xi = x, T = 0] . (2)

11
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Equations (1) and (2) state that the expected mechanism outcomes under treatment, for units

that were treated, are equal to the expected mechanism outcomes in the control group, for units

with similar values of X, had they been treated, and vice versa.5

3.2.2 Estimands

In the study from which we draw (Andam et al., 2010), the estimand of interest is the average

treatment effect on the treated, ATT : the effect of protection on poverty in the census tracts that

were protected. Estimation of the ATT is akin to asking the question, “what would outcomes

for protected census tracts have been had they not been treated?” Given that the total treatment

effect estimand of interest is the ATT , the mechanism treatment effect of interest is the Mechanism

Average Treatment Effect on the Treated (MATT ). Thus, among the assumptions described in

section 3.2, we only need make the following two assumptions

E[Y (0) | X,T = 1] = E[Y (0) | X,T = 0] (3)

E[S(0) | X,T = 1] = E[S(0) | X,T = 0]. (4)

Conditional on X, the expected poverty outcome and mechanism outcome in the absence of

protection is the same for protected and unprotected units. We do not need the expected outcomes

in the presence of protection to be the same.

Our estimands follow directly from the framework for mechanism average treatment effects

(MATE) and net average treatment effects (NATE) developed by Flores and Flores and Flores-

Lagunes (2011). A principal strata is defined as {S(0) = s0, S(1) = s1}, which states that

individuals located within a common principal strata would have similar mechanism outcomes

(s0 had they been in the control group (S(0)), or s1 had they been treated (S(1)), independent of

actual treatment received). The MATT can be written

5These are analogous to E[Y (1) | X,T = 1] = E[(Y (1) | X,T = 0] and E[Y (0) | X,T = 1] = E[(Y (0) | X,T = 0],
which follow from Assumption 1. These equations are commonly used in the causal inference literature when selection
is on observable characteristisc and demonstrate the equality (in expectation) of potential outcomes conditional on
observable covariates (X) used to estimate average treatment effects.
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S

T Y

Mechanism Average Treatment E�ect on the Treated

                                 Net Average Treatment E�ect on the Treated

Figure 1: Causal Direct Acyclic Diagram (DAG) depicting the the concept of Mechanism Average Treatment
Effect on the treated (T → S → Y ) and Net Average Treatment Effect on the Treated (T → Y ) on outcome.

MATT = E {E [Yi(1, Si(1))− Y (1, Si(0))|Si(0) = s0, Si(1) = s1, Xi = x, T = 1]} . (5)

To estimate the MATT one must ask, “what would outcomes for the treated have been, had

they remained treated but treatment had not affected the mechanism?” Estimation of the MATT

answers this question by isolating the only source of variation in (5) to be the effect on outcomes

due to a change in the mechanism (via blocking the effect of the mechanism on the outcome in

the second term of (5)). A similar estimand of interest is the net average treatment effect on the

treated (NATT ) which isolates the effect on outcomes due to a change in treatment

NATT = E {E [Yi(1, Si(0))− Yi(0, Si(0))|Si(0) = s0, Si(1) = s1, Xi = x, T = 1]} , (6)

holding S at untreated levels. Estimation of NATT is akin to asking, “what would outcomes for

the treated have been, had they not been treated but their mechanism values remained at levels

realized under treatment?” An advantage of the MATT and NATT is that they decompose the

ATT such that ATT = MATT +NATT .6,7 This decomposition states that the average treatment

effect on the treated is equal to the proportion of the of treatment effect that is due to a change

in the mechanism (induced by treatment), the MATT , and the proportion that is due to other

6Satisfaction of equation (4) is necessary for this identity to hold. Morgan and Winship (2007) outline conditions
under which T → Y can be estimated using a set of mechanisms (e.g., the set of mechanisms is exhaustive and
isolated). However, one can measure the partial effect of T → Y using a non-exhaustive set of mechanisms, S (i.e.,
S → Y ), which leads to an estimate of MATT . In conjunction with equation (4), under which unbiased estimates of
the ATT can be estimated, the remaining difference between MATT and ATT can be attributed to the mechanisms
not included in S.

7The full decomposition can be written: ATT = E[Y (1, S(1)) − Y (1, S(0))] + E[Y (1, S(0)) − Y (0, S(0))], given
principal strata {S(0) = s0, S(1) = s1}.
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T Y

X

(a) Assumption 1: Conditional Independence. Conditioning on covariates
      (X) that jointly determine selection inro treatment and outcome
      allows for unbiased estimation of the causal e�ect of  T on Y.

