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Using Auxiliary Population Samples for Sample-Selection Correction
in Models Based on Crowd-sourced Volunteered Geographic Information

ABSTRACT

Citizen science (CS) projects (and some social media) offer selected samples with exten-
sive information about human interactions with the natural world. We independently survey
(1) members of the eBird CS project and (2) a general population sample, eliciting awareness
and/or levels of engagement with the eBird project in each case. The general-population
sample allows an ordered-probit model to explain propensities to engage with eBird, which
we transfer to predict selection-correction terms for our independent sample of eBird mem-
bers. We illustrate, using a direct question posed only to our eBird member survey sample
about the radius of their spatial consideration set for a typical one-day birding excursion.
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1 Introduction

Observations on human interactions with nature are becoming increasingly plentiful with the

growth in volunteered geographic information (VGI) that people contribute to citizen science

(CS) projects (and via some types of social media).1 VGI data provide a vast amount of

granular individual-level information about people’s interactions with environmental goods

and services—a potential gold mine of data for environmental and resource economists.

However, the amount of VGI data a single individual provides depends on their level of

engagement with the platform, be it a citizen science project or social media platform. In

addition, these data pertain only to the contributing set of users, be they citizen scientists,

social media users, etc. These are “samples of convenience” rather than random samples

from the overall population. Sample selection bias is therefore an obvious concern. Users’

intensity of engagement or participation with the project or platform affects the likelihood

they appear in any data set used for statistical analysis. With careful attention to selection

corrections, to control for intensity of engagement or participation, CS and other sources of

VGI data have the potential to be a valuable research resource for environmental economists

seeking to provide scalable and policy-relevant inferences.

Non-representative voluntary surveys are often used by environmental economists to col-

lect data. As a consequence, variety of different methods have been developed to correct for

respondents’ differing propensities to respond to the survey and therefore to be part of the

estimating sample. These methods certainly include the the traditional method of Heckman

(1979).2 Or, alternative ad hoc approaches have been proposed, as in Cameron and DeS-
1“Citizen science” or “community science” (CS) projects recruit volunteers from the general population

to help scientists gather data about the natural world. CS projects have proliferated because of the growing
ability of participants to contribute real-time field observations using convenient smart-phone applications.
As of February 2020, there are now more than 2,000 active CS projects, according to the Citizen Science
Association (see CitizenScience.Org), 448 are registered in the federal crowd-sourcing and CS registry
(see CitizenScience.Gov/Catalog/#)

2Heckman (1979) is a foundational paper for the least-squares context, now cited more than 10,000 times
in Web of Science.

1

CitizenScience.Org
CitizenScience.Gov/Catalog/#


hazo (2013), Johnston and Abdulrahman (2017) and Kolstoe and Cameron (2017). Proper

attention to systematic selection, and corrections (if indicated) can be important. Failure to

account for sample selection can mis-represent the influence of low- and high-intensity par-

ticipants, and may bias estimates of the population-level behavioral parameters of interest

to economists. For data collected from CS participants, self-selection bias may arise from

the potential correlation between the unobserved components of (a) their propensities to

engage with the CS project to different degrees, and (b) their outcome variable of interest

in statistical models concerning the environmental good being studied.

In this paper, we develop a new approach to sample-selection correction for CS/VGI

data. The goal of this approach is to make any potential inferences based on such data

more useful for policy-makers. We illustrate our selection-correction strategies for a sample

of birdwatchers who participate in the eBird citizen science project. The eBird project has

already proven itself to be a valuable CS/VGI data source for both natural scientists and

social scientists alike (e.g. Rosenberg et al. (2019), Kolstoe and Cameron (2017), Kolstoe

et al. (2018), Roberts et al. (2017)). Furthermore, bird-watching is a very popular pastime.

About 45.1 million people observed birds in the US, both around home and away from

home, according to the U.S. Fish & Wildlife Service’s 2016 survey on Fishing, Hunting, and

Wildlife-Associated Recreation (FHWAR) report.

We use, in tandem, a survey of eBird CS members in the Pacific Northwest and a com-

pletely independent nationally representative sample from a survey of the general population

of the U.S. Both of our samples include specific information from respondents about the de-

gree to which they participate in the eBird project, so that we can distinguish both the

extensive margin (whether an individual participates in eBird at all), and the intensive mar-

gin (the degree to which they engage with this CS project).

We propose three candidate strategies for sample-selection correction. At the most basic

level (with its details therefore relegated to an appendix), we use our two samples to con-
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struct estimated heterogeneous sampling weights (for different levels of engagement intensity,

controlling for the mix of individual characteristics in each sample). These weights serve to

adjust the relative frequencies at different engagement levels in our survey of eBird members

so they more-closely match the analogous relative frequencies at each level in our general

population sample.

Our second strategy, which is a more-structural approach, adapts the standard two-stage

Heckman correction method. We replace the Heckman first-stage binary probit selection

equation with an ordered-probit selection equation to explain six levels of engagement inten-

sity. This selection equation still permits the calculation of an “inverse Mills ratio” term like

the one that is key to the Heckman two-stage method. However, we estimate the selection

equation using our general population sample and then transfer it to our eBird member

survey sample. As with standard selection-correction methods, this approach relies upon

strong assumptions about the joint error distribution and allows only the expected value of

the outcome variable (i.e. the intercept of the outcome model) to be distorted by sample

selection bias.

Our third approach is more ad hoc. We transfer an “engagement propensity function,”

estimated using our general-population sample, to our eBird member survey sample. De-

meaned individual predicted engagement propensities in the eBird member survey sample,

normalized on the mean engagement propensity in the qBus general population sample, are

then allowed to shift both the intercept and slope parameters in the outcome equation of

interest. We can then simulate the desired outcome equation if everyone in the eBird sample

shared the same engagement propensities, identical to the mean selection propensity in the

general population sample.

To demonstrate our three types of selection-correction strategies for CS data employing

an auxiliary general population sample, we model one particular outcome variable from our

eBird survey: the radius of the respondent’s so-called consideration set for one-day birding
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excursions. This variable is complementary to the idea of the relevant spatial market extent

(or economic jurisdiction) for a specific recreational destination, as discussed by Loomis

(1996), Walsh et al. (2011), and (Glenk et al., 2020, section 3.1.2). Our study presents a

unique opportunity to address consideration sets because we included in our eBird member

survey a specific question about how far each respondent would be willing to travel on a

typical one-day birding excursion.3

Most previous research concerning recreational destination choices (e.g. Dundas and von

Haefen (2020)) has tended to use a common consideration-set radius for all individuals, of-

ten choosing a distance that has been used in other studies concerning similar environmental

goods. Sometimes an assumption about a single common consideration-set radius is loosely

informed by the upper percentiles of the observed marginal distribution of distances actu-

ally travelled across all trips in the data, as in Kolstoe and Cameron (2017). Other recent

analyses have grid-searched across possible consideration-set radii, and employed for all in-

dividuals the single radius that maximizes the model’s likelihood (Holland and Johnston,

2017). Here, we seek to identify systematic variations across our sample of eBird members

in their directly elicited individual consideration-set radii. Our fitted radius function may

then be transferable to other samples of birders from the general population, but only if the

estimates are corrected for self-selection bias in our sample of eBird citizen scientists.

The notion of a consideration-set radius for an individual is also somewhat related to

other concepts in the revealed and stated preference literatures. For example, Sen et al.

(2014) adapt the terminology of “trip generation functions” (TGF) from the transportation

economics literature on destination choices. A TGF, however, models the number of trips

by an individual as a function of the observed travel time for a visit (controlling for origin
3The question explicitly excludes trips to destinations with reported rare-bird sightings. The relevant

consideration-set radius for an individual, in those special cases, can be expected to be much larger. This
would be consistent with the distinction between iconic and non-iconic destinations in the market-extent
literature for such destinations.(Glenk et al., 2020, footnote 5).
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and destination attributes). This TGF approach does not focus on the maximum distance

willingly traveled by an individual. Nor does it emphasize heterogeneity in this maximum

distance across individuals with different characteristics.4

The spatial stated-preference literature also offers another related concept, referred to

as “distance decay,” reviewed by Glenk et al. (2020), Demand for visits to recreational sites

is understood to decline with distance, holding everything else constant. However, distance

decay can also reflect the fact that destinations at a greater distance face an increasingly

large set of potential substitution destinations because the area of a circle around a given

origin location increases much more quickly than the radius of that circle.5 Nevertheless,

there appear to be very few examples in the literature where researchers have sought to

identify individual-level heterogeneity in distance decay. A partial exception is Logar and

Brouwer (2018), who find heterogeneity between urban and rural areas. In contrast, the

individual consideration-set radius model we consider in this paper acknowledges that there

can be systematic differences across individuals in these radii, rather than just systematic

differences over space that are shared by all individuals at a given location.

In Section 2 of this paper, we generalize the familiar binary-probit first-stage selection

equation to a six-level ordered-probit selection equation. We then explain how to use this

ordered-probit selection equation, estimated for one sample and yielding an inverse Mills

ratio function, can then be transferred to an independent sample. We also adapt to this two-

sample context an ad hoc alternative selection-correction method based on demeaned selec-

tion propensities. We also develop heterogeneous sampling weights based on ordered-probit

models to describe eBird engagement intensity (fitted separately to the general-population
4However, an estimated TGF model could presumably be solved for the average travel time (and therefore

approximately the average distance) at which expected trips fall to zero, conditional on origin and destination
attributes. But in such a case, the origin attributes would typically be medians or proportions of the
population within an origin area, rather than individual characteristics.

5The average radius around an origin at which predicted demand drops to zero could also be solved from
an estimated willingness-to-pay function that includes distance as an argument.
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sample and the eBird member survey sample). We relegate the details of our weighting

strategy to an online appendix. Section 3 briefly discusses our estimated selection models,

and Section 4 discusses our “outcome” model for heterogeneous consideration-set radii for

birding excursions. We compare parameter estimates and predicted consideration-set radii

when the model is estimated both naively and with our different types of selection-correction

strategies. Section 5 concludes and recommends strongly that future general-population sur-

veys like the FHWAR be expanded to include questions about engagement with CS projects

related to ecosystems services that influence the demand for recreational uses of the natural

environment.

2 Strategies for Dealing with Systematic Sample Selec-

tion in eBird data

Our “eBird member survey” sample is self-selected, consisting only of eBird members who

chose to respond to our survey. These birders are also likely to participate in the eBird

project with a different mix of engagement levels than might be expected for members

of the general population. Specifically for this study, over several waves of the Qualtrics

Omnibus (qBus) survey, we also independently surveyed more than 4000 respondents from

that general-population panel. Online Appendix A offers some further discussion of our

qBus sample, and Table A2 contrasts a simple binary indicator for eBird citizen-science

participation, CS, with the greater level of detail in our six ordered categories of engagement

intensity, CS6, elicited from both the qBus data and our sample of eBird members.6

As noted in the introduction, standard selection-correction models use a binary selec-

tion model. In this paper, we increase the level of detail by switching to an ordered-probit
6The Qualtrics Omnibus surveys have been discontinued, but there remain numerous other Omnibus

options. See Online Appendix A, Table A3.
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selection model, using six categories for our “selection into citizen science project participa-

tion intensity” model where eBird is the specific citizen science project in question.7 Our

general-population survey elicits six levels of eBird engagement intensity, and our eBird

member survey questions elicit four corresponding levels of eBird engagement intensity, con-

ditional (obviously) on at least some level of participation in eBird. Earlier binary selection

models focus only on the “extensive margin”—the choice between participation versus non-

particiation. Our additional level of detail about engagement intensity provides unusual but

valuable information about the “intensive margin” of participation in eBird, for both of our

samples.8

2.1 Selection in the general-population qBus sample

For the i = 1, ..., N individuals in our general population (qBus) sample, let citizen science

participation intensity, CS6i, take one of six levels, from “unfamiliar with the project” to

“report virtually all of my observations.” For everyone, we have the same set of variables on

sociodemographics and income, Zi, that we will use to explain eBird participation intensity,

where respondents i = 1, ..., r participate in eBird at one of four different levels and respon-

dents i = s, ..., N do not participate in eBird (but may either have heard about eBird, or

not). If we sort these observations in decreasing order of participation intensity, the data for
7We will assume, in this proof-of-concept example, that respondents to the qBus questions are essentially

a representative sample of the general population, and respondents to the analogous questions posed to our
eBird member survey are essentially a representative sample of eBird members. Unlike our previous research
with eBird data, the current analysis is not affected by substantial shares of missing or out-of-date home
address information needed to allow calculation of actual travel distances from each person’s home to all of
their relevant birding destinations.

8Practitioners should be aware that an adjustment may be necessary, to the intercept of the fitted
propensity-to-engage with eBird, depending upon how the ordered probit algorithm has been parameter-
ized. Comparability is necessary across specifications if one wishes to compare fitted “propensity” estimates
across ordered-probit selection models with differing numbers of levels.
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the selection model can be written as:

[CS6]N×1 =



6
...
5
...
4
...
3
...
2
...
1
...



, [Z]N×k =



Z11 . . . Zk1
...

...
Z1r . . . Zkr
Z1s . . . Zks
...

...
Z1N . . . ZkN



For the qBus sample, we can model an underlying continuous latent propensity (denoted

with an asterisk) to be a member of eBird as CS6∗
i = Ziγ + ηi. We have observations at all

six levels of participation intensity for the qBus sample. If the qBus sample also included

information on our outcome variable of interest and a vector of regressors, called just yi

and Xi for now, there would be enough information in the qBus sample alone to estimate a

selectivity-corrected outcome model, yi = Xiβ + ε. We could implement either a standard

binary-probit selection model, or the six-level ordered-probit selection model we develop in

this paper. But in this case, there are no data in the qBus sample for y or the X variables.

That information is available only for our eBird sample.9

2.2 Outcome variable for eBird member survey sample

For the j = 1, ..., J observations from our eBird member survey sample, we have Zj sociode-

mographic and income variables that conform to the Zi variables in the qBus sample, but
9A researcher could attempt to collect all the variables provided by our eBird member survey and its linked

eBird citizen-science observations from a large sample of respondents drawn from the general population.
This would likely be impractical and inefficient, however, given the number of survey questions that would be
required (and hence the cost of using a representative panel) as well as the potential for recall bias concerning
the respondent’s history of birding activity.
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we have no information about anyone for whom CS6j = 1 or CS6j = 2 (i.e. everyone in this

sample is a member of eBird). In this case, the process of selection into eBird membership

cannot be modeled using the eBird data alone because there is no variation in the selection

outcome for this group. However, we have data on an outcome variable of interest for this

sample, yj (in our illustration, the individual’s typical consideration-set radius—their max-

imum one-way distance for a regular one-day birding trip), along with a set of regressors,

Xj, to explain this outcome, where none of this information is available for the qBus sample.

Our eBird data for CS6j, Zj, yj and Xj can be summarized as:

[CS6]J×1 =



6
...
5
...
4
...
3
...


, [Z]J×k =

Z11 . . . Zk1
...

...
Z1J . . . ZkJ

 , [y]J×1 =

y1...
yJ

 , [X]J×m =

X11 . . . Xm1
...

...
Z1J . . . ZmJ



For the j = 1, ...J observations in our eBird member survey sample, we assume the

underlying population relationship between CS6 and the Z variables is identical to the

analogous relationship in the qBus sample. If the complete six-level ordered probit selection

equation could be estimated for the j = 1, ..., J observations in the eBird member survey

sample alone, the relevant pair of equations for our selection-correction model would be:

CS6∗
j = Zjγ + ηj (1)

yj = Xjβ + εj

(ηj, εj) ∼ BV N(0, 0, ση, σε, ρ)

Of course, this complete joint model cannot be estimated using our eBird members survey

sample alone, because there are no non-members of eBird in the j = 1, ...J observations from
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that survey (i.e. there are no observations with CS6j = 1 or CS6j = 2.10

2.3 Transferring a fitted selection equation

Again, the challenge for selection-correction for our eBird member survey sample is that we

do not have data for the yi outcome variable and the Xi explanatory variables for people

in the qBus general population sample who happen to be eBird members. We have these

variables only for our completely separate sample of eBird members, where this sample

allows linkages to extensive profile and birding-related data collected by eBird. If we can

assume that participation in eBird among the general-population qBus sample follows the

same data-generating process as the one that determines participation in eBird among people

in our eBird member survey sample, perhaps we can assume likewise that the underlying

statistical relationship (CS6∗, y) ∼ BV N (Zγ,Xβ, 1, σε, ρ) applies for both the i = 1, ..., N

members of our qBus sample and for j = 1, ..., J for members of our eBird sample.11

The crux of this approach is that we use the γ̂q estimates from an ordered-probit model

fitted to the qBus data on CS6i and Zi to construct a fitted index for each member of the

eBird member survey sample, Zj γ̂q, that takes account of the potentially different pattern

of Zj characteristics in our eBird member survey sample. We can use this fitted index in

the selection correction process for the eBird sample, even though we have no data from

non-eBird members in the eBird member survey sample. With the bivariate normality

assumption, the conditional expected value and variance for yj will be calculated as follows,
10For readers who may wish to review the conventional Heckman two-step sample-selection correction

procedure in more detail, we provide a summary in Online Appendix B.
11Mechanically, it would be possible to pool our two samples and use the combined dataset to estimate one

common selection equation. The advantage of using the qBus sample, alone, for the selection equation is that
the qBus data represent a random sample from the general population. Pooling it with the eBird sample,
however, produces a dataset that no longer represents the general population. One could, potentially, weight
the eBird member survey sample according to the proportion of eBird members in the qBus sample, but this
would still leave a pooled sample for the selection equation that is not randomly selected from the general
population.
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noting the j subscripts for the eBird data.12

E [yj|yj observed] = E
[
yj|CS6∗

j > −Zj γ̂q
]

= Xjβ + ρσελ
(
−Zj γ̂q

)
(2)

= Xjβ + βλλ
(
−Zj γ̂q

)
V ar [yj|yj observed] = V ar

[
yj|CS6∗

j > −Zj γ̂q
]

= σ2
y

[
(1− ρ2δ

(
−Zj γ̂q

)]
The inverse Mills ratio (IMR), denoted as λ(−Zj γ̂q)) is equal to φ(−Zj γ̂q)/(1−Φ(−Zj γ̂q)) =

φ(Zj γ̂q)/Φ(Zj γ̂q), where φ(·) is the standard normal probability density function (pdf) and

Φ(·) is the corresponding cumulative density function (cdf). The desired unconditional (i.e.

non-systematically selected) expectation for yj can be simulated, counterfactually, by setting

ρ = 0, so that E [yj|yj observed] = Xjβ and V ar [yj|yj observed] = σ2
y.