Average Treatment E�ect on the Treated

ConfoundersConfounders

X

T Y
                                 Net Average Treatment E�ect on the Treated

Mechanism Average Treatment E�ect on the Treated

S

(c) Assumption 3: Sequential Ignorability. Conditioning on covariates that jointly determine selection into treatment, outcomes of interest, and
      mechanism outcomes allows for estimation of Mechanism Average Treatment E�ects on the Treated (MATT) and Net Average Treatment E�ects
      on the Treated (NATT). 

T S

X

(b) Assumption 2: Conditional Mechanism Isolation. Conditioning on
      covariates (X) that jointly determine selection inro treatment and
      post-treatment mechanism values allows identi�cation of the cau-
      sal e�ect of  T on S and therefore principal strata.

ConfoundersConfounders

Figure 2: Directed Acyclic Graphs (DAGs) demonstrating the assumptions necessary for the causal esti-
mation of ATT , MATT and NATT . Each DAG shows how conditioning on observable covariates (X)
breaks the confounding causal relationships (T ← X → Y , T ← X → S and S ← X → Y ; represented by
the broken single-headed arrows) and allows for estimation of ATT (a), the causal effect of treatment on
mechanism outcomes (b) and MATT (and NATT )(c).
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mechanisms or solely to the effect of treatment, the NATT (see Figure 1). Therefore, once either

MATT or NATT is estimated the complementary estimate falls out of the difference with ATT .

3.3 Estimation Strategy

Estimation of either MATT or NATT is confounded by the fact that Yi(Si(0)) is typically unob-

servable.8 We use matching in the first stage of the estimation to satisfy equations (3) and (4), see

Figure 2. Post-matching, we follow methods suggested by Flores and Flores-Lagunes (2011). We

use mechanism data from the matched control units, and a simple assumption about the way in

which mechanisms affect outcomes within principal strata, to impute outcomes for treated units

had treatment not affect the mechanism variables: the counterfactual of interest.

3.3.1 First Stage: Matching

We use one-to-one Mahalanobis covariate matching with replacement and post-match bias-adjustment

(Abadie et al., 2004; Abadie and Imbens, 2006) to match control units to treated units. This ap-

proach serves two purposes. First, it provides an estimate of ATT , for comparison to MATT

and NATT , which offers comparability to previous studies from Costa Rica (Andam et al., 2010;

Ferraro and Hanauer, 2011; Ferraro et al., 2011). Second, it provides a set of matched controls

that, by Assumption 3 are within the same principal strata as the treated units to which they are

matched. The latter purpose implies that the mechanism outcomes of the matched controls can

be assumed to be the value observed by their treated counterparts, had treatment not affected the

mechanisms. See Table 1 for a description of the covariates used for matching.

3.3.2 Second Stage: Estimate the Influence of Mechanisms

Flores and Flores-Lagunes (2011) suggest using a form of regression adjustment to impute out-

comes for treated units had treatment not affected mechanisms. The necessary assumption for this

approach (in addition to Assumption 3) is that the mechanism has a similar effect on potential

outcomes Yi(1, Si(1)) and Yi(1, Si(0)), i.e., their conditional expectation functions share the same

functional form (Flores and Flores-Lagunes, 2011).

8In the case where a subgroup of treated units for which treatment did not affect mechanism values can be
identified, Flores and Flores-Lagunes (2011) develop an estimand for the local average treatment effect (LNATE),
which requires less restrictive assumptions. See Section 5.3.2 for an application of this methodology to our data.
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Assumption 4 Suppose

E [Yi(1, Si(1))|Si(1), Xi = x, T = 1] = a1 + b1Si(1) + c1X, (7)

then,

E [Yi(1, Si(0))|Si(1), Xi = x, T = 1] = a1 + b1Si(0) + c1Xi. (8)

Assumption 4 implies that the marginal effect of a change in the mechanism outcome has the

same effect, on average, on units for whom exposure to treatment affects the mechanism as it does

on units for whom exposure to treatment does not affect the mechanism.

In (7) and (8) of Assumption 4, b1 represents the effect on outcome due to a change in the value

of the mechanism S. The counterfactual of interest (Ŷ (1, Ŝ(0))) can be estimated by evaluating (8),

which uses the coefficients from (7), by setting Si(0) = E[Si(0) | T = 1] = [Ŝi(0) | T = 1] which,

according to 2, is equal to the observed control mechanism values within the common principal

stratum of each treated unit.

Empirical estimation of the counterfactual of interest (Ŷi(1, Ŝi(0))) is conducted by first running

a regression of observed outcomes on covariate and mechanism values for treated units as in (7).

Using the coefficients from this regression (a1, b1, c1), we impute Ŷi(1, Ŝi(0)) using the same treated

unit covariates (as in (8)) and the matched control unit mechanism outcomes (where in (8) Si(0) =

E[Si(0) | T = 1] = Sobs
i (0) and Sobs

i (0) is the observed mechanism outcome of each treated units

respective matched control). Replacing the first term in (8), the empirical form for MATT becomes

MATT = E
{
E
[
Y obs
i (1)|Sobs

i (1) = s1, Xi = x, T = 1
]}
− E [f1(Si(0), Xi)] . (9)

Similarly, the empirical form of NATT becomes

NATT = E [f1(Si(0), Xi)]− E
{
E
[
Y obs
i (0)|Sobs

i (0) = s0, Xi = x, T = 1
]}

, (10)

where fi(Si(0), Xi) in (9) and (10) is equal to E [Yi(1, Si(0)) | Si(1), Xi = x, T = 1] from (8).

We again emphasize the intuition behind the counterfactual of interest, which can be used in

the estimation of both MATT and NATT . The regression imputation methods presented in (7)

and (8) allow us to address the question, “what would the outcomes for treated units have been
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had their respective covariates
(
Xobs

i |T = 1
)

and influences of these covariates on outcomes (b1)

remained the same, but their mechanism taken on the values that would have been observed had

they not been treated (S(0)|T = 1)?” We note that the difference between Sobs
i (1)|T = 1 (the

observed mechanism value of treated units) and Ŝi(0)|T = 1 (the estimated counterfactual values

of treated units, had they not been treated) represents the unit-level causal effect of treatment on

mechanism outcomes (T → S) .

3.3.3 Bias-Adjusted Mechanism Outcomes

Abadie and Imbens (2006) and Abadie et al. (2004) suggest the use of post-match regression bias

adjustments in the estimation of ATT to control for bias that remains from imperfect matching

in finite samples. We apply a similar method in the estimation of our counterfactual mechanism

outcomes.

Post-match bias-adjustment in estimation of ATT is conducted by first running a regression of

outcomes on matching covariates YT=0 = XT=0βC + ε. This regression estimates the impact (βC)

of the matching covariates on outcomes for the matched control sample. To impute the ATT coun-

terfactual of interest, βC is combined with the covariates from the treated units XT=1 to estimate

ŶBA = XT=1βC : what treated unit outcomes would have been had their matching covariates had

the same influence on outcomes as the control units. Note that if matching produces perfect bal-

ance across treated and matched control units then a counterfactual based on the observed values

of the matched control outcomes (Yi:T=0) will be identical to those estimated from the regression

bias adjustment procedure
(
Ŷi:BA

)
The estimation of our counterfactual of interest in (9) is a function of both b1 from (7) and

Ŝi(0)|T = 1. By Assumption 2, we can use the mechanism outcomes of the matched controls as the

counterfactual for treated units. However, if imbalance in the baseline mechanism covariates re-

mains after matching, we may be concerned that counterfactual mechanism values will be biased.9

We, therefore, estimate our counterfactual mechanism values

[
Ŝi(0)|T = 1

]
= Sobs

i:T=0 + µ̂0(Xi:T=1)− µ̂0(Xi:T=0) (11)

9If mechanism outcomes are state dependent, then imbalance is a concern. For instance, if, after matching,
unprotected tracts have lower baseline roadless volume, on average, than protected tracts, change in roadless volume
may be less (in absolute terms) in unprotected tracts, simply because they started with larger road networks.
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where µ̂0 represents the predicted values obtainedfrom combining the coefficients from a control

group regression, of mechanism outcomes on covariates, with the respective treated (µ̂0(Xi:T=1)) or

control group (µ̂0(Xi:T=0)) covariates. This procedure estimates the influence of baseline covariates

on mechanism outcomes for control units and uses these estimated values to impute what the

mechanism outcomes would have been had the control units been treated.

3.3.4 Standard Errors

To calculate the precision of our MATT estimates we base our standard error estimator on the

heteroskedasticity robust matching-based estimator suggested by Abadie and Imbens (2006).10

Our estimator is calculated in two stages to allow for heteroskedastic variances within and across

treatment arms. The variance for control units (for which comparison to MATT is not meaningful)

is calculated using a within treatment arm matching estimator. The Mahalanobis weighting matrix

from the original matching process (used to create the matched sample) is used to find the nearest

within treatment arm (unprotected) neighbor to estimate unit-level variances

σ̂2i:T=0 (Xi) = (Yi − Yl)2 /2, (12)

where Yl represents the outcome of the nearest neighbor to unit i. The treatment level variance is

then calculated

V̂T=0

( ̂MATT
)

=
∑
NT=0

λ2i · σ̂2i (Xi) , (13)

where λi = #Ci/NT=0, and #Ci is the number oftimes that control unit i occurs in the set (was

used as a match in the original matching specification).