The calculated IMR selectivity-correction term based on the γ̂q ordered-probit estimates

from the qBus sample and the Zj variables from the eBird sample can be calculated as

φ(Zj γ̂q)/Φ(Zj γ̂q). As in the case of a standard binary probit selection correction, this term

can be appended to the list of regressors, Xj, in the outcome equation of interest.13,14

12We note that it is not uncommon for samples to have error distributions with different scales. Probit
(and ordered-probit) models normalize their parameters on the error standard deviation for the model, so
the estimated coefficients in the selection models we estimate using the qBus data are known only up to a
scale factor. Each γ coefficient is implicitly γ∗/ση, where the ση applies to the qBus data. If the value of ση is
larger or smaller for the eBird sample, employing the coefficients estimated on the qBus sample would lead to
predicted engagement intensities in the eBird sample that are biased proportionately downward or upward,
respectively. Joint estimation using the two samples is feasible in principle, but prohibitively difficult in the
current case because of the strategy we must use to deal with missing variable values, discussed later in this
paper. Here, therefore, we assume the qBus and eBird selection-equation error distributions are identical.

13It will be appropriate, in future research, to graduate to a full-information maximum likelihood joint
estimation of the selection equation and the outcome equation. The ordered-probit form for the selection
model is atypical, so no packaged algorithms exist to permit FIML estimation of a “selection-on-ordered-
probit” model. We note that there is a packaged algorithm for “ordered probit models with selection,” but
this is not what we need. That model has a conventional binary-probit selection model and an outcome
equation that should be estimated as an ordered-probit model.

14In Online Appendix C, we provide a detailed discussion of the types of outcome models where may be
appropriate to contemplate just adding an IMR term to correct for sample selection. Here, we simply note
that this straightforward strategy is likely to be suitable only if the latent continuous dependent variable
selection equation and the observed (or latent) continuous dependent variable in the outcome equation can
be modeled as involving error terms that are plausibly jointly normally distributed.
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2.4 Ad hoc alternative: Interactions with demeaned propensities

In lieu of a formally derived Heckman-type selection-correction model, an alternative ad

hoc approach can be employed. We use the estimated engagement propensity model from

our first-stage selection model to calculate fitted propensities to engage with eBird at each

of six levels (in the qBus sample) or predicted propensities to engage with eBird at four

levels (in the eBird member survey sample). For any individual in the eBird member survey

sample with a given set of Xj variables, their “predicted engagement propensity” can then

be used just like any other variable that controls for individual-specific heterogeneity, such

as indicators for gender, age, employment status, or educational attainment.

In a true random sample from the general population, every individual in the population

is equally likely to show up on the sample. If we treat our qBus sample as representative of

the general population, the predicted engagement intensities for our eBird member survey

sample can be demeaned relative to the average fitted engagement propensity for the general-

population qBus sample. This fitted demeaned engagement propensity variable can then

be allowed to shift all of the β parameters in the outcome model. After estimation, this

demeaned response propensity can be counterfactually set to zero, effectively dropping all of

the interaction terms in which it is involved. The resulting outcome equation, without these

interaction terms, then applies (in principle) to the case where everyone in the estimating

sample shares an engagement propensity equal to the average engagement propensity in the

general population qBus data—namely, for a “representative” sample.15

15For identification, one or more exogenous explanatory variables should be included in the Ziγ index that
yields the fitted engagement propensities, but excluded from the Xjβ index that represents the conditional
expected value of the outcome variable of interest.
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3 Selection Model: Implementation

3.1 Available variables for selection model

Our selection equation requires conformable measures of the Zi and Zj variables (i.e. these

variables must be measured in the same way for the qBus and eBird member survey datasets).

For the qBus data, unless one wishes to pay for additional questions, it is necessary to make

do with the default set of sociodemographic and geographic characteristics that are included

for all qBus panelists. Thus we aggregate the Z variables for both the qBus and the eBird

member survey to the same level. This yields conformable sets of indicator variables for the

different levels of each of seven individual characteristics that can be allowed to influence

the different intensities of engagement in the our ordered-probit selection equation.

The available variables for our selection model, conformably aggregated across our two

samples, are as follows (see Table 1 for additional details):

• Annual birding excursions of more than one mile from home (12 bins)

• Whether the individual has participated in the Audubon Christmas Bird Count (0/1)

• Whether the individual also hunts birds (0/1)

• Gender = female (0/1)

• Age (6 brackets)

• Race (4 groups)

• Ethnicity (2 groups)

• Income (5 brackets)

• Geography (4 regions)

• Employment status (5 categories)

• Educational attainment (5 levels)

13



Across observations with no missing values, for the qBus data (N=4,161) and for the eBird

member survey data (J=1,081), Table 1 summarizes the proportions of observations in each

set of indicator variables. Note that respondents in the general-population qBus sample have

two more response options than respondents in the eBird member survey sample. The qBus

respondents can also choose the engagement categories “Unfamiliar with eBird CS project” or

“Heard of eBird but not a member.” As a consequence, it is not possible to compare directly

the proportions in the other four eBird-member engagement-intensity categories across the

qBus and eBird samples. However, if we calculate the simple qBus conditional distribution

solely for engagement levels 3 through 6 (where a qBus respondent is at least a member of

eBird), then the relative frequencies for engagement levels 3 through 6, (proportion in qBus,

proportion in eBird), for these four engagement intensities are (0.273, 0.398), (0.252, 0.275),

(0.265, 0.179), and (0.210, 0.146). While these (marginal) relative proportions differ within

each pair, it is also possible that the types of people who respond to the qBus survey may

differ from the types of people who are enrolled in eBird and responded to our survey of a

random sample drawn only from eBird members.
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Table 1: Descriptive statistics (proportions) for variables in first-stage
Bird engagement intensity models. Availability indicators are proportions
of total sample; group shares are proportions of the available data

qBus sample eBird sample
proportions proportions

Engagement data available 1.000 1.000
1=Unfamiliar with eBird CS project 0.802 0.000
2=Heard of eBird but not a member 0.083 0.000
3=eBird member, but report rarely 0.031 0.391
4=eBird member, report < 1/2 of birds 0.029 0.280
5=eBird member, report > 1/2 of birds 0.030 0.177
6=eBird member, report almost all birds 0.024 0.152

Travel 1+ mile data available 0.442 0.769
Trips 1+ miles = 0 0.348 0.277
Trips 1+ miles = [1,4) 0.063 0.113
Trips 1+ miles = [4,7) 0.065 0.065
Trips 1+ miles = [7,10) 0.048 0.025
Trips 1+ miles = [10,21) 0.076 0.093
Trips 1+ miles = [21,41) 0.065 0.065
Trips 1+ miles = [41,72) 0.063 0.078
Trips 1+ miles = [72,124) 0.065 0.067
Trips 1+ miles = [124,174) 0.063 0.052
Trips 1+ miles = [174,238) 0.063 0.032
Trips 1+ miles = [238,364) 0.062 0.054
Trips 1+ miles = 365 0.017 0.078

Audubon CBC data available 1.000 1.000
Has participated in CBC 0.092 0.528

Bird hunting data available 1.000 1.000
Hunts birds 0.224 0.073

Gender data available 1.000 0.994
Gender: Male 0.489 0.427
Gender: Female 0.511 0.573

Age data available 1.000 0.993
Age: 24 years or less 0.125 0.018
Age: 25 to 34 years 0.224 0.065
Age: 35 to 44 years 0.196 0.089
Age: 45 to 54 years 0.135 0.146
Age: 55 to 64 years 0.175 0.311
Age: 65 years and up 0.145 0.370

Income data available 1.000 0.804
Income: Less than 25K 0.179 0.072
Income: 25 K to 50 K 0.219 0.203
Income: 50 K to 75 K 0.189 0.231
Income: 75 K to 100 K 0.141 0.173
Income: 100 K or more 0.272 0.321
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Region data available 1.000 1.000
Region: West 0.225 1.000
Region: Northeast 0.186 0.000
Region: Midwest 0.217 0.000
Region: South 0.372 0.000

Empl. status data available 1.000 0.849
Empl. status: Full time 0.473 0.359
Empl. status: Part time 0.132 0.080
Empl. status: Looking for work 0.057 0.008
Empl. status: Unemployed 0.145 0.066
Empl. status: Retired 0.193 0.487

Education data available 1.000 0.976
Education: High school 0.226 0.036
Education: Some college 0.356 0.158
Education: College grad 0.263 0.288
Education: Masters degree 0.118 0.396
Education: Doctoral degree 0.038 0.121

Observations 4161 1081

3.2 Estimation results for selection model

3.2.1 Ordered-probit qBus propensities to engage with eBird

The qBus sample has virtually complete data for its Zi variables (other than the annual

number of days with birding trips more than one mile from home). This completeness stems

from the fact that all of the standard demographic variables used in our selection model are

part of the “profile” data supplied for each qBus panelist, rather than being information we

sought to elicit via our own questions. There are considerably more missing values for the

Zj variables from our eBird member survey, since all of the sociodemographic information

for that sample was collected during our survey, rather than being part of a standard profile.

At least one relevant Zj variable value is missing for 509 of the 1,081 respondents to our

eBird member survey.

Our approach for dealing with these missing values is to transfer from the qBus sample,
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to each respondent in the eBird member survey sample, the richest possible specification

of the ordered-probit selection model given the non-missing data for that particular eBird

respondent.16 To accommodate all of the patterns of missing values encountered in our

eBird member survey data, we must estimate ordered-probit specifications with 30 different

combinations of explanatory variables using the qBus data (as documented in Online Ap-

pendices E and F). An analogous set of 30 ordered-probit models, but this time with just

four engagement-intensity levels, can be estimated using the eBird member survey sample.

These eBird ordered-probit models are required solely for the construction of our heteroge-

neous population weights, the discussion of which has been relegated to the Appendices.17

To illustrate just one of the 30 corresponding engagement-intensity models for the two

samples, Table 2 presents the most complete specification that can be estimated using both

the qBus and the eBird member survey samples. The complete set of Zj variables is available

for only 572 of the 1,081 eBird member survey respondents.18

16In an ideal world, all respondents would answer all questions in the survey and then only a single
ordered-probit specification would be necessary. We could just estimate a simpler model based on the subset
of data available for all respondents but this selection (based on item non-response) could introduce further
non-representativeness.

17See Online Appendix G for the models using eBird data. Our heterogeneous population weights for
the eBird member survey sample are described in Online Appendix H. As a technical note regarding the
correspondence between the qBus and eBird models, Stata’s default parameterization of the thresholds
between ordered-probit intervals is not comparable between the six-interval qBus models and these four-
interval eBird member survey models. E.g. for the qBus models, “cut5” is the threshold between engagement
levels 5 and 6, whereas for the eBird member survey models, “cut3” is the corresponding threshold between
these same two levels. A simple change-of-origin restores comparability. The polr package in R handles
ordered-probit models, with its “method” argument set to “probit.”

18At the other end of the spectrum of data completeness in the eBird member survey sample, Online
Appendix E contains an analogous table for the largest model that can be estimated for every respondent in
the eBird member survey sample without being limited by missing data. This selection model can employ all
1,081 eBird member survey respondents who answered the question about our outcome variable of interest,
but must employ far fewer explanatory variables Zj .
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Table 2: Estimated coefficients, ordered-probit engagement-level model; exam-
ple with maximum heterogeneity (6-level model using full qBus sample; 4-level
model for the subset of 572 eBird survey respondents with complete data for
this least-restricted specificationa)

Ordered
probit

qBus data

Ordered
probit

eBird data

Travel 1+ mile data available 0.136 (0.661) - b
Trips 1+ miles = 0 -0.870 (0.667) -2.828∗∗∗ (0.228)
Trips 1+ miles = [1,4) -0.260 (0.678) -3.113∗∗∗ (0.268)
Trips 1+ miles = [4,7) -0.554 (0.683) -1.862∗∗∗ (0.287)
Trips 1+ miles = [7,10) -0.388 (0.681) -2.243∗∗∗ (0.372)
Trips 1+ miles = [10,21) -0.0566 (0.667) -1.820∗∗∗ (0.250)
Trips 1+ miles = [21,41) -0.0189 (0.668) -1.496∗∗∗ (0.262)
Trips 1+ miles = [41,72) 0.287 (0.665) -1.354∗∗∗ (0.254)
Trips 1+ miles = [72,124) 0.518 (0.663) -0.711∗∗∗ (0.258)
Trips 1+ miles = [124,174) 0.400 (0.663) -0.644∗∗ (0.293)
Trips 1+ miles = [174,238) 0.487 (0.662) -0.582∗ (0.321)
Trips 1+ miles = [238,364) 0.730 (0.661) -0.422 (0.286)
Trips 1+ miles = 365 0.699 (0.687) - c

Has participated in CBC 1.916∗∗∗ (0.0706) 0.170 (0.107)
Hunts birds 0.0640 (0.0965) -0.0767 (0.181)
Gender: Female -0.169∗∗∗ (0.0509) -0.111 (0.107)
Relative to omitted category: 45 to 54 years
Age: 24 years or less 0.539∗∗∗ (0.0991) 0.994∗∗ (0.424)
Age: 25 to 34 years 0.545∗∗∗ (0.0871) 0.293 (0.216)
Age: 35 to 44 years 0.360∗∗∗ (0.0894) 0.325∗ (0.192)
Age: 55 to 64 years -0.207∗ (0.110) -0.117 (0.159)
Age: 65 years and up -0.298∗∗ (0.134) 0.146 (0.201)

Relative to omitted category: $50K to $75K
Income: Less than $25K -0.0590 (0.0853) -0.0751 (0.254)
Income: $25K to $50K -0.0192 (0.0774) 0.143 (0.150)
Income: $75K to $100K -0.0423 (0.0867) -0.0150 (0.158)
Income: $100K or more -0.0118 (0.0784) 0.143 (0.138)

Relative to omitted category: West
Region: Northeast 0.164∗∗ (0.0737) - c
Region: Midwest -0.0186 (0.0754) - c
Region: South 0.0552 (0.0660) - c

Relative to omitted category: Full time
Empl. status: Part time 0.0409 (0.0751) -0.148 (0.188)
Empl. status: Looking for work -0.173 (0.108) -0.819 (0.650)
Empl. status: Unemployed -0.109 (0.0805) -0.0110 (0.217)
Empl. status: Retired -0.148 (0.107) -0.325∗∗ (0.163)

Relative to omitted category: 4-year college degree
Education: High school -0.0294 (0.0754) 0.693∗∗ (0.309)
Education: Some college -0.128∗ (0.0671) 0.00246 (0.170)
Education: Masters degree 0.269∗∗∗ (0.0826) 0.259∗∗ (0.121)
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Education: Doctoral degree 0.165 (0.124) 0.00792 (0.165)

Ordered-probit thresholds
cut1 1.279∗∗∗ (0.113) -2.651∗∗∗ (0.288)
cut2 1.895∗∗∗ (0.116) -1.309∗∗∗ (0.279)
cut3 2.258∗∗∗ (0.119) -0.363 (0.274)
cut4 2.690∗∗∗ (0.123) - d
cut5 3.341∗∗∗ (0.132) - d

Observations 4161 572
Max. log-likelihood -2390.32 -582.44
∗p < 0.05, ∗∗p < 0.01, ∗∗∗p < 0.001 a Specifications with fewer explanatory variables
can use more observations in the eBird dataset. Other models to accommodate all of the
patterns of missing variables in the eBird data are relegated to the Online Appendices.
bToo few missing values. cEquals 0 for all. dOnly 4 levels.

To predict participation intensities for respondents to our eBird member survey, we use

the γq coefficients estimated from the qBus specification, such as the first set of results in

Table 2 (or the relevant version of the rest of the 30 models, to match the pattern of item non-

response for each observation in the eBird member survey sample). We use these parameter

estimates to calculate four predicted engagement-level probabilities (for construction of our

weights), as well as predicted engagement intensities and predicted IMR terms to be used

for sample-selection corrections in outcome equations that rely upon only the eBird member

survey data. The second set of results in Table 2 is estimated using the eBird member

survey data alone. Again, we need these eBird ordered-probit models only to calculate fitted

engagement-level probabilities within the eBird member survey sample, an ingredient in our

heterogeneous sampling weights described in Online Appendix H.19

One of the key innovations in this paper is the specification of this sample selection model

where the selection equation is an ordered-probit model. Of course, a binary probit selection

equation could still be estimated and used in an analogous manner, although it contains less
19To construct our weights to be applied to each observation in the eBird member survey sample, we

require engagement-level probabilities for our eBird sample that are (a) “expected,” i.e. predicted, based on
parameter estimates transferred from the qBus sample, and (b) “observed,” i.e. fitted, based on parameter
estimates directly from the eBird sample alone.
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information.20

In comparing the coefficient estimates for each sample in Table 2, we note numerous

differences. These differences do not imply, however, that it is inappropriate to transfer our

qBus estimates to the eBird member survey sample for use in our selection-correction pro-

cedures. The eBird member survey sample is also a selected sample for these ordered-probit

engagement-intensity models. Our qBus model covers all six engagement level propensities,

including the roughly 88% of the qBus general population sample who are not eBird mem-

bers. In transferring the qBus propensity parameters to our eBird member survey sample,

it is imperative to preserve the influence of the first two, non-eBird-member, engagement

levels in our general-population qBus data.