The individual level variance for protected units is based on unit level deviations from the

estimated MATT

σ̂2i:T=1 (Xi) =
(
Yi − Ŷi(1, Ŝ(0))− ̂MATT

)2
. (14)

These unit level variances are then aggregated to calculate the treatment level (protected)

10A function that estimates the standard errors outlined in this section was programmed in R 2.11.1 and isavailable
from the author upon request.
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variance

V̂T=1

( ̂MATT
)

=
1

N2
T=1

∑
NT=1

σ̂2i:T=1 (Xi) . (15)

The final MATT standard error estimate is therefore

σ̂
( ̂MATT

)
=

√(
V̂T=0 + V̂T=1

)
.

4 Results

4.1 Empirical Estimation of MATT

We conduct two distinct analyses to estimate the MATT of our mechanisms of interest. First,

the mechanisms are considered separately and the procedure outlined in the preceding sections is

performed for each mechanism. Second, the mechanisms are considered jointly in the estimation of

each MATT via inclusion of all mechanisms in (7) and (8).

We begin by matching protected and unprotected census tracts using one-to-one Mahalanobis

covariate matching with replacement. The resulting matched set (identical to the sample used by

Andam et al. (2010)) comprises 249 protected and unprotected tracts, the covariate balance can

be seen in Table 2. Using post-match regression bias-adjustment, the estimated ATT is -1.27,

according to the poverty index. This result indicates that census tracts with at least 10% of their

area occupied by a protected area prior to 1980 had differentially greater levels of poverty reduction

(lower poverty index scores) between 1973 and 2000, on average, than comparable census tracts

that remained unaffected by protected areas (see Andam et al. (2010) for full details).

4.1.1 Counterfactual Mechanism Values

The counterfactual of interest necessitates estimation of mechanism outcomes for treated units,

had protection not affected the mechanism. For each mechanism, estimation of the counterfactual

entails a two-step process. First, we estimate a matched unprotected group regression

Si:T=0 = Xi:T=0β1C + ε (16)
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Table 2: Balance Results for Matched Set. Mahalanobis one-to-one covariatematching with replacement.

Mean Mean Diff. Norm. Mean eQQ %Improve
Covariate Status Prot. Unprot. in Means Diff. Diff. MeanDiff.

Poverty Index Unmatched 15.05 5.376 9.673 0.769 9.687
1973 Matched 15.05 15.240 -0.187 0.013 1.64 98.07%

% Forest 1960 Unmatched 0.523 0.117 0.406 0.734 0.405
Matched 0.523 0.488 0.035 0.054 0.035 91.38%

% Land Use Unmatched 0.093 0.304 -0.211 0.315 0.212
Capacity 1,2,3 Matched 0.093 0.12 -0.028 0.060 0.03 86.84%

% Land Use Unmatched 0.209 0.453 -0.244 0.330 0.245
Capacity 4 Matched 0.209 0.20 0.009 0.016 0.026 96.19%

% Land Use Unmatched 0.233 0.196 0.036 0.056 0.102
Capacity 5,6,7 Matched 0.233 0.243 -0.011 0.019 0.034 70.98%

Distance to Unmatched 58.53 34.87 23.670 0.286 23.62
Major City Matched 58.53 57.56 0.968 0.01 5.282 95.91%

Roadless Unmatched 1113000 66830 1046000 0.321 1035000
Volume 1969 Matched 1113000 681500 431600 0.110 440900 58.75%

where Si:T=0 and Xi:T=0 represent the observed mechanism and baseline covariate values, respec-

tively, of matched unprotected census tracts. The coefficients from (16) are then used to impute

counterfactual mechanism outcomes for each mechanism

[
Ŝi(0)|T = 1

]
= Xi:T=1β̂1C (17)

where Xi:T=1 are the observed covariate values of the protected census tracts (empirical analog to

equation (11))). Observed and counterfactual mechanism values for the protected census tracts

can be seen in Table 3. The imputed counterfactual mechanism values from (16) are then used

to calculate the counterfactual of interest: the outcomes for protected units, had protection not

affected mechanisms (Ŷi(1, Si(0))).

Columns (i) and (ii) of Table 3 list the observed and estimated counterfactual mechanism

values for the protected census tracts (see Table 4 for estimates of counterfactual mechanism values

when bias-adjustment is not implemented). The counterfactual for our proxy for tourism is straight

forward. Of the 122 census tracts that were impacted by a protected area with a park entrance, none

would have a park entrance in the absence of protection. The estimated counterfactual for change

in forest cover is significantly different from observed values as well. The average deforestation in

protected census tracts between 1960 and 1986 was only 6.7%. We estimate that, had protection not

affected deforestation, deforestation would have been approximately 23% (i.e., avoided deforestation
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between 1960 and 1986 due to the establishment of protected areas was approximately 16.3%).

Finally, we observe that there was greater infrastructure development (greater reduction in roadless

volume) in protected census tracts between 1969 and 1991. However, the counterfactual measures

of road networks are not significantly different from observed values.11

Table 3: Mechanism Results Using Mechanism Imputation

Single Mechanism All Mechanisms
(i) (ii) (iii) (iv) (v) (vi)

Baseline Counterfactual Mechanism Mechanism
Mechanism Mechanism Coefficient MATT Coefficient MATT

Park 122 0 -1.004 -0.492 -1.345 -0.619
Entrance (0.439) (0.448)

∆ Roadless -727,579 -674,147 2.694e-06 -0.143 2.790e-06 -0.148
Volume (0.447) (0.449)

∆ Forest -0.067 -0.23 0.627 0.103 0.124 0.02
Cover (0.439) (0.45)

(Heteroskedasticity robust standard errors)

4.1.2 Single Mechanism Estimation

In the single mechanism estimation the following procedure is run on each mechanism of interest

independently. We first estimate the influence of covariates and mechanism on outcomes using the

protected census tracts

Yi:T=1 = Xi:T=1β1T + Si:T=1β2T + ε (18)

where Yi:T=1, Xi:T=1 and Si:T=1 are the observed outcomes, matching covariates and mechanism

values for the protected census tracts,respectively. The counterfactual of interest is then estimated

by obtaining the fitted values from

Ỹi:T=1 = Xi:T=1β̂1T + Ŝiβ̂2T (19)

where Ŝi =
[
Ŝi(0)|T = 1

]
are the counterfactual mechanism values from (17), thus Ỹi:T=1 =

11Differences are significant when counterfactual mechanism values are estimated without bias-adjustment. See
Section 5.3.1 for results without mechanism imputation.
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Ŷi(1, Si(0)). MATT for each mechanism is calculated by subtracting the mean of the fitted values

(Ỹi:T=1) from mean of the observed protected tract outcomes (Yi(1, S(1)) = Yi(1)).

Results from the single mechanism estimation strategy can be found in Columns (iii) and (iv)

of Table 3. Column (iii) lists the estimated marginal impact of each mechanism (β̂2T from (19))

on poverty. Concordant with conjecture that protected areas have a positive impact on poverty by

attracting tourism, we find that protected census tracts that were impacted by parks with entrances

had lower poverty (by 1.04 according to the poverty index) than similar protected tracts. Because

no protected tract would have been influenced by a park entrance in the absence of protection, the

estimated MATT (column (iv)) is -0.492. In other words, tourism, as measured by park entrances,

accounted for approximately 40% of the poverty reduction associated with the establishment of

protected areas.

The marginal impact of infrastructure development also has the expected sign (Column (iii)).

Our results indicate that as road networks develop (roadless volume decreases) there is an asso-

ciated reduction in poverty. We estimate that, had protection not affected road development in

surrounding census tracts, there would have been less development in the absence of protection.

However, the difference between observed and counterfactual values is relatively small. The slightly

greater road development in protected census tracts accounts for a poverty reduction (MATT ) of

only -0.143 (approximately 11% of the total ATT ).

The results for change in forest cover reflect the conflicting impacts underlying deforestation.

There is a significant difference in observed and counterfactual deforestation in protected census

tracts. We estimate that, had protection not affected deforestation, over 22% of the protected

census tracts, on average, would have been deforested between 1960 and 1986 (compared to 6.7%

observed deforestation). Despite this stark difference the MATT of deforestation is quite small,

0.099, and indicates that the prevention of deforestation caused by the establishment of protected

areas had essentially no impact on poverty.

4.1.3 Joint Mechanism Estimation

In the single mechanism estimation strategy each mechanism is considered independently. However,

the estimated impact (according to β̂2T ) of a particular mechanism may be influenced by the

inclusion or exclusion of additional mechanisms in (18). By including all of the mechanism variables
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in (18) we allow the coefficients for each mechanism to reflect the presence of the other mechanisms.