Consider the signs and significance of the individual coefficient estimates in Table 2. For

respondents who report having traveled at least one mile from home to see birds over the last

year, the more days per year a respondent has made such a trip, the greater their propensity

to engage with eBird. These effects are statistically significant only in the eBird member

survey sample, however. Past participation in the Audubon Christmas Bird Count increases

engagement propensity in the qBus sample, but this effect is not apparent in the eBird

member survey sample. Whether or not the respondent also hunts birds has no discernible

effect on eBird engagement intensity in either sample, although the point estimate is positive

for the qBus sample and negative in the eBird member survey sample.

Female qBus respondents have statistically lower eBird engagement intensities than

males, but the same is not true for women in the eBird member survey sample. Indi-

viduals who are less than 44 years old have higher propensities to engage with eBird, with

the largest effect for eBird members 24 years of age or younger. Older respondents in the
20Online Appendix I digresses to explore a variety of the intermediate components of our models. For

example, in terms of in-sample fitted engagement propensities, our ordered-probit selection model tracks the
conventional binary-probit selection specification closely when each is applied to the same sample of qBus
respondents (although the ordered-probit model predicts somewhat greater propensities at the low end of
the range).
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qBus survey have significantly lower eBird engagement propensities.

Income, aggregated into five brackets, does not appear to influence eBird engagement

propensity in either sample. However engagement propensities are statistically significantly

higher in the Northeast region of the U.S. than elsewhere. In the qBus sample, employment

status seems to have no effect on eBird engagement propensities, but in the eBird member

survey sample, being retired (as opposed to being employed full time, the omitted category)

decreases eBird engagement propensities (where these estimates control for age group and

annual frequencies of trips of more than one mile to see birds).

In the qBus sample, compared to individuals with a four-year college degree (the omit-

ted category), those with only some college have lower engagement propensities. For both

samples, having a Masters degree increases eBird engagement propensity.21

3.2.2 Transferring qBus selection model to eBird member survey sample

We next use the assumption that for each individual in our eBird member survey sample,

we can transfer the relevant set of γ̂q parameters estimated using the qBus data. The

qBus selection model to be transferred needs to be estimated using the same set of non-

missing regressors, so that we have exactly the necessary information to calculate a predicted

propensity index, Zj γ̂q, that exploits as much information as we possess about that individual

eBird member’s sociodemographic characteristics.22

21In our eBird member survey sample, only about 3.5% of respondents have just a high school education or
less, so perhaps not much should be read into the statistically significantly positive effect of lower educational
attainment on eBird participation propensities in the eBird member survey sample (where respondents were
required to be 18 years or older). If school-based eBird projects recruit 18-year-olds still in high school,
however, this could account for the greater eBird engagement propensities in this group.

22Online Appendix I also includes a comparison of the predicted inverse Mills ratios based on the binary-
probit and ordered-probit selection models when the parameters estimated for the qBus sample are trans-
ferred to the eBird member survey sample. In this case, the ordered-probit coefficients tend to predict lower
IMRs than do the binary-probit coefficients, at least over the upper half of the distribution. Keep in mind
that the selection process for the eBird sample is actually the compound effect of selection into eBird and
selection into our sample of survey respondents. To the extent that the sample from our eBird member
survey does not represent the population of eBird members, there may be a second layer of selection to
consider. We ignore that additional complexity in this paper.
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Figure 1 displays smoothed densities for the marginal distributions across the relevant

sample (i.e. the degree of heterogeneity) across respondents in the fitted (or predicted)

probabilities of being at each of the four engagement levels (3, 4, 5 and 6), conditional on the

individual being a member of eBird. Panel A shows the fitted individual probabilities of being

at each engagement level for the qBus sample. Panel B shows the same for the eBird member

survey sample. Panel C shows the predicted probabilities of being at each engagement level

for the eBird member survey sample, calculated by transferring the parameters of the relevant

ordered probit model estimated using the qBus sample.

4 Outcome Model: Consideration-set Radii

4.1 Available variables for outcome model

This section illustrates the use of our predicted, rather than estimated, IMR terms in a

model that explains the maximum distance that people state they would typically consider

traveling for a one-day birding excursion. This model is estimated using only our eBird

member survey sample. As noted in the introduction, consideration sets for destination-

choice models are related to the concepts of market extent, trip-generating functions, and

distance-decay. The summary statistics for the eBird-only data available for these models

are given in Table 3.

The variables available to use as regressors in our consideration-set radius model are

different than those used in our ordered-probit models to explain levels of eBird engagement

intensity. For our engagement intensity models, we were limited to variables that were

available, and could be measured conformably, for both the qBus sample and the eBird

member survey sample, given our need to perform a “model transfer.” We have richer data

from the eBird member survey that was not available in the qBus sample. For example,

our eBird member survey elicits income in much finer brackets than we could use in the
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Figure 1: Predicted probabilities for engagement levels 3, 4,
5, and 6. Panel A: fitted engagement level probabilities for
qBus sample; Panel B: fitted engagement probabilities for the
eBird sample; Panel C: predicted engagement probabilities for
the eBird sample, based on an ordered-probit model estimated
using the qBus sample.
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Table 3: Descriptive statistics: Variables for outcome model, elicited from
eBird member survey sample for n = 1,081 respondents who answered the
question about maximum one-way distance for a birding day-trip

mean sd
Dependent variable (market extent, lower bound, chosen interval):
Self-reported maximum radius of travel in miles 83.283 58.104
Explanatory variables:
Empl. Status: Employed 0.373 0.484
Income data available 0.804 0.397
Income in 10k, If Reported 7.011 5.891
Gender: Female 0.570 0.495
Age: Less than 45 years 0.171 0.377
Age: More than 64 years 0.367 0.482
Education: Grad school 0.505 0.500
No Interest: Perching birds 0.057 0.233
No Interest: Other game birds 0.111 0.314
Selection-correction options:
Binary probit IMR 2.035 1.212
Adjusted ordered probit IMR 1.668 0.978
Engagement propensity (demeaned using qBus mean) 0.657 1.261
Observations 1081

engagement intensity models, so we convert the income bracket data into an approximate

continuous income variable.

We also take advantage of our eBird member survey data concerning eBirders’ interests

in different species categories. For various categories of bird species, between 6% and 11%

of eBirders report that they have no interest in that category. The least popular category in

our eBird member sample, for example, is “game birds other than waterfowl” (e.g. pheasants,

turkeys, grouse or partridges). This information about the goals of individual birders ties

our analysis to the notions explored in Swait et al. (2020), who find that benefit variations

associated with distance depend upon people’s goals in their recreational pursuits.

In the specific context of birding, the question of the relevant consideration sets for birders

has bearing on the potential “active use” versus “passive use” (option, bequest, or existence)

values of environmental projects to protect or enhance local wild bird populations. It is

likewise relevant to calculation of the welfare impacts of wholesale shifts in the geographic
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ranges of different bird species in response to climate change. (Birds are highly mobile and

are likely to relocate more quickly than most bird-watchers, especially if climate change

accelerates.)

4.2 Estimation results for the outcome model

Our dependent variable for these models, the maximum distance considered for a typical one-

day birding trip, is elicited in “distance brackets” in our eBird survey. The exact wording of

the question is: “If you are NOT making a special trip to try to see a reported rare bird,

what is the greatest distance you would consider traveling, one way, for a regular single-

day birding trip?” The lowest category is “10 miles or less” so no answers of exactly zero

are observed. We thus assume that these distances are strictly positive. Given that the

boundaries for these brackets are known, a reasonable estimation method assumes that the

latent continuous dependent variable is conditionally lognormally distributed. An interval-

data regression model can then be estimated by maximum likelihood methods.23

Model 1 in Table 4 is a naive specification to explain consideration-set radius (maximum

willingness to travel to see birds) with no corrections. The other columns show several alter-

native types of corrected models. Model 2 is an otherwise naive specification that employs

only our constructed weights, as detailed in Online Appendix H. Models 3 through 5 con-

tinue to employ these weights. Model 3 includes an IMR variable based on a conventional

binary-probit selection equation, and Model 4 employs our novel ordered-probit selection
23Stata’s intreg estimator is available for such models. The survival package in R, with its survreg function,

would appear to handle similar interval-data regressions, with its “dist” argument set to “gaussian.” Were we
to resort to FIML estimation of a joint model for the pooled samples, we could possibly entertain an interval
regression specification with extra probability at zero. Our survey includes a question that reads: “If you
travel more than one or two miles from home to go birding, what is your most frequent mode of travel for
these birding trips?” Less than 6% of respondents selected the answer: “I never travel more than one or two
miles for birding.” Still, this admits for trips to closer destinations. We could also look for eBird members for
whom every birding report is identically geo-located, although we would have to assume that this location
was their home, to conclude that their maximum historical travel distance has been zero. Ultimately, the
notion of consideration sets elicited from our eBird respondents is prospective, not revealed from their past
behavior, so we do not attempt to implement a zero-inflated interval-regression specification in this study.
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equation. Finally, Model 5 shows the results from our ad hoc selection-correction strategy

that interacts each main determinant of consideration-set radius extent with a demeaned

predicted engagement propensity (based on our adjusted ordered-probit selection specifica-

tion estimated on the qBus sample and transferred to the eBird member survey sample).24

Ad hoc correction specifications like Model 5 are potentially helpful in contexts where the

error term in the outcome equation does not have an explicit (or at least an underlying) nor-

mal distribution—as is the case with destination-choice models estimated using the standard

random utility method (RUM).

In the models reported in Table 4, our explanatory variables include whether the eBird

member is currently employed, whether they were willing to report their income in our eBird

survey, the level of that income, their gender, their membership in three broad age brackets

and two educational attainment categories, as well as whether they specifically express no

interest in each of two categories of bird species.25

24For Models 2 through 5 in Table 4, the weights are designed to correct for differences in observable
determinants of engagement intensities among eBird members, to make this particular sample of eBird
members more representative of engagement intensities among eBird members in the general population (i.e.
in the qBus sample, in this case).

25Our survey elicited levels of interest in five categories of species, but for only two categories does disin-
terest have statistically significant effects on consideration-set radii. We have also explored other potential
explanatory variables, but exclude them because they have persistently statistically insignificant coefficients
across a wide variety of specifications.
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Table 4: Consideration-set radius models without and with engagement-intensity weights and either sample selection
corrections or interactions between all regressors and demeaned ordered-probit selection propensity. Dependent variable:
logarithm of maximum one-way distance willingly traveled on a typical birdwatching day-trip.

(1) (2) (3) (4) (5)
Naive Weights

only
Binary
probit
IMR

Ordered
probit
IMR

Demeaned
propensity

Main variables

Empl. Status: Employed -0.0351 -0.0613 -0.0872 -0.0934 -0.299∗
(0.0696) (0.0973) (0.0943) (0.0936) (0.154)

Income data available -0.429∗∗∗ -0.362∗∗ -0.342∗ -0.354∗∗ -0.223
(0.127) (0.180) (0.176) (0.175) (0.186)

ln(Income in 10K, if reported) 0.218∗∗∗ 0.171∗∗ 0.156∗∗ 0.158∗∗ 0.0628
(0.0533) (0.0730) (0.0718) (0.0710) (0.0887)

Gender: Female -0.127∗∗ -0.123 -0.0374 -0.0410 0.000944
(0.0590) (0.0796) (0.0787) (0.0783) (0.106)

Age: Less than 45 years 0.185∗∗ 0.225∗∗ 0.167 0.137 -0.317
(0.0835) (0.112) (0.106) (0.108) (0.197)

Age: More than 64 years -0.0489 -0.114 -0.0287 -0.103 -0.0110
(0.0713) (0.0982) (0.100) (0.0961) (0.115)

Education: Grad school 0.113∗ 0.0132 -0.0649 -0.0642 -0.259∗∗∗
(0.0598) (0.0751) (0.0741) (0.0748) (0.0958)

No Interest: Perching birds -0.811∗∗∗ -0.862∗∗∗ -0.847∗∗∗ -0.829∗∗∗ -0.749∗∗∗
(0.148) (0.198) (0.205) (0.202) (0.190)

No Interest: Other game birds -0.634∗∗∗ -0.660∗∗∗ -0.577∗∗∗ -0.578∗∗∗ -0.549∗∗∗
(0.107) (0.130) (0.131) (0.130) (0.127)

Continued on next page
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Constant 4.066∗∗∗ 4.170∗∗∗ 4.494∗∗∗ 4.403∗∗∗ 4.102∗∗∗
(0.0972) (0.127) (0.135) (0.131) (0.140)

Selection-correction strategies

Binary probit IMR -0.169∗∗∗
(0.0305)

Ordered probit IMR -0.386∗∗∗
(0.0689)

Interactions between main variables and demeaned engagement propensity
(demeaned using qBus sample mean)

Empl. Status: Employed × Engagement prop. (demeaned) 0.185
(0.158)

Income data avail. × Engagement prop. (demeaned) -0.120
(0.0756)

ln(Income in 10K, if reported) × Engagement prop. (demeaned) 0.134∗
(0.0692)

Gender: Female × Engagement prop. (demeaned) 0.224∗
(0.117)

Age: Less than 45 years × Engagement prop. (demeaned) -0.00451
(0.0733)

Age: More than 64 years × Engagement prop. (demeaned) -0.0223
(0.0607)

Education: Grad school × Engagement prop. (demeaned) 0.0176
(0.0551)

No Interest: Perching birds × Engagement prop. (demeaned) -0.231
(0.175)

Continued on next page
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No Interest: Other game birds × Engagement prop. (demeaned) 0.160
(0.107)

Constant × Engagement prop. (demeaned) 0.282∗∗∗
(0.0813)

lnsigma
Constant -0.0803∗∗∗ -0.0583∗ -0.0788∗∗ -0.0808∗∗∗ -0.105∗∗∗

(0.0237) (0.0306) (0.0313) (0.0310) (0.0310)
Observations 1081 1081 1081 1081 1081
Log Likelihood -2411.41 -2429.96 -2409.82 -2408.03 -2382.37
AIC 4844.83 4881.92 4843.64 4840.05 4806.74
BIC 4899.67 4936.77 4903.47 4899.88 4911.44
Weighted? No Yes Yes Yes Yes

Note: Standard errors in parentheses. ∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001
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Compared to Model 1, Model 2 employs our calculated sample weights—based on rela-

tive fitted engagement-level probabilities in the general population, as opposed to this eBird

member survey sample. Recall that women represent about 57% of the eBird sample, but

only 51% of the qBus general population sample. The only notable difference in the esti-

mates, with the inclusion of weights, is that the coefficient on the female indicator, which

was negative and statistically significant at the 5% level in the unweighted model, becomes

statistically insignificant in all other specifications. Given this difference, we retain these

weights in subsequent specifications and consider the ways in which the results for Models

3, 4, and 5 are different from those for Models 1 and 2.

IMR coefficients. Models 3 and 4 in Table 4 are the two IMR-based selection-corrected

models that rely on the strong assumption of bivariate normal errors for the latent engage-

ment intensity variable and the interval-censored outcome variable. The coefficient of interest

is that on the relevant fitted inverse Mills ratio. In two-stage methods, this coefficient is the

estimate of ρσε = βλ, as in equation (3). Given that the error standard deviation, σε, must be

positive, the sign of this compound parameter implies the sign of ρ, the correlation between

the errors in the selection and outcome equations.

Our negative IMR coefficients in Models 3 and 4 imply that unobserved factors that

make a respondent more likely to be intensely engaged with eBird also make them willing

to travel less far on a typical one-day birding trip. We must acknowledge that Models 3 and

4 treat these second-stage predicted IMR variables as non-stochastic (thereby understating

the amount of noise in the model). Nevertheless, these negative IMR coefficients are strongly

strongly statistically significantly different from zero.26

A priori, we expected (if anything) that the propensity to participate in eBird would be

positively associated with a respondent’s consderation-set radius, since latent birding avidity
26FIML estimation of the joint model for engagement propensity and consideration-set radii could remedy

this estimated-regressors problem and should be pursued in future applications where hypothesis testing is
particularly important for policy.
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could be a potentially important omitted variable. It is thus somewhat counter-intuitive to

find negative coefficients on our sample-selection correction terms. Instead of birding avidity,

the relevant unobserved heterogeneity might include the opportunity cost of time (or perhaps

unobserved age-related technical sophistication in using the online eBird app, or for online

surveys in general).

Employment status. None of Models 1 through 4 in Table 4 suggest that employment

status has a statistically significant effect on consideration-set radii for birders. However,

Model 5, using our ad hoc correction of interacting each of the regressors with the demeaned

engagement propensity variable, suggests that for the general population, consideration-

set radius is smaller by about 30% if the respondent is currently employed. This is not

surprising. Employed individuals are likely to have less free time for all leisure activities,

including birding day-trips.

Income data availability indicator and level of income, if known. For all but

Model 5, compared to respondents who decline to provide such data in the eBird member

survey, those who do provide income data report consideration-set radii that are smaller

by about 34% to 43%. However, this negative effect in these specifications is offset by the

positive effect of income (when reported) on consideration-set radius—a 1% higher income

corresponds to a radius that is larger by about 0.15% to 0.22%. This may seem plausi-

ble because higher-income respondents likely have less-binding budget constraints for travel

expenses.27 However, Model 5 suggests that in the general population, income has no sta-

tistically discernible effect on consideration-set radii for birding trips.