For clarity we denote the park entrance, change in roadless volume and deforestation mechanism

variables as E, R and F respectively. The joint mechanism estimation analog to (18) is

Yi:T=1 = Xi:T=1β1T + Ei:T=1β2T +Ri:T=1β3T + Fi:T=1β4T + ε (20)

where all variables represent the observed values from the protected census tracts. The counterfac-

tual of interest for each mechanism is estimated in a series of three imputations

Ỹ E
i:T=1 = Xi:T=1β̂1T + Êiβ̂2T +Riβ̂3T + Fiβ̂4T (21)

Ỹ R
i:T=1 = Xi:T=1β̂1T + Eiβ̂2T + R̂iβ̂3T + Fiβ̂4T (22)

Ỹ F
i:T=1 = Xi:T=1β̂1T + Eiβ̂2T +Riβ̂3T + F̂iβ̂4T (23)

where Êi, R̂i and F̂irepresent the imputed mechanism values from (17) (i.e.,
[
Ŝi(0) | T = 1

]
for

the respective mechanisms). Equations (21) - (23) show that the counterfactual of interest for

each mechanism is estimated by substituting the imputed mechanism values (from (17) for the

mechanism of interest) into the respective equation, while leaving the covariates and complementary

mechanism values at observed levels.12 For instance, the counterfactual of interest for change

in roadless volume (Ỹ R
i:T=1) is calculated by plugging in the imputed counterfactual values for

change in roadless volume (R̂i) into the coefficients from (20), while leaving covariates (Xi:T=1)

and mechanism values for park entrances (Ei) and change in forest cover (Fi) at the observed levels

of protected census tract.

Results for the joint mechanism estimation strategy can be found in Columns (v) and (vi) of

Table 3. We find that inclusion of all mechanisms in (18) does change the estimated influence of each

mechanism (compare to Column (iii)): the coefficient on the park entrance mechanism increases in

absolute terms from -1.004 to -1.345 (indicating a relative increase in poverty reduction attributable

to tourism); the coefficient on the roadless volume mechanism increases from 2.694e-06 to 2.790e-06

(indicating a relative increase in poverty reduction attributable to infrastructure development), and

12A function that performs this iterative process was written in R 2.11.1 and is available from the author upon
request.
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the coefficient on the forest cover mechanism decreases from 0.627 to 0.124 (indicating a relative

decrease in poverty exacerbation attributable to forest cover changes).

Under the joint mechanism estimation we find that the MATT for the park entrance mecha-

nism increases, in relative terms, to -0.619. This result implies that tourism associated with the

establishment of protected areas accounts for approximately 49% of the estimated poverty reduc-

tion due to protection. Joint estimation also affects the MATT for the deforestation mechanism

which falls to 0.02. In other words, changes in forest cover from the establishment of protected

areas have almost no impact of poverty. Joint mechanism estimation has a trivial effect on the

MATT of roadless volume which increases, in absolute terms, to -0.148.

4.2 Summary of Results

We estimate the MATT for each of our mechanisms using both a single, and joint estimation

strategy. Our results indicate that, while there are some differences, the choice of strategy is not

driving the results or underlying implications. A priori, we prefer the joint estimation strategy

because each mechanism coefficient (and, therefore, each MATT ) accounts for the presence of the

other mechanisms.

Of the mechanisms we consider, tourism accounts for greatest MATT , in absolute terms, and

the greatest proportion of total poverty reduction due to the establishment of protected areas

(estimated in the ATT ). Nearly half of the poverty reduction associated with the establishment

of protected areas is accounted for by our proxy for tourism, the establishment of a park entrance

within a protected area. These results are concordant with anecdotal evidence, conjecture, and

findings from a previous study (Robalino and Villalobos-Fiatt, 2010).

The development of infrastructure in protected census tracts has a strong poverty reducing

influence as well (as measured by β̂3T ). However, because the establishment of protected areas

did not substantially increase the road networks in the affected census tracts, compared to our

counterfactual estimates, the MATT on poverty was modest.

We find that change in forest cover associated with the establishment of protected areas (com-

pared to counterfactual levels) has essentially no impact on poverty, as measured by the MATT .

By measuring the impact of reductions in deforestation on poverty, due to protection, we were

hoping to capture the impact of preserving ecosystem services. However, as mentioned in the In-
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Figure 3: Direct Acyclic Diagram (DAG) depicting two of the potential underlying effects (and direction) of

the change in forest cover mechanism. The the establishment of protected areas reduces deforestation T
(−)→ F .