Gender. The point estimate for the effect of being female on consideration-set radius

is estimated to be negative in Models 1 through 4 (although the estimate is statistically
27Compared to respondents who withhold their income data, the positive effect of greater income overcomes

the negative effect associated with the provision of any income data when income reaches roughly $21,400
to $26,200. Mean reported household income in the sample is about $87,200, and the minimum reported
income is $18,000, so the effect of additional income on consideration-set radius is positive for most of the
sample.
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significantly negative only in Model 1). The estimated effect of gender changes sign in

Model 5, but remains insignificant, suggesting that gender has no effect on consideration-set

radius in the general population.

Age. Models 1 and 2, which do not correct for systematic selection, suggest that being

less than 45 years old (compared to the omitted category of 45 to 64 years old) is associated

with a consideration-set radius that is larger by about 18% to 23%, but this effect disappears

in Models 3 through 5 that explore alternative remedies for systematic selection.

Education. Relative to the omitted category of eBird members with college degrees or

less, Model 1 implies that having attended at least some graduate school increases expected

consideration-set radius by 11%, significant at the 10% level. Models 2 through 4 suggest

that graduate school has no statistically significant effect on radius, but Model 5 implies that

in the general population, graduate school is actually associated with a strongly statistically

significant 26% smaller radius.

Disinterest in particular categories of species. Across all five specifications, re-

spondents to our eBird member survey who reveal that they are not interested in perching

birds or not interested in “other game birds” (i.e. game birds other than waterfowl), have

statistically significantly smaller consideration-set radii. The magnitudes of these effect are

also similar across all specifications. Reporting a lack of interest in either of these categories

of birds shrinks expected radius substantially, by 58% to 86%.

Model 5’s interaction terms. Among the selection-correction models, Models 3 and

4 rely upon a strong assumption of bivariate normal errors and slope coefficient that are

identical in the eBird sample and the general population. Under these specific conditions,

adding to the model a single (appropriate) IMR term, with an unrestricted coefficient, would

yield slope coefficients for the other explanatory variables that are uncontaminated by sample

selection. The inverse Mills ratio strategy can be described as a structural approach to sample

selection correction.
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In contrast, Model 5 is ad hoc, unstructured and highly flexible. This approach makes a

different, but perhaps equally strong assumption—that each of the parameters of the outcome

model varies linearly with the respondent’s predicted propensity to engage with eBird, the

latent continuous variable that drives people’s intensive margin of participation in eBird at

various engagement levels. The linear relationship between each estimated coefficient and

the demeaned predicted engagement propensity may be positive or negative or statistically

zero. The counterfactual we wish to simulate is the set of outcome-model parameters that

would obtain if everyone in the estimating sample shared the mean engagement propensity

in the general population (i.e. the qBus sample).

Prior to estimation, we have transformed each respondent’s predicted engagement propen-

sity (the Zj γ̂q “index”) by taking its deviation from the population mean (i.e. from its mean

in the qBus sample, the average value of Ziγ̂q). In the population, the demeaned engagement

propensity variable would be zero, but our estimating sample is not representative of that

population. In Table 3, note that the average demeaned engagement propensity in the esti-

mating sample is positive, at about 0.657. The people who appear in our estimating sample

from our eBird member survey understandably have a higher-than-average propensity to

engage with eBird.

When we include in Model 5 the interaction terms between each basic regressor and

our demeaned engagement propensity variable, the coefficients on the non-interacted basic

regressors in the outcome model can be interpreted as the simulated values of those coeffi-

cients at the mean engagement propensity in the population. In the bottom half of Table 4,

for Model 5, we show the estimated coefficients on the interaction terms, which reveal how

the effects of each basic regressor vary systematically with the individual’s predicted en-

gagement propensity, where that predicted engagement propensity is based on our adjusted

ordered-probit engagement intensity model.

The interaction terms in Model 5 suggests that while income has no statistically dis-
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cernible effect on consideration-set radius at the mean engagement propensity in the general

population, the effect of income on this radius increases systematically with the respon-

dent’s predicted engagement propensity. There is a similar effect for being female. The most

statistically significant interaction term in Model 5, however, is the (implicit) interaction

between the demeaned engagement propensity variable and the intercept term in the basic

specification. This interaction is just the demeaned engagement propensity variable itself.

The strongly statistically significant positive coefficient on this term implies that expected

consideration-set radius is larger as the demeaned engagement intensity increases. Given

that demeaned engagement intensity in the estimating sample has an average value that is

positive, the eBird member survey sample, without correction, overstates the consideration-

set radii for birders in the general population.

One important observation about the demeaned engagement propensity variable in Model 5

is that the ordered-probit inverse Mills ratio is very close to being a linear transformation

of this propensity variable over the relevant range in our data. The correlation between the

two variables is -0.9955. For corrected predictions about consideration-set radii in Model 4,

we eliminate the IMR term by setting its coefficient to zero (i.e. by assuming that ρ is

zero, so that ρσε = 0). In Model 5, if we were to include just the demeaned engagement

propensity variable without its interactions with the basic regressors, we would zero out the

demeaned propensity variable itself to produce corrected predictions about consideration-set

radii. Given the degree of correlation between the two variables, either type of correction

would be expected to have about the same effect on the vector of coefficients on the basic

variables. Thus we can view Model 5 as being, in effect, a generalization of Model 4, with

additional flexibility to permit not only the intercept to differ (with either the inverse Mills

ratio or the demeaned engagement intensity), but all the slopes as well.
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4.3 Predicted values for the outcome variable, with and without

corrections

The point of correcting for systematic sample selection is to adjust the statistical relationships

observed in the selected sample to better reflect the general population. In this section, we

compare the predicted consideration-set radii for selected specifications.28 The top graph in

Figure 2 shows the predicted radii from Model 4 in Table 4 plotted against the predicted

radii for the same observations under the naive Model 1 with no weighting or any correction

for sample selectivity in the eBird citizen science sample. Model 4, with its ordered-probit

inverse Mills ratio term, predicts consideration-set radii that are uniformly larger than those

predicted by Model 1. This difference arises because of the negative error correlation between

the selection equation and the outcome equation, as implied by the negative coefficient on

the inverse Mills ratio term. An individual who is more likely to show up in the eBird sample

than their observed characteristics would predict also tends to have a smaller consideration-

set radius than their characteristics would predict.

However, the effects of systematic selection on predicted consideration-set radii implied

by Model 4 are notably opposite from the effects implied by the results shown in the bottom

graph in Figure 2. This second graph features the radii predicted by Model 5 in Table 4, where

each explanatory variable is also interacted with the demeaned engagement propensity vari-

able. This demeaned propensity is then set to zero to simulate the expected consideration-set

radius if everyone in the sample had a fitted engagement intensity equal to the average in

the qBus sample. These fitted values, likewise plotted against those for the naive Model 1,

show that the radii in the general population are smaller than they are in the selected sam-

ple of birding enthusiasts in the eBird sample. The pattern of clustering in these predicted
28Recall that the dependent variable in the specifications in Table 4 is in log form. Exponentiation of

a fitted log value yields the median of the fitted level. One must multiply by the fitted value of (σ2/2)
to recover the mean of the fitted conditional distribution, due to the skewness of the implied log-normal
distribution.
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Figure 2: Predicted consideration set radii for 1,081 observations
in the eBird sample based on Model 4 versus Model 5 in Table 4
plotted against the predicted radii from the naive Model 1 (45-
degree lines added).
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values stems from the fact that the demeaned engagement propensity is a function mostly

of indicator variables, and the interaction terms in the outcome model for consideration-set

radii are likewise mostly indicator variables. Clearly, effect of the negative error correlation

between the selection and outcome equations is more than offset by the heterogeneity in the

slope coefficients that is a function of predicted engagement propensities.

Figure 3 compares the two marginal distributions of predicted consideration-set radii for

birding trips, with and without selection corrections. It is unsurprising that basing estimates

of radii for one-day birding excursions on a sample of eBirders would likely overpredict the

radii for such trips in a general population sample with the same characteristics. However,

the absence of a spike at zero in Figure 3 is notable, given that roughly 12% of the general

population that does not report even incidental attention to wild birds over the past year.

The absence of a point mass at zero for our eBird data on subjective consideration-set

radii probably means that our corrected estimates cannot be scaled to 100% of the overall

population. These radii will likely be relevant for a subset of the population.29

5 Conclusions and Recommendations

We intersect the sample selection literature and the literatures on consideration sets for

destination-choice models. Our goal is to augment the research tool-kit for using citizen

science data—with improved confidence that any insights to be derived are more suitable for

scaling to the general population or for use in benefits transfer exercises. The two main tasks

in the paper are to (1) illustrate some new sample selection correction techniques we have

developed to allow for the use of data from auxiliary general-population surveys to correct
29Nevertheless, we note that even consideration-set radii of zero, for actual travel away from home to enjoy

“active use” of wild birds, do not preclude the possibility of “passive use” values (option, bequest, or existence
values) for wild birds in the region. Birds are also mobile, not just people. The presence of wild birds within
any given radius will also affect the probability that these birds may be viewed in one’s backyard, without
the necessity of travel.
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Figure 3: For 1,081 eBird member survey observations: Marginal
distribution of predicted consideration-set radii according to our
naive Model 1 overlaid by selection-corrected predictions of these
radii for (birders in) the general population based on Model 5.

for sample selection present in citizen science data, and (2) model heterogeneity in the radius

of consideration sets for regular bird-watching day-trips in Oregon and Washington states, as

an illustration. Our contrasting results for the consideration-set radius model demonstrate

that corrections for sample selection (and weighting for engagement intensity) may be very

important for scaling to the general population, or transferring to other contexts, any results

derived from citizen science data.

The key takeaway from our illustrative consideration-set radius “outcome” model is the

potential importance of non-random selection into citizen science projects. Preferences in

the general population are important if government agencies, for example, are to make good

decisions about the efficient allocation of resources to protect wild birds, a public good. How

to provide the appropriate amount of wild bird habitat is an increasingly relevant policy

question because land-cover change and climate change present significant threats to wild

bird populations. Changes in bird populations affect bird-watcher welfare (see Kolstoe et al.
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(2018) for an illustrative example). To limit the loss of bird populations and bird biodiversity,

multiple agencies at all levels of government will likely need to work together.

It is important to recognize—especially in the case of migratory species such as birds—

that actions in one location have the potential to affect outcomes at other locations. Existing

programs, such as the National Wildlife Refuge System and the Urban Bird Treaty Program,

make a good start but appear not to have been sufficient, given that avian biodiversity

remains a concern (in light of changes in land cover and the climate). Conservation solutions

must account for the fact that political jurisdictions may not align with the spatial “market

extent” for non-market demands for conservation (a concern also explored by Bakhtiari

et al. (2018) and Vogdrup-Schmidt et al. (2019)). These market extents are dictated by the

consideration-set radii of individual birders.

The need for a qBus-type sample to permit sample selection corrections in this instance

highlights a potential supplementary role for broad-based surveys of bird-watching trip be-

havior and citizen-science engagement. Information about trip-taking behavior has long been

gathered by the U.S. Fish and Wildlife Service through their quinquennial general-population

survey on Fishing, Hunting and Wildlife Watching. However, as of 2016, the information

began to be reported only at the census division level, rather than the state level, as had been

the case for prior waves of the survey. The loss of geographic resolution due to this decision

limits the usefulness of FHWAR information for city-, county- and state-level government

agencies.

The FHWAR survey is perhaps the most appropriate existing survey to which a detailed

question could be added about participation in outdoor-based CS projects (assuming U.S.

Fishing, Hunting & Wildlife Watching Survey continues in the future). Also, given that the

federal registry now documents more than 400 CS projects (see www.citizenscience.gov),

general-population information on CS participation would benefit other agencies, such as the

National Oceanic Atmospheric Administration (NOAA) or US Geological Survey (USGS),
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which could also exploit data from CS projects on recreational behavior. Such CS projects

include Watch for Whales (NOAA), Geocache for a Good Cause (NOAA), and Nature’s

Notebook (USGS), for example.

To be most useful, existing general-population surveys could (and should) include ques-

tions about citizen science engagement in projects related to ecosystems services that are val-

ued for active recreational activities. This general-population engagement information would

be a vital complement to any special-purpose surveys fielded to members of CS projects to

help researchers understand both active and passive use values for a wide range of environ-

mental public goods. Without general-population information, it will continue to be very

difficult to scale to the general population any empirical findings based solely on surveys

fielded to “convenience samples” of CS participants.
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Appendices
(Online supplementary material)

A Birding activity variables for qBus and engagement
intensity options for both qBus and eBird samples

As detailed in Table 1 in the body of the paper, there are a number of notable differences
between our two samples. For the annual number of days with trips of more than one mile to
observe birds, we defined bins roughly according to decides of the qBus distribution between
1 and 364 days. Only 44% of the qBus sample responds to this question, but we can construct
this variable for 77% of the eBird sample.30 Our eBird respondents are less likely to have
taken zero such trips, and more likely to claim to have traveled to see birds all 365 days of
the year.

Our eBird member survey respondents are more likely to have participated in the Audubon
Christmas Bird Count, and they are much less likely to hunt birds. They are somewhat more
likely to be female and to be older.31 A considerably larger share of the eBird member sur-
vey sample did not provide any income data (29.6 percent). Everyone in the eBird member
survey sample is from the states of Washington and Oregon, whereas the qBus sample is
nationwide. Compared to qBus respondents, more than twice as many eBird member survey
respondents are retired. Finally, the eBird member survey sample reports higher educational
attainment. All of these differences point to empirical evidence of systematic selection on
observables, so that selection on unobservable factors is also likely to be a concern.

A summary of the engagement levels elicited in our two samples is provided in Table A2.
We note in the body of this paper that the Qualtrics Omnibus (qBus) survey we used

to gather our general-population data has been discontinued. This appendix also includes
Table A3, which lists selected survey research firms currently offering Omnibus surveys. The
prices quoted are accurate for August of 2020, but may be adjusted over time by these firms.
Surveys can be distributed to Mechanical Turk to a wide range of people, but mTurk samples
are understood not to be representative of the general population, as confirmed recently by
Walters et al. (2018), for example.

30To construct an analogous distribution for our eBird sample, we combine their actual number of days with
submitted birding checklists over the preceding twelve months with their self-report as to what fraction of
their bird sightings they report to eBird. The documented information about their actual trips distinguishes
this constructed explanatory variable from the engagement intensities that form the outcome variable.

31They are also more likely to identify as White. However, the proportions of Black and Asian and
Hispanic eBird respondents are all less than 1 percent, so we will not use the Race or Ethnicity indicators
in our specifications.
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Table A1: Share of 1050 qBus respondents reporting at least one day over the
last year of engagement with the following wild-bird-related activities (response
format: slider with labels at 0, 61, 122, 183, 243, 304 and 365 days); mean days
per year and lower and upper quartiles of days. We find these counts to be rather
high. This may be an artifact of using the Qualtrics’ sliders to elicit numbers of
days.

Description N At least
1 day

Mean
days/
year

Lower
quartile
(days)

upper
quartile
(days)

Positive non-consumptive engagement with wild birds:
Pause what you are doing to ob-
serve wild birds

999 0.881 92.8 10 161

Put out food for wild birds 960 0.783 98.4 3 181
Seek opportunities to learn more
about wild birds

940 0.728 69.7 0 112

Photograph wild birds 945 0.747 68.5 0 107
Visit public parks/areas less than
one mile from home to see, pho-
tograph or feed wild birds

926 0.703 67.2 0 109

Travel more than one mile from
home to see, photograph or feed
wild birds

914 0.667 62.4 0 90

— Any days, any of the above? 1050 0.878 - - -
Other interactions with wild birds:
Employ measures to keep wild
birds from harming your garden
or property

910 0.624 60.3 0 92

Hunt wild birds for sport or for
food

895 0.517 49.7 0 48
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Table A2: Definitions and values of two eBird engagement variables for
our two samples. CS is the dependent variable for the binary probit
selection model; CS6 is the dependent variable for the six-level ordered-
probit selection model (where CS6 degenerates to a four-level model for
the eBird sample used alone).

Observed for Observed for
CS CS6 qBus general eBird citizen

values values population science
eBird engagement bins sample? sample?

Does not know eBird 0 1 Y N
Knows eBird, not a member 0 2 Y N

Member, reports rarely 1 3 Y Y
Member, reports < half 1 4 Y Y
Member, reports > half 1 5 Y Y
Member, reports almost all 1 6 Y Y

A3



Table A3: Selected Omnibus-type surveys (alphabetical), other than the Qualtrics Omnibus, available as of 8/2020

Survey firm Product Pricing (ca. 2020) Available sociodemographic variables
Abacus Data
(Canada)

National Omnibus
Survey; At least 1,500
Canadian adults
interviewed monthly;
representative
samples from large
panels, statistical
weighting according
to the Census.
Customization
available: provincial
oversamples, target
audiences, etc.

1 to 3 questions:
$1,000 per question

Included: Demographics (age, gender, education),
household income, employment status and union
membership, community type (urban, suburban,
rural), Federal vote intention, 2015 federal vote choice.

Continued on next pageA
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Table A3 – continued from previous page
AmeriSpeak
(every two
weeks)

AmeriSpeak
Omnibus: 1000
responses; data file
including weights and
AmeriSpeak Omnibus
Profile variables

Minimum of 3 survey
question units: Per
question: $1,000 (e.g.
checklist with up to
10 response
categories; grid
questions using a
rating scale with up
to four attribute
statements)

Included: One standard demographic banner table:
age, gender, education, race/ethnicity, HH income (4
categories). For $300 extra: an additional profile
variable (contact for available variables) All profile
variables: Gender*, Age, Age (4 categories)*, Age (7
categories), Education (4 categories)*, Education (14
categories), Race/Ethnicity*, Household Size, Housing
Type, Ownership of Living Quarters, Household
Income (18 categories)*, Marital Status, Internet
Access, Metropolitan Statistical Area Status, Region
(U.S. Census - 4 categories), Region (U.S. Census - 9
categories), State, Household members, age 0-1,
Household members, age 2-5, Household members, age
6-12, Household members, age 13-17, Household
members, age 18+, Current Employment Status,
Survey Start (date/time), Survey End (date/time),
Survey Duration (minutes), Survey Mode
(online/phone), Device Type (used to take survey).
Note: * = Demographics variables included on the
standard banner table

Drive
Research

Census-representative
sample; Excel file of
raw responses in csv
or SPSS format

1 to 2 questions,
n=1000, $3,500;
n-2000, $5,000;
Additional questions
at $200/question

Included: Up to four sociodemographic add-ons at no
additional charge. Standard menu of sociodemographic
questions: age, gender, household income, marital
status, ethnicity, children in the household, education,
employment, or region/state in the U.S. (If there is a
question not on this list, they can check their
respondent database/profiles to see if they can access
it.)

Continued on next page
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Table A3 – continued from previous page
Ipsos KP Weekly Omnibus

consists of 1,000
adults ages 18+;
English only, fields
weekly.

$1,000 each for
questions 1-5; $800
each for questions
6-10; $400 each for
questions 11+

Standard Profiling Variables (provided at no additional
cost): Age, Education (highest degree received),
Race/Ethnicity, Gender, Household Head, Household
Size, Housing type, HH income - profile and imputed,
Marital status, MSA Status (live in metro area or
rural), Region 4 - Based On State Of Residence,
Ownership status of living quarters, State, Total
number of HH members age 1 or younger, Total
number of HH members age 2 to 5, Total number of
HH members age 6 to 12, Total number of HH
members age 13 to 17, Total number of HH members
age 18 or older.

QuestionPro ? ? ?
SurveyMonkey ? ? ?
YouGov (every
2 weeks,
nationally
representative)

Academic Omnibus:
1000 responses;
codebook, dataset,
with appended profile
and weight variable

Setup: $500; Each
single choice question:
$500; Each 3-item
matrix question: $750

Included: Birth year; Gender; Race; Education;
Employment; Marital Status; Household Income; State
of residence. For $500 extra, political demographics:
vote registration, 2016 vote, party id, ideology, news
interest, and the Pew religion battery
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B Review of the usual context for Heckman’s two-stage
binary selection correction

For the i = 1, ..., N individuals in our general population (qBus) sample, we have observations
for some people who are members of eBird and other observations for other people who are
not. For everyone, we have conformable variables on sociodemographics and income, Zi, that
we will use to explain eBird participation or non-participation, where respondents i = 1, ..., r
participate in eBird and respondents i = s, ..., N do not:

CSi =


1
...
1
0
...
0

 , Zi =


Z11 . . . Zk1...

...
Z1r . . . Zkr
Z1s . . . Zks...

...
Z1N . . . ZkN


For the qBus sample, we model the latent propensity to be a member of eBird as CS∗

i =
Ziγ+ηi. We only have this data for the qBus sample, so we cannot estimate a second model
to explain the outcome variable of interest, yi = Xiβ + ε, because there are no data for our
yi variable of interest in the qBus sample.32

B.0.1 Binary selection and the eBird CS sample

For the j = 1, ..., J observations from our eBird member survey sample, we have Zj variables
that conform to the Zi variables in the qBus sample, but we have no information about
anyone for whom CSj = 0 (i.e. everyone in this sample is a member of eBird). In this
case, the selection process cannot be modeled using the eBird data alone because there is
no variation in the selection outcome for this group. However, we have data on an outcome
variable of interest for this sample, yj (in this case, the radius of the individual’s consideration
set, namely their maximum one-way distance for a one-day birding trip), and regressors, Xj,
to explain this outcome, where this information is not available for the qBus sample:

CSj =

[
1
...
1

]
, Zj =

[
Z11 . . . Zk1...

...
Z1J . . . ZkJ

]
, yj =

[
y1
...
yJ

]
, Xj =

[
X11 . . . Xm1...

...
Z1J . . . ZmJ

]
For our eBird member survey sample, we assume the underlying relationship between

CS and the Z variables is identical to the analogous relationship in the qBus sample. Our
proposed selection-correction method will be appropriate if the identical γ and β parameters
would apply in this eBird sample (and the same ση, σε, ρ, as well). If the selection equation
could be estimated for the j = 1, ..., J observations in the eBird member survey sample, the

32That variable is collected only in our separate eBird member survey sample. A researcher could simply
pose all the questions on our eBird member survey to a large sample of respondents from the general
population. Then this would become a standard sample selection story which we outline in Appendix B.
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relevant pair of equations would be:

CS∗
j = Zjγ + ηj (3)
yj = Xjβ + εj

(ηj, εj) ∼ BV N(0, 0, ση, σε, ρ)

Of course, this joint model cannot be estimated because the observed CSj variable is constant
(at 1) in the data from our eBird member survey. For the qBus general population panel,
consider a binary indicator for eBird participation CSi and a set of available regressors
Zi, for a representative sample. If we also had data, for these eBird participants, on an
outcome variable of interest, yi, and a set of regressors, Xi for a subset of this same sample,
we would proceed as follows. Suppose the latent propensity to participate in eBird in this
qBus sample is a linear-in-parameters function of the Zi variables, CS∗

i = Ziγ̂ + ηi, then
the standard Heckman two-step sample-selection correction procedure involves two terms
constructed from Ziγ̂.33 Define:

λ (αCSi
) = λ (−Ziγ̂) =

φ (−Ziγ̂)

1− Φ (−Ziγ̂)
=
φ (Ziγ̂)

Φ (Ziγ̂)
(4)

δ (αCSi
) = δ (−Ziγ̂) = λ (−Ziγ̂) [λ (−Ziγ̂)− (−Ziγ̂)]

With sample selection, the conditional expected value and the error variance of the
outcome variable yi are no longer given simply by E [yi] = Xiβ and V ar [yi] = σ2

y . Instead,
we need the expected value and variance of the marginal distribution of yi conditional on yi
being observed (i.e. when CSi = 1 ). If we can assume that the latent propensity variable
CS∗

i is distributed bivariate normal with the outcome variable yi, but the joint distribution
is truncated below at −Ziγ̂ in the CS∗

i dimension, the formulas for the expected value and
variance of the relevant marginal distribution of yi for this singly truncated bivariate normal
distribution are as follows, as in Greene (2012, p. 836):

E [yi|yi observed] = E [yi|CS∗
i > −Ziγ̂] = Xiβ + ρσελ (−Ziγ̂) = Xiβ + βλλ (−Ziγ̂) (5)

V ar [yi|yi observed] = V ar [yi|CS∗
i > −Ziγ̂] = σ2

y

[
(1− ρ2δ (−Ziγ̂)

]
These formulas provide the rationale for the Heckman two-step approach and why, once

this augmented second-stage model has been estimated, we would have unbiased estimates
of the expected value of yi when yi is observed under the counterfactual conditions where
the correlation between the errors in these two equations is zero. For uncorrelated bivariate
normal variables, the conditional distributions are everywhere equal to the marginal distri-
bution, so we want to simulate the absence of any such error correlation. Based on the

33Typically, however, attention is focused primarily on the λ term.

A8



augmented regression model, therefore, we can set ρ = 0 to get:

E [yi|yi observed] = Xiβ + (0σε)λ (−Ziγ̂) = Xiβ (6)
V ar [yi|yi observed] = σ2

y

[
(1− (0)2δ (−Ziγ̂)

]
= σ2

y

B.0.2 Sample-Selection Correction in the Related Literature

To date, the non-market valuation literature for environmental goods has focused mostly
on correction strategies for when some surveys are not returned at all (called “unit” non-
response), or for when the researcher cannot use some responses because those surveys are
incomplete and one or more key variables are missing (called “item” non-response).

Standard econometric sample selection correction methods are familiar in the case of
continuous outcome variables, as reviewed by Vella (1998) and Wooldridge (2002). However,
sample-selection correction methods for multiple discrete outcomes are not particularly well
developed in the environmental literature.34 For conditional logit discrete-choice outcome
models, Johnston and Abdulrahman (2017) use an ad hoc approach that builds on ear-
lier work by Cameron and DeShazo (2013) to adjust for response propensity. Kolstoe and
Cameron (2017) and Kolstoe et al. (2018) also use this approach, but employ the method to
correct only for the individual’s propensity to be in the estimating sample drawn from the
population of eBird members, not the propensity to be an eBird member in the first place
(see the Online Appendix from Kolstoe and Cameron (2017) for details).

Yuan et al. (2015) use a binary probit model to explain systematic selection into their
estimating sample and compute a Heckman-style inverse Mills ratio (IMR). This IMR is used
as a regressor in their second-stage conditional logit choice model, to shift the coefficient on
the status-quo alternative in their choice sets.35 However, a simple IMR term is appropriate
only when the latent selection propensity variable and the (possibly transformed) outcome
variable have a bivariate normal distribution. 36

34Terza (2009) proposes a strategy for multinomial (multi-index) models, but does not illustrate his ap-
proach for the conditional logit models relevant to destination choice models or stated-preference choice
experiments common in the environmental literature.

35Given that the IMR derived from the selection model is individual-specific but does not vary across
alternatives, including it in the utility-difference “index” that underpins a conditional logit model requires
that the IMR term be interacted with at least one regressor that actually does vary across alternatives. A
status-quo indicator is one such variable.

36The Heckman logic for using an IMR thus does not apply when the outcome model is a conditional
logit specification—one cannot appeal to the usual bivariate normality assumption for the errors in the
two equations to argue that the inclusion of this IMR variable in the outcome equation precisely solves
the problem of selection bias. Given that the bivariate normality assumption is untenable in the case of
a conditional logit outcome model, there is no good argument for converting the selection propensity into
an IMR term. In the present paper, however, we have a latent outcome variable that is plausibly normally
distributed. In the observable data, however, this variable is reported in brackets, so an interval-data model
based on a normal distribution for the logarithm of the dependent variable is reasonable.
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C Legitimate use of simple Inverse Mills Ratios to correct
for sample selection in two-step methods

Over the last several decades, empirical researchers have become accustomed to the idea
that estimating a sample-selection model via maximum likelihood methods, calculating the
IMR, and including that estimated IMF into the desired “outcome” equation of interest will
(somehow) purge the parameters of that outcome equation of any bias due to sample selec-
tion. However, it is crucial to remember that the IMR offers an appropriate correction for
sample-selection bias only under some very specific conditions. Confidence that “including
an IMR term” will “fix” selection bias hinges on the assumption that the selection equation
and the outcome equation have error terms that are jointly normally distributed.

The joint normality assumption is critical because the IMR correction derives entirely
from the formula for the expected value of a singly truncated bivariate normal distribution.
If the conditional distribution latent variable in the selection equation is not normal or the
conditional distribution of the dependent variable in the outcome equation is not normal (ei-
ther observed or censored in some way, perhaps after some transformation), then the needed
expected value of the singly truncated joint distribution of the errors in the selection equa-
tion and the outcome equation cannot automatically be assumed to be given by the usual
IMR formulas.

Ideally, selection and outcome equations should be estimated jointly, in which case a wide
variety of joint distributions for the two error terms can be assumed/employed, provided that
the joint density can be derived and written down. In some cases, it is convenient to write
the conditional joint distributions of the selection propensity and the outcome variable as
the product of a conditional distribution and a marginal distribution.37

This insight is especially relevant for researchers who wish to estimate conditional logit
“outcome” models based on people’s choices across alternatives with different attributes.
Nothing stops the analyst from estimating a binary probit sample selection model and cal-
culating the usual IMR term from the fitted parameters. However, there is no rigorous
statistical rationale for including this fitted IMR term like other respondent characteristics
as a variable that might shift one or more slope characteristics or the coefficient on the status
quo indicator variable, as is done in Yuan et al. (2015). Some types of joint models where
IMR correction terms can make sense, statistically, include the following:

• The usual OLS outcome regression with a continuous dependent variable that is con-
37Stata now includes the “heckpoisson” estimator, following Terza (1998). Appropriately, this estimator

is available only as a FIML estimator, not as a two-step estimator that relies on an IMR term. Jointly
distributed variables that are not both normal have also been used in a FIML model that combines a
participation/experience variable (that is distributed either Poisson or zero-inflated-Poisson) with a censored-
normal outcome variable is estimated jointly in Cameron and Englin (1997).
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ditionally normal, perhaps after some transformation

• A Tobit outcome model (censored anywhere—at the bottom, the top, or both) which
involves a partially censored normal propensity variable

• An interval-data outcome variable censored between known thresholds (used in the
present paper)

• An ordered-probit outcome model with a normally distributed latent propensity vari-
able

• A censored normal outcome model with different censored points across observations

Simply appending an estimated IMR variable to a second-step outcome equation of in-

terest cannot be assumed to be correct in any of the following cases:

• Count data models: Poisson, negative binomial

• Conditional logit models: fixed or random parameters

• Any other statistical model for the “outcome” equation, where the (perhaps latent)
dependent is not conditionally normally distributed (even after transformation)

We note, however, the insights provided in Terza (2009), who describes a general approach
to endogenous switching models, endogenous treatment models, and sample selection models.
These techniques are extended versions of an approach proposed in Olsen (1980), suitable
for within-sample corrections, but they seem not yet to have been widely employed in the
empirical literture, especially in environmental economics. Should they become available
as pre-coded general commands in commonly used software, these methods would likely
be popular. However, they would need to be tailored specially for selection-model transfer
exercises such as the two-step illustration in this paper.
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D Complementary method: Weights based on predicted
engagement intensities

In this section, we focus on the actual eBird members in the qBus sample, comparing their
different participation levels to those in the entire eBird sample. With our eBird member sur-
vey data, there is the added concern that the intensity with which these survey respondents
engage with the eBird citizen science project may not be representative of the distribution of
eBird engagement propensities in the general population of the U.S. To address this issue, we
consider how to develop weights for each of the four levels of participation intensity among
these eBird members. We base our weights on the fitted probabilities of a respondent being
each of the four engagement intensity bins in each sample.

For the qBus sample, we estimate an ordered probit model for all six possible bins and
calculate a set of fitted probabilities for each bin for each person, conditional on the Zi vector
for that person. Call these probabilities p̂ki for engagement levels k = 1, ..., 6.

We then make two calculations for each respondent in the eBird member survey sample.
In the first calculation, we use the six-level engagement-intensity model estimated using the
qBus data to predict (for the eBird member survey sample) the individual-specific set of six
probabilities associated with each of the six engagement-intensity bins (even through nobody
in the eBird sample is in non-participation bins 1 or 2). Call these fitted probabilities p̂∗kj
for engagement levels k = 1, ..., 6,

In the second calculation, we use the eBird sample independently, with its four possible
participation-intensity bins. We estimate a four-level ordered-probit model using just the
eBird member survey sample and calculate four fitted probabilities, which we will call q̂kj,
for engagement levels k = 3, ..., 6 represented in that sample.

The next step is to assign weights to each respondent in the eBird dataset. These weights
serve to scale the fitted probability of an individual being in their observed engagement-
intensity bin to match the fitted probability in the population (i.e. the qBus sample). First,
consider a hypothetical case where everyone in the qBus and eBird samples has been drawn
from the same general population and people in both samples thus shared the same mixes of
characteristics (i.e. had identical joint distributions for their Z variables). Then we would
expect, across the two samples, to have roughly the same proportions of people in each
engagement-intensity bin. However, since nobody in the eBird sample is observed in bins 1
or 2, we must focus on the portion of the engagement-intensity distribution corresponding
to eBird membership. For the qBus sample, we should consider the probabilities of being in
bins 3 through 6 for the qBus sample, conditional on the probability of being in at least one
of those four bins. Thus we define p̂kj = p̂∗kj/ (p̂∗3j + p̂∗4j + p̂∗5j + p̂∗6j).38

When we allow for potentially very different joint distributions of the explanatory vari-
ables Zi and Zj for the engagement-intensity model in the qBus and eBird samples, it is
readily apparent that we should not use simply the differing observed proportions of people
in each bin in the two samples to construct weights to be used in estimating the outcome

38An alternative would be to attempt to fit a four-level ordered probit for only the qBus respondents, but
there are relatively few eBird members in the qBus sample.
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model. Our preferred approach would be more akin to the common method of constructing
exogenous weights based on age brackets or gender. We wish to allow multiple exogenous
factors to affect expected levels of engagement intensity for each eBird respondent. Conse-
quently, we weight each observation in the eBird sample by p̂kj/q̂kj, k = 3, ..., 6, normalized
so that these weights sum to the sample size for the eBird sample. Use of these fitted prob-
abilities recruits all of the exogenous or predetermined factors that capture heterogeneity in
response propensities (i.e. the Zi and Zj data) to build the empirical weights, rather than
just 0/1 group membership indicators.
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E Additional complications to estimating IMR: Dealing
with missing values for Zj variables in the eBird sample

E.1 qBus sociodemographic variables have few missing values

Any empirical application of this methodology may have to confront the problem of what
to do when there are missing values of some variables in one sample or the other. If the
correction is based upon the standard sociodemographic variables available for qBus panel
members, the data for those variables can be expected to be relatively complete. Any missing
values in the qBus sample might be expected to be missing at random.

If other key variables intended to serve as regressors, Zi, used in our weighting strategy,
are drawn from survey questions posed to qBus participants, it is entirely possible that there
may be item non-response for some of those variables. Such is the case in the present study,
where our own questions produced the data for the number of days per year on which the
respondent traveled more than one mile to see birds. Our own questions also elicited the
data for participation in the Christmas Bird count and whether the individual also hunts
birds, but we assume in the case of these latter two variables that the few missing responses
are quivalent to “no”.

E.2 eBird sociodemographics match Census, but have more missing
values

Missing values in the citizen-science eBird sample, for the sociodemographic variables that
conform to the set available the qBus sample, are likely to be more of a problem. For
example, due to time constraints for our survey of eBird members, we elected not to ask about
individuals’ political ideologies. Had we anticipated being able to employ qBus questions
to build sampling weights and estimated response propensities, it would have been prudent
to be sure that the citizen science members were asked every standard sociodemographic
question, verbatim, that is available with the qBus responses.