This causal reduction in deforestation has two impacts. First, we expect an increase in ecosystem services

F
(+)→ ES which would lead to a positive impact on poverty (poverty reduction), ES

(+)→ Y . Second, we

expect the reduction in deforestation to decrease extraction profits F
(−)→ EP which would lead to a negative

impact on poverty (poverty exacerbation), EP
(−)→ Y . The relative magnitude of these countervailing effects

determine the estimated MATT .

troduction, there are likely countervailing mechanism effects of avoided deforestation, which we

believe are highlighted by our results. Figure 3 presents a DAG that depicts two of the potential

underlying impacts that avoided deforestation would likely have on poverty. The establishment

of protected areas reduces deforestation T
(−)→ F . This causal reduction in deforestation has two

impacts. First, we expect an increase in ecosystem services F
(+)→ ES which would lead to a positive

impact on poverty (poverty reduction), ES
(+)→ Y . Second, we expect the reduction in deforestation

to decrease extraction profits F
(−)→ EP which would lead to a negative impact on poverty (poverty

exacerbation), EP
(−)→ Y .13

Thus, without more data or assumptions, we cannot disentangle two competing explanations

for our results: (1) the effects on poverty from avoided ecosystem service losses and the opportunity

costs of foregone productive uses are both small or zero; or (2) the values of avoided ecosystem

service losses and of foregone agricultural uses are of opposite sign and approximately equal, thus

cancelling each other out. If one is willing to assert that restricting deforestation must have negative

effects on poverty in surrounding communities, one could then infer that the protection of ecosystem

services associated with the establishment of protected areas must provide countervailing poverty

reducing impacts.

13This mechanism channel captures the concern the land-use restrictions associated with the establishment of
protected areas may impose economic hardship by prohibiting extractive activities. Avoided deforestation provides
an indication that land-use laws were binding and, therefore, is likely a valid channel.

25



Draft Document. Not for Distribution. 9.22.11. Comments welcomed.

4.3 Robustness

4.3.1 Without Mechanism Bias-Adjustment

In Section 3.3.3 we motivate and describe the use of bias-adjustment techniques to impute counter-

factual mechanism values. We argue that, like the use of post-match regression bias-adjustments

in the estimation of average treatment effects, this technique provides a (more) unbiased estimate

of counterfactual mechanism values when imbalance persists post-matching (especially in baseline

mechanism covari- ates). We re-estimate all MATT s without using bias-adjustment, the results can

be found in Table 4. As expected, given the purpose of the bias-adjustment procedure, we find little

difference in counterfactual values for change in forest cover (compare Column (ii) in Tables 3 and

4), for which a high degree of balance in baseline measures is achieved (see Table 2). In addition,

because of the binary nature of the park entrance mechanism, the counterfactual values are identical

with, and without, bias-adjustment. However, the counterfactual values for the roadless volume

mechanism differ substantially. Without bias-adjustment the estimated counterfactual change in

roadless volume is only -447,024 (compared to -674,147 with bias-adjustment). In turn, there is

a much larger difference between observed and counterfactual roadless volume mechanism values

which, thus, leads to much larger, in absolute terms, estimate of the MATT (-0.7827). In other

words, by not using bias-adjustment the estimated proportion of poverty reduction in the ATT

attributable to protections causal effect on roadless volume, changes from approximately 11% to

61%. These results highlight that infrastructure development has a large influence on poverty

reduction (as measured by β̂3T ). However, the magnitude of the associated MATT is determined

by the counterfactual mechanism value, which we believe is best estimated using the bias-adjustment

framework that we outline in Section 3.3.3.

4.3.2 LNATT

The estimation of MATT and NATT requires the imputation of counterfactual mechanism values

which are, by definition, unobserved. Our data provide a unique opportunity to estimate the causal

effects of protection net of tourism under less restrictive assumptions than those used in the main

analyses. We exploit the fact that some protected census tracts are observed in the absence of a park

entrance mechanism. For this subset of the data Si(1) = Si(0) by definition. In other words, the
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Table 4: Mechanism Results Without Mechanism Imputation

Single Mechanism All Mechanisms
(i) (ii) (iii) (iv) (v) (vi)

Baseline Counterfactual Mechanism Mechanism
Mechanism Mechanism Coefficient MATT Coefficient MATT

Park 122 0 -1.004 -0.492 -1.345 -0.619
Entrance (0.439) (0.546)

∆ Roadless -727,579 -447,024 2.694e-06 -0.756 2.790e-06 -0.7827
Volume (0.54) (0.54)

∆ Forest -0.067 -0.223 0.627 0.099 0.124 0.019
Cover (0.439) (0.55)

(Heteroskedasticity robust standard errors)

potential park entrance mechanism value for protected units that did not receive an entrance is same

under protection as it would have been in theabsence of protection (Si(1) = Si(0) = s0). Therefore,

we can identify this principal stratum ({Si(1) = Si(0) = s0}) without invoking Assumption 2 or

3. In addition, we observe Yi(1, Si(0)) for this subset of the data and, therefore, do not need

Assumption 4 to impute the counterfactual of interest.