For this first example of our procedure, we can assemble conformable measures for gen-
der, race, ethnicity, broad income brackets, four regions of the U.S., employment status and
educational attainment. Some aggregation of categories has been required in each sample
to produce matching categories. In future applications of this method, it would be prudent
to minimize this type of aggregation. In the eBird data, we used categories that matched
the U.S. Census, which would facilitate more-conventional comparisons of marginal distri-
butions in the eBird sample to marginal distributions in the general population. However,
the U.S. Census does not provide any information about engagement in citizen science, so
our special-purpose qBus general-population sample is much superior in that way.
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E.3 Using maximal available Zj regressors for each eBird observa-
tion

Suppose there were no data in the eBird sample on any of the same sociodemographic re-
gressors, Zi provided by the qBus sample. There would still be valuable information in the
qBus sample that could help construct either probability weights or propensity corrections.
If one runs an ordered probit model to explain the engagement outcome in the eBird data,
but use no explanatory variables, the result is a set of estimates for only the three cut-points
between the four outcome levels in in that eBird data. If one then calculates the predicted
probabilities for each of the four participation intensities, the means of these probabilities,
across the sample, match the proportions of the sample observed at each level.39

E.4 If there are no Zj regressors available for some eBird respon-
dents

If there were no Zj regressors available for some (small) subset of observations in the eBird
sample, the best available option for weighting the observations at each level of participation
intensity would be derived solely from (a) the predicted probabilities for each of the four
relevant participation-intensity levels in the qBus sample (also estimated without regressors)
relative to (b) the analogous predicted probabilities for the same four participation intensity
levels in the qBus sample. The implicit model being used to predict participation intensities,
in that case, would have no Z regressors, so there would be no basis for observable system-
atic heterogeneity in these probabilities. The weights would then differ only across the four
observed participation intensity levels, but would be the same for every person who had no
available Z variables in the eBird sample.

E.5 If only some subset of Zj regressors is available for some eBird
respondents

The most-general approach to weighting by participation intensity level or correcting param-
eters for different-from-average participation intensity would exploit the maximum informa-
tion available in both samples, on an observation-by-observation basis for the eBird sample.
To simplify, assume that only three basic factors are available as explanatory variables. In
practice, each factor may be captured by a set of indicators for the categories of that factor,
but we will assume for now that there is one continuous variable per factor such that the
universe of potential Z variables consists of Z1, Z2, and Z3. All three variables (standing
in for groups of indicator variables) are available for each qBus observation, but different

39For binary probit and logit models, the means of the fitted probabilities will be either extremely close
to the observed proportions, or exactly equal to those proportions, as can be proven by the algebra of the
first-order conditions for the maximum likelihood estimation algorithm.
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Table A4: Ordered-probit engagement-level models with minimum het-
erogeneity required to accommodate entire eBird sample: estimated using
qBus sample, full eBird sample. Region variable is “West” for all eBird
respondents.

Ordered
probit

qBus data

Ordered
probit

eBird data

Has participated in CBC 2.202∗∗∗ (0.0670) 0.487∗∗∗ (0.0678)
Hunts birds 0.526∗∗∗ (0.0504) 0.0400 (0.128)
Region: Northeast 0.170∗∗ (0.0697) - a
Region: Midwest -0.0668 (0.0713) - a
Region: South -0.0335 (0.0623) - a

cut1 1.271∗∗∗ (0.0525) -0.0249 (0.0527)
cut2 1.814∗∗∗ (0.0575) 0.715∗∗∗ (0.0552)
cut3 2.136∗∗∗ (0.0622) 1.320∗∗∗ (0.0623)
cut4 2.527∗∗∗ (0.0687) - b
cut5 3.142∗∗∗ (0.0819) - b
Observations 4161 1081
Max. log-likelihood -2591.22 -1396.30
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001 aVar = 0 for all. bOnly 4 levels.

observations in the eBird sample have missing values for either one, two, or all three of these
variables.

To fully exploit the available information, it is necessary to estimate an array of models
for the qBus sample so that one of these models will be appropriate to transfer to every
observation in the eBird sample. Suppose that we have indicators for the presence or absence
of values for each of these three Z variables in the eBird sample. The number of necessary
models using the qBus data could then be calculated using the sum of all the relevant
combinations:

C3
0 + C3

1 + C3
2 + C3

3 = 1 + 3 + 3 + 1 = 8 (7)

Of course, as the number of potential factors increases, the number of potentially relevant
models to explain participation intensities in the qBus data can increase dramatically. In
this study, we have six different factors with complete data in the qBus sample but missing
data for at least some observations in the eBird sample: gender, age, income, region, em-
ployment status, and education. The number of potentially relevant models could be 64, but
due to the correlation between missing values for some of these factors, the actual number
of models required is only 30 in this study.
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F Six-level ordered-probit eBird engagement-level mod-
els for all relevant subsets of regressors (using data
from the qBus Sample); needed to compute weights,
as well as to predict IMRs for eBird member survey
sample

Table A5: qBus sample: Model 1-3 (of 30) to accommodate eBird missing values

Model 1 Model 2 Model 3
Engagement-level indicator
Has participated in CBC 2.202∗∗∗ 2.144∗∗∗ 2.120∗∗∗

(0.0670) (0.0679) (0.0682)

Hunts birds 0.526∗∗∗ 0.520∗∗∗ 0.526∗∗∗
(0.0504) (0.0509) (0.0514)

Region: Northeast 0.170∗∗ 0.162∗∗ 0.145∗∗
(0.0697) (0.0705) (0.0707)

Region: Midwest -0.0668 -0.0596 -0.0580
(0.0713) (0.0721) (0.0722)

Region: South -0.0335 -0.0190 -0.0135
(0.0623) (0.0631) (0.0633)

Empl. status: Part time 0.0240 0.0508
(0.0674) (0.0684)

Empl. status: Looking for work -0.133 -0.106
(0.101) (0.102)

Empl. status: Unemployed -0.151∗∗ -0.120
(0.0711) (0.0737)

Empl. status: Retired -0.632∗∗∗ -0.638∗∗∗
(0.0800) (0.0805)

Education: High school 0.0424
(0.0688)

Education: Some college -0.102
(0.0628)

Education: Masters degree 0.244∗∗∗
(0.0784)

Education: Doctoral degree 0.209∗
(0.118)

/
Continued on next page
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Table A5 – continued from previous page
cut1 1.271∗∗∗ 1.150∗∗∗ 1.171∗∗∗

(0.0525) (0.0581) (0.0682)

cut2 1.814∗∗∗ 1.704∗∗∗ 1.728∗∗∗
(0.0575) (0.0626) (0.0722)

cut3 2.136∗∗∗ 2.032∗∗∗ 2.061∗∗∗
(0.0622) (0.0670) (0.0762)

cut4 2.527∗∗∗ 2.431∗∗∗ 2.465∗∗∗
(0.0687) (0.0729) (0.0816)

cut5 3.142∗∗∗ 3.054∗∗∗ 3.096∗∗∗
(0.0819) (0.0852) (0.0931)

Observations 4161 4161 4161
Max. log-likelihood -2591.22 -2553.34 -2541.62
t in parentheses
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001
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Table A6: qBus sample: Model 4-6 (of 30) to accommodate eBird missing values

Model 4 Model 5 Model 6
Engagement-level indicator
Has participated in CBC 2.023∗∗∗ 2.166∗∗∗ 2.132∗∗∗

(0.0691) (0.0676) (0.0680)

Hunts birds 0.508∗∗∗ 0.535∗∗∗ 0.520∗∗∗
(0.0522) (0.0510) (0.0509)

Age: 24 years or less 0.534∗∗∗
(0.0964)

Age: 25 to 34 years 0.560∗∗∗
(0.0847)

Age: 35 to 44 years 0.389∗∗∗
(0.0873)

Age: 55 to 64 years -0.239∗∗
(0.107)

Age: 65 years and up -0.328∗∗
(0.131)

Region: Northeast 0.162∗∗ 0.158∗∗ 0.166∗∗
(0.0718) (0.0701) (0.0706)

Region: Midwest -0.0513 -0.0621 -0.0517
(0.0735) (0.0714) (0.0721)

Region: South 0.00627 -0.0248 -0.0109
(0.0643) (0.0625) (0.0632)

Empl. status: Part time 0.00864 0.0495
(0.0719) (0.0681)

Empl. status: Looking for work -0.194∗ -0.110
(0.104) (0.101)

Empl. status: Unemployed -0.166∗∗ -0.112
(0.0755) (0.0725)

Empl. status: Retired -0.138 -0.633∗∗∗
(0.104) (0.0799)

Education: High school -0.0213 0.0227
(0.0709) (0.0663)

Education: Some college -0.144∗∗ -0.105∗
(0.0644) (0.0617)

Education: Masters degree 0.269∗∗∗ 0.208∗∗∗
Continued on next page

A19



Table A6 – continued from previous page
(0.0798) (0.0775)

Education: Doctoral degree 0.204∗ 0.162
(0.119) (0.116)

Gender: Female -0.0946∗∗ -0.135∗∗∗
(0.0472) (0.0484)

/
cut1 1.441∗∗∗ 1.226∗∗∗ 1.097∗∗∗

(0.0967) (0.0680) (0.0609)

cut2 2.021∗∗∗ 1.772∗∗∗ 1.652∗∗∗
(0.100) (0.0720) (0.0652)

cut3 2.365∗∗∗ 2.098∗∗∗ 1.981∗∗∗
(0.103) (0.0758) (0.0694)

cut4 2.780∗∗∗ 2.495∗∗∗ 2.382∗∗∗
(0.108) (0.0812) (0.0750)

cut5 3.421∗∗∗ 3.120∗∗∗ 3.007∗∗∗
(0.118) (0.0928) (0.0868)

Observations 4161 4161 4161
Max. log-likelihood -2477.40 -2578.51 -2549.44
t in parentheses
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001
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Table A7: qBus sample: Model 7-9 (of 30) to accommodate eBird missing values

Model 7 Model 8 Model 9
Engagement-level indicator
Has participated in CBC 2.111∗∗∗ 2.050∗∗∗ 2.015∗∗∗

(0.0683) (0.0685) (0.0689)

Hunts birds 0.525∗∗∗ 0.488∗∗∗ 0.505∗∗∗
(0.0514) (0.0516) (0.0522)

Gender: Female -0.116∗∗ -0.212∗∗∗ -0.188∗∗∗
(0.0487) (0.0484) (0.0488)

Region: Northeast 0.149∗∗ 0.187∗∗∗ 0.168∗∗
(0.0708) (0.0716) (0.0719)

Region: Midwest -0.0513 -0.0368 -0.0382
(0.0723) (0.0733) (0.0735)

Region: South -0.00677 0.0173 0.0193
(0.0633) (0.0641) (0.0643)

Empl. status: Part time 0.0715
(0.0690)

Empl. status: Looking for work -0.0876
(0.102)

Empl. status: Unemployed -0.0878
(0.0749)

Empl. status: Retired -0.638∗∗∗
(0.0805)

Education: High school 0.0415 -0.0593
(0.0688) (0.0690)

Education: Some college -0.0957 -0.149∗∗
(0.0629) (0.0638)

Education: Masters degree 0.239∗∗∗ 0.266∗∗∗
(0.0784) (0.0799)

Education: Doctoral degree 0.190 0.176
(0.118) (0.120)

Age: 24 years or less 0.492∗∗∗ 0.542∗∗∗
(0.0926) (0.0937)

Age: 25 to 34 years 0.574∗∗∗ 0.578∗∗∗
(0.0837) (0.0841)

Age: 35 to 44 years 0.407∗∗∗ 0.399∗∗∗
Continued on next page
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Table A7 – continued from previous page
(0.0866) (0.0870)

Age: 55 to 64 years -0.270∗∗∗ -0.269∗∗
(0.105) (0.105)

Age: 65 years and up -0.375∗∗∗ -0.422∗∗∗
(0.113) (0.114)

/
cut1 1.125∗∗∗ 1.404∗∗∗ 1.390∗∗∗

(0.0707) (0.0894) (0.0980)

cut2 1.683∗∗∗ 1.979∗∗∗ 1.970∗∗∗
(0.0746) (0.0929) (0.101)

cut3 2.016∗∗∗ 2.320∗∗∗ 2.316∗∗∗
(0.0784) (0.0963) (0.104)

cut4 2.422∗∗∗ 2.730∗∗∗ 2.733∗∗∗
(0.0835) (0.101) (0.109)

cut5 3.055∗∗∗ 3.362∗∗∗ 3.375∗∗∗
(0.0947) (0.111) (0.119)

Observations 4161 4161 4161
Max. log-likelihood -2538.76 -2489.65 -2474.54
t in parentheses
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001
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Table A8: qBus sample: Model 10-12 (of 30) to accommodate eBird missing values

Model 10 Model 11 Model 12
Engagement-level indicator
Has participated in CBC 2.034∗∗∗ 2.006∗∗∗ 2.016∗∗∗

(0.0690) (0.0693) (0.0691)

Hunts birds 0.495∗∗∗ 0.507∗∗∗ 0.505∗∗∗
(0.0517) (0.0522) (0.0522)

Gender: Female -0.192∗∗∗ -0.176∗∗∗ -0.184∗∗∗
(0.0494) (0.0497) (0.0492)

Age: 24 years or less 0.510∗∗∗ 0.543∗∗∗ 0.551∗∗∗
(0.0959) (0.0966) (0.0947)

Age: 25 to 34 years 0.569∗∗∗ 0.572∗∗∗ 0.581∗∗∗
(0.0846) (0.0849) (0.0846)

Age: 35 to 44 years 0.400∗∗∗ 0.392∗∗∗ 0.399∗∗∗
(0.0871) (0.0875) (0.0870)

Age: 55 to 64 years -0.251∗∗ -0.252∗∗ -0.271∗∗∗
(0.107) (0.107) (0.105)

Age: 65 years and up -0.307∗∗ -0.361∗∗∗ -0.426∗∗∗
(0.130) (0.132) (0.114)

Region: Northeast 0.187∗∗∗ 0.168∗∗ 0.171∗∗
(0.0717) (0.0720) (0.0720)

Region: Midwest -0.0398 -0.0396 -0.0349
(0.0734) (0.0736) (0.0736)

Region: South 0.0146 0.0183 0.0225
(0.0643) (0.0645) (0.0645)

Empl. status: Part time 0.00659 0.0390
(0.0719) (0.0727)

Empl. status: Looking for work -0.204∗∗ -0.169
(0.104) (0.105)

Empl. status: Unemployed -0.162∗∗ -0.121
(0.0744) (0.0767)

Empl. status: Retired -0.143 -0.116
(0.103) (0.104)

Education: High school -0.0276 -0.0472
(0.0710) (0.0731)

Education: Some college -0.138∗∗ -0.147∗∗
Continued on next page
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(0.0645) (0.0654)

Education: Masters degree 0.263∗∗∗ 0.270∗∗∗
(0.0799) (0.0810)

Education: Doctoral degree 0.175 0.178
(0.120) (0.122)

Income: Less than 25K -0.0820
(0.0815)

Income: 25 K to 50 K -0.0137
(0.0755)

Income: 75 K to 100 K -0.0489
(0.0845)

Income: 100 K or more -0.0310
(0.0762)

/
cut1 1.367∗∗∗ 1.373∗∗∗ 1.367∗∗∗

(0.0908) (0.0985) (0.109)

cut2 1.943∗∗∗ 1.954∗∗∗ 1.948∗∗∗
(0.0942) (0.102) (0.112)

cut3 2.284∗∗∗ 2.300∗∗∗ 2.293∗∗∗
(0.0975) (0.105) (0.115)

cut4 2.696∗∗∗ 2.718∗∗∗ 2.711∗∗∗
(0.102) (0.110) (0.119)

cut5 3.331∗∗∗ 3.362∗∗∗ 3.352∗∗∗
(0.112) (0.119) (0.129)

Observations 4161 4161 4161
Max. log-likelihood -2484.82 -2471.15 -2473.89
t in parentheses
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001
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Table A9: qBus sample: Model 13-15 (of 30) to accommodate eBird missing values

Model 13 Model 14 Model 15
Engagement-level indicator
Has participated in CBC 2.032∗∗∗ 2.008∗∗∗ 2.075∗∗∗

(0.0691) (0.0694) (0.0685)

Hunts birds 0.500∗∗∗ 0.506∗∗∗ 0.0780
(0.0518) (0.0523) (0.0941)

Gender: Female -0.186∗∗∗ -0.175∗∗∗
(0.0496) (0.0499)

Age: 24 years or less 0.526∗∗∗ 0.545∗∗∗
(0.0966) (0.0971)

Age: 25 to 34 years 0.582∗∗∗ 0.572∗∗∗
(0.0850) (0.0854)

Age: 35 to 44 years 0.399∗∗∗ 0.393∗∗∗
(0.0871) (0.0875)

Age: 55 to 64 years -0.258∗∗ -0.254∗∗
(0.107) (0.107)

Age: 65 years and up -0.322∗∗ -0.366∗∗∗
(0.130) (0.132)

Income: Less than 25K -0.0569 -0.0542
(0.0826) (0.0840)

Income: 25 K to 50 K -0.0201 -0.0107
(0.0755) (0.0758)

Income: 75 K to 100 K -0.00868 -0.0514
(0.0838) (0.0846)

Income: 100 K or more 0.0624 -0.0345
(0.0729) (0.0763)

Region: Northeast 0.188∗∗∗ 0.170∗∗ 0.158∗∗
(0.0718) (0.0721) (0.0715)

Region: Midwest -0.0409 -0.0363 -0.0540
(0.0736) (0.0738) (0.0731)

Region: South 0.0182 0.0203 0.000262
(0.0644) (0.0647) (0.0638)