The local NATT (LNATT ) can be estimated14

LNATT = E{E[Yi(1, Si(0))− Yi(0, Si(0))|Si(1) = Si(0) = s0]} (24)

for the subset of data in the principal stratum{Si(1) = Si(0) = s0} (Flores and Flores-Lagunes,

2011). The fact that we observe protected census tracts that were not affected by a park entrance

means that we can take the simple difference in these protected tract outcomes (Yi(1, Si(0))) and

their matched controls (Yi(0, Si(0))), both of which are observed in the data. We estimate the

LNATT for this subgroup to be -0.6122. Flores and Flores-Lagunes (2011) note that the LNATT

represents the local ATT (LATT ) for this subgroup because there is no mechanism effect for this

group so Yi(1, (Si(0)) = Yi(1). Therefore, under Assumption 1, LNATT = LATT = E[Yi(1) −

Yi(0)|Xi] for this subgroup.

We note that the estimated LNATT for park entrances is very close to the NATT from the

main analysis (-0.6122 and -0.659, respectively). We believe that the similarity between the two

14This framework follows directly from the framework for the local net average treatment effect (LNATE) estab-
lished by Flores and Flores-Lagunes (2011).
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estimates provides evidence that the assumptions and methods employed in the main analyses are

providing unbiased estimates of the respective mechanism effects. We can make further comparisons

to the MATT estimates using the estimated LNATT and an additional assumption of constant

individual net effects (Flores and Flores-Lagunes, 2011)

Assumption 5 Yi(1, Si(0))− Yi(0, Si(0)) = C, for all i.

Under this assumption we can define LNATT = NATT and, therefore, estimate MATT =

ATT − LNATT . Using this framework, the estimate of park entrance MATT (-0.6658) is very

close to the estimate from the main analysis (-0.619).

5 Discussion

One of the goals set forth by the 5th World Parks Congress is that the establishment of pro-

tected areas should strive to reduce, and in no way exacerbate, poverty. To realize this goal, a

greater understanding of the mechanisms through which protected areas affect poverty is needed.

Recent impact evaluations from three developing countries have found that the establishment of

protected areas has been associated with poverty reduction, on average, in surrounding commu-

nities (Canavire-Bacarezza and Hanauer, 2011; Andam et al., 2010; Sims, 2010). Although the

average impact results from these studies are important, understanding the mechanisms through

which protected areas affect poverty is arguably more important.

Using recently developed quasi-experimental methods, and rich biophysical and demographic

data from Andam et al. (2010), we quantify the mechanism impacts of tourism, infrastructure

development and ecosystem services on poverty due to the establishment of protected areas in

Costa Rica prior to 1980. To capture the causal effects of these respective mechanisms, we use

the establishment of park entrances and changes in road networks and forest cover as mechanism

proxies. Our results indicate that approximately 50% of the poverty reduction estimated by Andam

et al. (2010) can be attributed to tourism. Infrastructure development played a relatively small

role in poverty reduction from protected areas. Finally, ecosystem services from impacts on forest

cover accounted for no net effect on poverty, which implies either ecosystem services contribute

nothing to poverty reduction or that their impact is equivalent to the damage done by protection’s
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restrictions on productive uses of the forest. The remaining estimated poverty reduction comes

from unidentified mechanisms, which may include mechanisms other than the three we identified

(e.g., social capital) or pathways not captured by our mechanism proxies (e.g., ecosystem services

that do not depend on avoided deforestation). Future studies should seek richer measures of our

mechanism variables. Richer mechanism variables will facilitate, for example, more precise measures

of the impacts that enhanced supplies of ecosystem services from the establishment of protected

areas have on poverty.

An understanding of both the heterogeneous impacts and mechanisms of protected areas might

greatly improve the economic outcomes associated with the future establishment of protected areas.

Nevertheless, the way in which protected areas affect surrounding populations will likely vary across

countries. Costa Rica is a country renowned for its ecotourism investments and thus one should

be cautious about extrapolating our results to protected area networks elsewhere. However, given

the unresolved debate in the scientific and policy literature about the role of ecotourism in poverty

alleviation, we believe our study highlights new avenues for research through the use of credible

empirical designs aimed at identifying causal effects of ecotourism on poverty.

To truly understand the mechanisms through which environmental policies like protected areas

affect poverty, we need to build the evidence base on a policy-by-policy and country-by-country

(or region-by-region) basis. Ultimately, we need fully elaborated theories and structural empirical

models through which we can fully understand the multiple causes of environmental and social

outcomes and the tradeoffs among different policies. At this time, however, we are far from realizing

this goal. Our best hope is to develop better theory and empirical evidence about the effects of

individual causes (e.g., protected areas, incentive programs, decentralization) and slowly assemble

a better understanding of the way in which our world operates.
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