Empl. status: Part time 0.0255 0.0431
(0.0734) (0.0737)

Empl. status: Looking for work -0.178∗ -0.163
Continued on next page
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(0.106) (0.106)

Empl. status: Unemployed -0.135∗ -0.112
(0.0778) (0.0790)

Empl. status: Retired -0.122 -0.114
(0.104) (0.105)

Education: High school -0.0267
(0.0740)

Education: Some college -0.141∗∗
(0.0658)

Education: Masters degree 0.269∗∗∗
(0.0810)

Education: Doctoral degree 0.178
(0.122)

Travel 1+ mile data available 0.354
(0.688)

Trips 1+ miles = 0 -1.072
(0.693)

Trips 1+ miles = [1,4) -0.674
(0.703)

Trips 1+ miles = [4,7) -0.892
(0.707)

Trips 1+ miles = [7,10) -0.600
(0.705)

Trips 1+ miles = [10,21) -0.309
(0.693)

Trips 1+ miles = [21,41) -0.284
(0.695)

Trips 1+ miles = [41,72) 0.0561
(0.692)

Trips 1+ miles = [72,124) 0.293
(0.690)

Trips 1+ miles = [124,174) 0.212
(0.689)

Trips 1+ miles = [174,238) 0.341
Continued on next page
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(0.689)

Trips 1+ miles = [238,364) 0.634
(0.689)

Trips 1+ miles = 365 0.579
(0.714)

/
cut1 1.386∗∗∗ 1.349∗∗∗ 1.188∗∗∗

(0.102) (0.110) (0.0558)

cut2 1.963∗∗∗ 1.930∗∗∗ 1.769∗∗∗
(0.105) (0.113) (0.0610)

cut3 2.304∗∗∗ 2.276∗∗∗ 2.112∗∗∗
(0.108) (0.115) (0.0658)

cut4 2.718∗∗∗ 2.694∗∗∗ 2.518∗∗∗
(0.113) (0.120) (0.0722)

cut5 3.354∗∗∗ 3.337∗∗∗ 3.143∗∗∗
(0.122) (0.129) (0.0849)

Observations 4161 4161 4161
Max. log-likelihood -2483.54 -2470.79 -2490.38
t in parentheses
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001
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Table A10: qBus sample: Model 16-18 (of 30) to accommodate eBird missing
values

Model 16 Model 17 Model 18
Engagement-level indicator
Travel 1+ mile data available 0.299 0.242 0.183

(0.674) (0.673) (0.689)

Trips 1+ miles = 0 -1.017 -0.963 -0.921
(0.679) (0.678) (0.694)

Trips 1+ miles = [1,4) -0.625 -0.485 -0.313
(0.689) (0.688) (0.705)

Trips 1+ miles = [4,7) -0.852 -0.787 -0.590
(0.693) (0.693) (0.709)

Trips 1+ miles = [7,10) -0.551 -0.528 -0.442
(0.691) (0.691) (0.708)

Trips 1+ miles = [10,21) -0.264 -0.207 -0.105
(0.679) (0.678) (0.694)

Trips 1+ miles = [21,41) -0.240 -0.144 -0.0796
(0.681) (0.679) (0.696)

Trips 1+ miles = [41,72) 0.0970 0.132 0.229
(0.678) (0.676) (0.692)

Trips 1+ miles = [72,124) 0.356 0.415 0.461
(0.676) (0.674) (0.690)

Trips 1+ miles = [124,174) 0.272 0.295 0.335
(0.675) (0.674) (0.690)

Trips 1+ miles = [174,238) 0.382 0.441 0.451
(0.675) (0.673) (0.689)

Trips 1+ miles = [238,364) 0.666 0.711 0.703
(0.674) (0.673) (0.689)

Trips 1+ miles = 365 0.623 0.630 0.649
(0.700) (0.698) (0.714)

Has participated in CBC 2.049∗∗∗ 2.003∗∗∗ 1.959∗∗∗
(0.0689) (0.0696) (0.0699)

Hunts birds 0.0977 0.0874 0.0524
(0.0943) (0.0949) (0.0962)

Region: Northeast 0.143∗∗ 0.137∗ 0.175∗∗
(0.0718) (0.0725) (0.0731)

Continued on next page
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Region: Midwest -0.0537 -0.0401 -0.0356

(0.0733) (0.0740) (0.0749)

Region: South 0.00426 0.0225 0.0340
(0.0640) (0.0647) (0.0654)

Education: High school -0.00150 0.0284
(0.0677) (0.0702)

Education: Some college -0.103 -0.0925
(0.0631) (0.0643)

Education: Masters degree 0.222∗∗∗ 0.250∗∗∗
(0.0792) (0.0801)

Education: Doctoral degree 0.176 0.205∗
(0.119) (0.120)

Empl. status: Part time 0.0552 -0.0301
(0.0698) (0.0725)

Empl. status: Looking for work -0.127 -0.246∗∗
(0.105) (0.105)

Empl. status: Unemployed -0.116 -0.212∗∗∗
(0.0752) (0.0747)

Empl. status: Retired -0.612∗∗∗ -0.209∗∗
(0.0832) (0.105)

Age: 24 years or less 0.491∗∗∗
(0.0977)

Age: 25 to 34 years 0.526∗∗∗
(0.0861)

Age: 35 to 44 years 0.364∗∗∗
(0.0888)

Age: 55 to 64 years -0.186∗
(0.109)

Age: 65 years and up -0.198
(0.131)

/
cut1 1.185∗∗∗ 1.096∗∗∗ 1.354∗∗∗

(0.0684) (0.0717) (0.0917)

cut2 1.769∗∗∗ 1.691∗∗∗ 1.963∗∗∗
(0.0728) (0.0759) (0.0954)

cut3 2.115∗∗∗ 2.043∗∗∗ 2.319∗∗∗
Continued on next page
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(0.0770) (0.0800) (0.0989)

cut4 2.527∗∗∗ 2.463∗∗∗ 2.741∗∗∗
(0.0826) (0.0853) (0.104)

cut5 3.160∗∗∗ 3.104∗∗∗ 3.381∗∗∗
(0.0941) (0.0964) (0.113)

Observations 4161 4161 4161
Max. log-likelihood -2480.49 -2446.81 -2410.56
t in parentheses
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001
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Table A11: qBus sample: Model 19-21 (of 30) to accommodate eBird missing
values

Model 19 Model 20 Model 21
Engagement-level indicator
Travel 1+ mile data available 0.127 0.166 0.146

(0.671) (0.666) (0.670)

Trips 1+ miles = 0 -0.867 -0.905 -0.885
(0.677) (0.672) (0.676)

Trips 1+ miles = [1,4) -0.261 -0.295 -0.276
(0.688) (0.683) (0.686)

Trips 1+ miles = [4,7) -0.549 -0.577 -0.569
(0.692) (0.687) (0.691)

Trips 1+ miles = [7,10) -0.396 -0.408 -0.414
(0.691) (0.685) (0.690)

Trips 1+ miles = [10,21) -0.0601 -0.0922 -0.0801
(0.677) (0.672) (0.676)

Trips 1+ miles = [21,41) -0.0278 -0.0705 -0.0441
(0.678) (0.673) (0.677)

Trips 1+ miles = [41,72) 0.275 0.243 0.260
(0.675) (0.670) (0.673)

Trips 1+ miles = [72,124) 0.527 0.494 0.510
(0.673) (0.668) (0.672)

Trips 1+ miles = [124,174) 0.397 0.363 0.381
(0.673) (0.667) (0.671)

Trips 1+ miles = [174,238) 0.489 0.447 0.470
(0.672) (0.667) (0.671)

Trips 1+ miles = [238,364) 0.731 0.690 0.711
(0.671) (0.666) (0.670)

Trips 1+ miles = 365 0.697 0.688 0.685
(0.697) (0.692) (0.696)

Has participated in CBC 1.929∗∗∗ 1.943∗∗∗ 1.930∗∗∗
(0.0703) (0.0700) (0.0704)

Hunts birds 0.0730 0.0678 0.0728
(0.0964) (0.0963) (0.0964)

Age: 24 years or less 0.527∗∗∗ 0.534∗∗∗ 0.534∗∗∗
(0.0984) (0.0964) (0.0989)
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Age: 25 to 34 years 0.530∗∗∗ 0.545∗∗∗ 0.536∗∗∗

(0.0864) (0.0861) (0.0869)

Age: 35 to 44 years 0.358∗∗∗ 0.365∗∗∗ 0.358∗∗∗
(0.0892) (0.0887) (0.0892)

Age: 55 to 64 years -0.192∗ -0.226∗∗ -0.196∗
(0.110) (0.107) (0.110)

Age: 65 years and up -0.262∗∗ -0.358∗∗∗ -0.269∗∗
(0.133) (0.117) (0.134)

Region: Northeast 0.156∗∗ 0.160∗∗ 0.159∗∗
(0.0734) (0.0734) (0.0735)

Region: Midwest -0.0333 -0.0303 -0.0306
(0.0751) (0.0752) (0.0753)

Region: South 0.0398 0.0453 0.0441
(0.0656) (0.0657) (0.0659)

Empl. status: Part time 0.00414 0.0151
(0.0733) (0.0745)

Empl. status: Looking for work -0.207∗ -0.193∗
(0.106) (0.108)

Empl. status: Unemployed -0.165∗∗ -0.148∗
(0.0770) (0.0794)

Empl. status: Retired -0.177∗ -0.167
(0.106) (0.107)

Education: High school -0.0321 -0.0444 -0.0177
(0.0722) (0.0743) (0.0752)

Education: Some college -0.137∗∗ -0.140∗∗ -0.130∗
(0.0657) (0.0667) (0.0671)

Education: Masters degree 0.275∗∗∗ 0.274∗∗∗ 0.273∗∗∗
(0.0812) (0.0824) (0.0824)

Education: Doctoral degree 0.201∗ 0.189 0.191
(0.122) (0.124) (0.124)

Income: Less than 25K -0.111 -0.0713
(0.0825) (0.0851)

Income: 25 K to 50 K -0.0287 -0.0229
(0.0770) (0.0773)

Income: 75 K to 100 K -0.0328 -0.0362
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(0.0865) (0.0866)

Income: 100 K or more 0.00665 0.0000751
(0.0779) (0.0781)

/
cut1 1.357∗∗∗ 1.380∗∗∗ 1.349∗∗∗

(0.0997) (0.110) (0.111)

cut2 1.970∗∗∗ 1.993∗∗∗ 1.963∗∗∗
(0.103) (0.113) (0.114)

cut3 2.332∗∗∗ 2.355∗∗∗ 2.324∗∗∗
(0.107) (0.116) (0.117)

cut4 2.761∗∗∗ 2.782∗∗∗ 2.754∗∗∗
(0.111) (0.121) (0.122)

cut5 3.409∗∗∗ 3.428∗∗∗ 3.402∗∗∗
(0.121) (0.130) (0.131)

Observations 4161 4161 4161
Max. log-likelihood -2396.30 -2400.01 -2395.83
t in parentheses
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001
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Table A12: qBus sample: Model 22-24 (of 30) to accommodate eBird missing
values

Model 22 Model 23 Model 24
Engagement-level indicator
Travel 1+ mile data available 0.343 0.295 0.241

(0.679) (0.668) (0.666)

Trips 1+ miles = 0 -1.062 -1.013 -0.958
(0.685) (0.674) (0.671)

Trips 1+ miles = [1,4) -0.664 -0.621 -0.481
(0.694) (0.684) (0.681)

Trips 1+ miles = [4,7) -0.885 -0.850 -0.787
(0.698) (0.687) (0.686)

Trips 1+ miles = [7,10) -0.580 -0.539 -0.517
(0.697) (0.686) (0.684)

Trips 1+ miles = [10,21) -0.289 -0.251 -0.196
(0.685) (0.674) (0.671)

Trips 1+ miles = [21,41) -0.264 -0.228 -0.132
(0.686) (0.675) (0.673)

Trips 1+ miles = [41,72) 0.0791 0.112 0.146
(0.683) (0.672) (0.669)

Trips 1+ miles = [72,124) 0.303 0.358 0.415
(0.681) (0.670) (0.667)

Trips 1+ miles = [124,174) 0.231 0.283 0.305
(0.681) (0.670) (0.667)

Trips 1+ miles = [174,238) 0.357 0.391 0.448
(0.680) (0.669) (0.667)

Trips 1+ miles = [238,364) 0.649 0.675 0.720
(0.680) (0.669) (0.666)

Trips 1+ miles = 365 0.590 0.629 0.634
(0.705) (0.695) (0.692)

Has participated in CBC 2.060∗∗∗ 2.038∗∗∗ 1.994∗∗∗
(0.0688) (0.0691) (0.0697)

Hunts birds 0.0756 0.0937 0.0816
(0.0940) (0.0943) (0.0949)

Gender: Female -0.128∗∗∗ -0.104∗∗ -0.120∗∗
(0.0478) (0.0484) (0.0498)
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Region: Northeast 0.162∗∗ 0.147∗∗ 0.141∗

(0.0716) (0.0719) (0.0726)

Region: Midwest -0.0460 -0.0472 -0.0326
(0.0732) (0.0733) (0.0741)

Region: South 0.00866 0.0109 0.0300
(0.0639) (0.0640) (0.0648)

Education: High school 0.00516 0.0277
(0.0679) (0.0703)

Education: Some college -0.0931 -0.0858
(0.0632) (0.0643)

Education: Masters degree 0.215∗∗∗ 0.244∗∗∗
(0.0793) (0.0801)

Education: Doctoral degree 0.156 0.184
(0.119) (0.120)

Empl. status: Part time 0.0766
(0.0705)

Empl. status: Looking for work -0.108
(0.105)

Empl. status: Unemployed -0.0833
(0.0765)

Empl. status: Retired -0.610∗∗∗
(0.0831)

/
cut1 1.128∗∗∗ 1.140∗∗∗ 1.051∗∗∗

(0.0599) (0.0714) (0.0740)

cut2 1.711∗∗∗ 1.725∗∗∗ 1.646∗∗∗
(0.0647) (0.0756) (0.0781)

cut3 2.054∗∗∗ 2.071∗∗∗ 1.999∗∗∗
(0.0691) (0.0796) (0.0820)

cut4 2.462∗∗∗ 2.484∗∗∗ 2.421∗∗∗
(0.0751) (0.0849) (0.0871)

cut5 3.091∗∗∗ 3.120∗∗∗ 3.063∗∗∗
(0.0872) (0.0960) (0.0979)

Observations 4161 4161 4161
Max. log-likelihood -2486.77 -2478.16 -2443.92
t in parentheses
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001
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Table A13: qBus sample: Model 25-27 (of 30) to accommodate eBird missing
values

Model 25 Model 26 Model 27
Engagement-level indicator
Travel 1+ mile data available 0.125 0.170 0.122

(0.659) (0.676) (0.662)

Trips 1+ miles = 0 -0.858 -0.904 -0.856
(0.665) (0.681) (0.668)

Trips 1+ miles = [1,4) -0.250 -0.296 -0.249
(0.676) (0.692) (0.679)

Trips 1+ miles = [4,7) -0.527 -0.571 -0.537
(0.681) (0.696) (0.683)

Trips 1+ miles = [7,10) -0.350 -0.412 -0.373
(0.679) (0.695) (0.682)

Trips 1+ miles = [10,21) -0.0324 -0.0784 -0.0411
(0.665) (0.681) (0.668)

Trips 1+ miles = [21,41) -0.0168 -0.0510 -0.00610
(0.666) (0.683) (0.669)

Trips 1+ miles = [41,72) 0.300 0.260 0.300
(0.663) (0.679) (0.665)

Trips 1+ miles = [72,124) 0.533 0.471 0.531
(0.661) (0.677) (0.664)

Trips 1+ miles = [124,174) 0.412 0.359 0.413
(0.661) (0.677) (0.663)

Trips 1+ miles = [174,238) 0.495 0.469 0.501
(0.660) (0.676) (0.663)

Trips 1+ miles = [238,364) 0.741 0.724 0.745
(0.659) (0.676) (0.662)

Trips 1+ miles = 365 0.723 0.664 0.708
(0.686) (0.702) (0.688)

Has participated in CBC 1.923∗∗∗ 1.941∗∗∗ 1.913∗∗∗
(0.0701) (0.0701) (0.0704)

Hunts birds 0.0591 0.0436 0.0642
(0.0963) (0.0963) (0.0965)

Gender: Female -0.184∗∗∗ -0.187∗∗∗ -0.171∗∗∗
(0.0498) (0.0503) (0.0507)
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Age: 24 years or less 0.534∗∗∗ 0.501∗∗∗ 0.535∗∗∗

(0.0957) (0.0980) (0.0987)

Age: 25 to 34 years 0.549∗∗∗ 0.538∗∗∗ 0.542∗∗∗
(0.0857) (0.0863) (0.0866)

Age: 35 to 44 years 0.367∗∗∗ 0.366∗∗∗ 0.360∗∗∗
(0.0889) (0.0890) (0.0894)

Age: 55 to 64 years -0.232∗∗ -0.198∗ -0.204∗
(0.107) (0.110) (0.110)

Age: 65 years and up -0.376∗∗∗ -0.233∗ -0.292∗∗
(0.117) (0.132) (0.134)

Region: Northeast 0.162∗∗ 0.180∗∗ 0.162∗∗
(0.0734) (0.0732) (0.0735)

Region: Midwest -0.0204 -0.0222 -0.0212
(0.0751) (0.0750) (0.0752)

Region: South 0.0522 0.0478 0.0520
(0.0656) (0.0656) (0.0658)

Education: High school -0.0723 -0.0377
(0.0702) (0.0723)

Education: Some college -0.143∗∗ -0.130∗∗
(0.0651) (0.0658)

Education: Masters degree 0.271∗∗∗ 0.269∗∗∗
(0.0813) (0.0814)

Education: Doctoral degree 0.170 0.170
(0.122) (0.122)

Empl. status: Part time 0.00313 0.0336
(0.0732) (0.0740)

Empl. status: Looking for work -0.219∗∗ -0.183∗
(0.106) (0.107)

Empl. status: Unemployed -0.162∗∗ -0.120
(0.0760) (0.0782)

Empl. status: Retired -0.184∗ -0.154
(0.105) (0.106)

/
cut1 1.311∗∗∗ 1.285∗∗∗ 1.292∗∗∗

(0.101) (0.0934) (0.101)

cut2 1.926∗∗∗ 1.896∗∗∗ 1.908∗∗∗
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(0.104) (0.0971) (0.105)

cut3 2.289∗∗∗ 2.254∗∗∗ 2.271∗∗∗
(0.108) (0.100) (0.108)

cut4 2.719∗∗∗ 2.679∗∗∗ 2.703∗∗∗
(0.112) (0.105) (0.113)

cut5 3.368∗∗∗ 3.322∗∗∗ 3.354∗∗∗
(0.121) (0.114) (0.122)

Observations 4161 4161 4161
Max. log-likelihood -2394.41 -2403.62 -2390.64
t in parentheses
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001
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Table A14: qBus sample: Model 28-30 (of 30) to accommodate eBird missing
values

Model 28 Model 29 Model 30
Engagement-level indicator
Travel 1+ mile data available 0.192 0.148 0.174

(0.667) (0.658) (0.671)

Trips 1+ miles = 0 -0.929 -0.882 -0.912
(0.673) (0.664) (0.677)

Trips 1+ miles = [1,4) -0.318 -0.269 -0.301
(0.684) (0.675) (0.688)

Trips 1+ miles = [4,7) -0.579 -0.553 -0.576
(0.688) (0.680) (0.693)

Trips 1+ miles = [7,10) -0.406 -0.376 -0.414
(0.687) (0.678) (0.691)

Trips 1+ miles = [10,21) -0.0974 -0.0572 -0.0898
(0.673) (0.664) (0.677)

Trips 1+ miles = [21,41) -0.0826 -0.0376 -0.0588
(0.674) (0.665) (0.678)

Trips 1+ miles = [41,72) 0.250 0.279 0.263
(0.671) (0.662) (0.675)

Trips 1+ miles = [72,124) 0.455 0.510 0.470
(0.669) (0.660) (0.673)

Trips 1+ miles = [124,174) 0.352 0.390 0.367
(0.669) (0.660) (0.673)

Trips 1+ miles = [174,238) 0.443 0.472 0.463
(0.668) (0.659) (0.672)

Trips 1+ miles = [238,364) 0.700 0.715 0.718
(0.667) (0.658) (0.671)

Trips 1+ miles = 365 0.667 0.707 0.665
(0.693) (0.685) (0.697)

Has participated in CBC 1.947∗∗∗ 1.923∗∗∗ 1.937∗∗∗
(0.0700) (0.0703) (0.0703)

Hunts birds 0.0422 0.0595 0.0497
(0.0961) (0.0963) (0.0963)

Gender: Female -0.189∗∗∗ -0.178∗∗∗ -0.178∗∗∗
(0.0499) (0.0502) (0.0506)
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Age: 24 years or less 0.523∗∗∗ 0.547∗∗∗ 0.521∗∗∗

(0.0960) (0.0966) (0.0987)

Age: 25 to 34 years 0.566∗∗∗ 0.556∗∗∗ 0.554∗∗∗
(0.0858) (0.0863) (0.0867)

Age: 35 to 44 years 0.372∗∗∗ 0.367∗∗∗ 0.365∗∗∗
(0.0885) (0.0889) (0.0890)

Age: 55 to 64 years -0.237∗∗ -0.235∗∗ -0.208∗
(0.107) (0.107) (0.110)

Age: 65 years and up -0.334∗∗∗ -0.379∗∗∗ -0.253∗
(0.115) (0.117) (0.132)

Income: Less than 25K -0.103 -0.0873 -0.0628
(0.0809) (0.0829) (0.0839)

Income: 25 K to 50 K -0.0368 -0.0224 -0.0296
(0.0768) (0.0771) (0.0771)

Income: 75 K to 100 K 0.00562 -0.0399 0.000688
(0.0858) (0.0866) (0.0859)

Income: 100 K or more 0.0929 -0.00666 0.0838
(0.0746) (0.0782) (0.0748)

Region: Northeast 0.184∗∗ 0.166∗∗ 0.182∗∗
(0.0732) (0.0736) (0.0734)

Region: Midwest -0.0215 -0.0177 -0.0234
(0.0751) (0.0753) (0.0752)

Region: South 0.0557 0.0566 0.0525
(0.0656) (0.0658) (0.0658)

Education: High school -0.0511
(0.0745)

Education: Some college -0.134∗∗
(0.0668)

Education: Masters degree 0.270∗∗∗
(0.0825)

Education: Doctoral degree 0.162
(0.124)

Empl. status: Part time 0.0268
(0.0748)

Empl. status: Looking for work -0.188∗
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(0.108)

Empl. status: Unemployed -0.129
(0.0795)

Empl. status: Retired -0.155
(0.106)

/
cut1 1.345∗∗∗ 1.299∗∗∗ 1.313∗∗∗

(0.104) (0.112) (0.105)

cut2 1.956∗∗∗ 1.914∗∗∗ 1.925∗∗∗
(0.107) (0.115) (0.108)

cut3 2.315∗∗∗ 2.277∗∗∗ 2.284∗∗∗
(0.110) (0.118) (0.111)

cut4 2.740∗∗∗ 2.708∗∗∗ 2.711∗∗∗
(0.115) (0.123) (0.116)

cut5 3.383∗∗∗ 3.357∗∗∗ 3.356∗∗∗
(0.124) (0.132) (0.125)

Observations 4161 4161 4161
Max. log-likelihood -2405.49 -2393.71 -2401.66
t in parentheses
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001
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G Four-level ordered-probit eBird engagement-level mod-
els for all relevant subsets of regressors (using data
from the eBird member survey sample); needed to
compute weights

Table A15: eBird sample: Model 1-3 (of 30) to accommodate missing values

Model 1 Model 2 Model 3
Engagement-level indicator
Has participated in CBC 0.487∗∗∗ 0.556∗∗∗ 0.525∗∗∗

(0.0678) (0.0744) (0.0759)

Hunts birds 0.0400 -0.0868 -0.0443
(0.128) (0.139) (0.140)

Empl. status: Part time -0.255∗ -0.210
(0.140) (0.143)

Empl. status: Looking for work -0.587 -0.562
(0.425) (0.428)

Empl. status: Unemployed -0.154 -0.0841
(0.157) (0.161)

Empl. status: Retired -0.501∗∗∗ -0.480∗∗∗
(0.0807) (0.0820)

Education: High school 0.197
(0.219)

Education: Some college -0.183
(0.120)

Education: Masters degree 0.0652
(0.0905)

Education: Doctoral degree 0.266∗∗
(0.125)

/
cut1 -0.0249 -0.294∗∗∗ -0.258∗∗∗

(0.0527) (0.0759) (0.0967)

cut2 0.715∗∗∗ 0.482∗∗∗ 0.527∗∗∗
(0.0552) (0.0762) (0.0972)

cut3 1.320∗∗∗ 1.086∗∗∗ 1.131∗∗∗
(0.0623) (0.0818) (0.102)

Observations 1081 918 899
Max. log-likelihood -1396.30 -1162.68 -1135.31
t in parentheses
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∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001
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Table A16: eBird sample: Model 4-6 (of 30) to accommodate missing values

Model 4 Model 5 Model 6
Engagement-level indicator
Has participated in CBC 0.567∗∗∗ 0.413∗∗∗ 0.522∗∗∗

(0.0769) (0.0700) (0.0749)

Hunts birds -0.0758 -0.0716 -0.214
(0.142) (0.131) (0.141)

Age: 24 years or less 0.963∗∗∗
(0.352)

Age: 25 to 34 years 0.439∗∗
(0.172)

Age: 35 to 44 years 0.330∗∗
(0.157)

Age: 55 to 64 years -0.140
(0.125)

Age: 65 years and up -0.163
(0.152)

Empl. status: Part time -0.222 -0.181
(0.147) (0.141)

Empl. status: Looking for work -0.693 -0.520
(0.435) (0.425)

Empl. status: Unemployed -0.0923 -0.0523
(0.164) (0.159)

Empl. status: Retired -0.260∗∗ -0.469∗∗∗
(0.121) (0.0812)

Education: High school 0.0937 0.102
(0.234) (0.194)

Education: Some college -0.135 -0.159
(0.122) (0.108)

Education: Masters degree 0.126 0.0479
(0.0919) (0.0833)

Education: Doctoral degree 0.344∗∗∗ 0.227∗
(0.127) (0.116)

Gender: Female -0.357∗∗∗ -0.373∗∗∗
(0.0717) (0.0771)

/
cut1 -0.141 -0.268∗∗∗ -0.518∗∗∗
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(0.126) (0.0930) (0.0889)

cut2 0.666∗∗∗ 0.498∗∗∗ 0.272∗∗∗
(0.127) (0.0934) (0.0879)

cut3 1.276∗∗∗ 1.113∗∗∗ 0.889∗∗∗
(0.131) (0.0968) (0.0918)

Observations 898 1053 916
Max. log-likelihood -1121.46 -1344.47 -1149.42
t in parentheses
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

A45



Table A17: eBird sample: Model 7-9 (of 30) to accommodate missing values

Model 7 Model 8 Model 9
Engagement-level indicator
Has participated in CBC 0.493∗∗∗ 0.534∗∗∗ 0.500∗∗∗

(0.0765) (0.0700) (0.0715)

Hunts birds -0.168 -0.208 -0.162
(0.143) (0.133) (0.133)

Gender: Female -0.344∗∗∗ -0.412∗∗∗ -0.378∗∗∗
(0.0787) (0.0706) (0.0724)

Empl. status: Part time -0.144
(0.144)

Empl. status: Looking for work -0.503
(0.427)

Empl. status: Unemployed 0.0109
(0.163)

Empl. status: Retired -0.452∗∗∗
(0.0824)

Education: High school 0.115 0.00592
(0.220) (0.207)

Education: Some college -0.200∗ -0.129
(0.121) (0.110)

Education: Masters degree 0.0603 0.166∗
(0.0908) (0.0852)

Education: Doctoral degree 0.198 0.336∗∗∗
(0.126) (0.118)

Age: 24 years or less 0.632∗∗ 0.769∗∗∗
(0.255) (0.268)

Age: 25 to 34 years 0.328∗∗ 0.389∗∗
(0.155) (0.157)

Age: 35 to 44 years 0.172 0.187
(0.141) (0.142)

Age: 55 to 64 years -0.305∗∗∗ -0.306∗∗∗
(0.107) (0.108)

Age: 65 years and up -0.431∗∗∗ -0.439∗∗∗
(0.105) (0.106)

/
cut1 -0.480∗∗∗ -0.490∗∗∗ -0.394∗∗∗
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(0.110) (0.107) (0.124)

cut2 0.317∗∗∗ 0.305∗∗∗ 0.413∗∗∗
(0.109) (0.106) (0.124)

cut3 0.931∗∗∗ 0.939∗∗∗ 1.046∗∗∗
(0.112) (0.109) (0.127)

Observations 897 1071 1051
Max. log-likelihood -1124.29 -1339.49 -1307.49
t in parentheses
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001
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Table A18: eBird sample: Model 10-12 (of 30) to accommodate missing values

Model 10 Model 11 Model 12
Engagement-level indicator
Has participated in CBC 0.568∗∗∗ 0.535∗∗∗ 0.491∗∗∗

(0.0761) (0.0775) (0.0795)

Hunts birds -0.259∗ -0.207 -0.186
(0.143) (0.144) (0.140)

Gender: Female -0.385∗∗∗ -0.359∗∗∗ -0.364∗∗∗
(0.0779) (0.0796) (0.0804)

Age: 24 years or less 0.875∗∗∗ 0.924∗∗∗ 0.789∗∗
(0.334) (0.352) (0.315)

Age: 25 to 34 years 0.391∗∗ 0.424∗∗ 0.317∗
(0.171) (0.173) (0.167)

Age: 35 to 44 years 0.317∗∗ 0.321∗∗ 0.125
(0.156) (0.157) (0.151)

Age: 55 to 64 years -0.154 -0.161 -0.376∗∗∗
(0.124) (0.126) (0.117)

Age: 65 years and up -0.217 -0.232 -0.405∗∗∗
(0.151) (0.154) (0.118)

Empl. status: Part time -0.180 -0.136
(0.147) (0.149)

Empl. status: Looking for work -0.663 -0.635
(0.433) (0.435)

Empl. status: Unemployed -0.0534 0.00968
(0.163) (0.165)

Empl. status: Retired -0.222∗ -0.188
(0.120) (0.123)

Education: High school 0.0161 0.145
(0.235) (0.237)

Education: Some college -0.149 -0.135
(0.122) (0.122)

Education: Masters degree 0.125 0.108
(0.0922) (0.0943)

Education: Doctoral degree 0.279∗∗ 0.251∗
(0.128) (0.133)

Income: Less than 25K -0.133
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(0.170)

Income: 25 K to 50 K 0.118
(0.117)

Income: 75 K to 100 K -0.127
(0.122)

Income: 100 K or more 0.117
(0.106)

/
cut1 -0.464∗∗∗ -0.383∗∗∗ -0.478∗∗∗

(0.119) (0.137) (0.154)

cut2 0.347∗∗∗ 0.438∗∗∗ 0.378∗∗
(0.118) (0.137) (0.154)

cut3 0.972∗∗∗ 1.059∗∗∗ 1.017∗∗∗
(0.122) (0.140) (0.156)

Observations 914 896 853
Max. log-likelihood -1134.81 -1109.77 -1076.62
t in parentheses
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001
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Table A19: eBird sample: Model 13-15 (of 30) to accommodate missing values

Model 13 Model 14 Model 15
Engagement-level indicator
Has participated in CBC 0.562∗∗∗ 0.534∗∗∗ 0.0305

(0.0846) (0.0867) (0.0844)

Hunts birds -0.290∗ -0.241 0.106
(0.148) (0.150) (0.152)

Gender: Female -0.387∗∗∗ -0.375∗∗∗
(0.0867) (0.0888)

Age: 24 years or less 1.021∗∗∗ 0.986∗∗
(0.396) (0.403)

Age: 25 to 34 years 0.341∗ 0.330∗
(0.185) (0.188)

Age: 35 to 44 years 0.233 0.229
(0.167) (0.168)

Age: 55 to 64 years -0.195 -0.217
(0.134) (0.136)

Age: 65 years and up -0.103 -0.125
(0.167) (0.170)

Income: Less than 25K -0.267 -0.198
(0.193) (0.200)

Income: 25 K to 50 K 0.0989 0.150
(0.124) (0.127)

Income: 75 K to 100 K -0.204 -0.182
(0.131) (0.132)

Income: 100 K or more 0.0531 0.0303
(0.115) (0.117)

Empl. status: Part time -0.181 -0.164
(0.160) (0.161)

Empl. status: Looking for work -0.476 -0.482
(0.462) (0.465)

Empl. status: Unemployed -0.163 -0.127
(0.188) (0.190)

Empl. status: Retired -0.343∗∗ -0.321∗∗
(0.135) (0.136)

Education: High school 0.130
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(0.259)

Education: Some college -0.142
(0.138)

Education: Masters degree 0.0764
(0.102)

Education: Doctoral degree 0.196
(0.144)

Travel 1+ mile data available 0
(.)

Trips 1+ miles = 0 -2.765∗∗∗
(0.187)

Trips 1+ miles = [1,4) -2.923∗∗∗
(0.213)

Trips 1+ miles = [4,7) -1.944∗∗∗
(0.222)

Trips 1+ miles = [7,10) -1.587∗∗∗
(0.283)

Trips 1+ miles = [10,21) -1.556∗∗∗
(0.202)

Trips 1+ miles = [21,41) -1.371∗∗∗
(0.216)

Trips 1+ miles = [41,72) -1.097∗∗∗
(0.207)

Trips 1+ miles = [72,124) -0.695∗∗∗
(0.213)

Trips 1+ miles = [124,174) -0.560∗∗
(0.231)

Trips 1+ miles = [174,238) -0.426
(0.265)

Trips 1+ miles = [238,364) -0.399∗
(0.229)

Trips 1+ miles = 365 0
(.)

/
cut1 -0.599∗∗∗ -0.555∗∗∗ -2.506∗∗∗
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(0.156) (0.174) (0.187)

cut2 0.285∗ 0.335∗ -1.346∗∗∗
(0.156) (0.173) (0.178)

cut3 0.908∗∗∗ 0.954∗∗∗ -0.401∗∗
(0.159) (0.176) (0.173)

Observations 740 727 831
Max. log-likelihood -924.96 -907.59 -875.39
t in parentheses
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001
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Table A20: eBird sample: Model 16-18 (of 30) to accommodate missing values

Model 16 Model 17 Model 18
Engagement-level indicator
Travel 1+ mile data available 0 0 0

(.) (.) (.)

Trips 1+ miles = 0 -2.761∗∗∗ -2.837∗∗∗ -2.855∗∗∗
(0.190) (0.211) (0.208)

Trips 1+ miles = [1,4) -2.983∗∗∗ -3.107∗∗∗ -3.090∗∗∗
(0.218) (0.242) (0.240)

Trips 1+ miles = [4,7) -1.977∗∗∗ -1.959∗∗∗ -1.955∗∗∗
(0.226) (0.258) (0.255)

Trips 1+ miles = [7,10) -1.698∗∗∗ -1.993∗∗∗ -1.896∗∗∗
(0.290) (0.314) (0.309)

Trips 1+ miles = [10,21) -1.546∗∗∗ -1.678∗∗∗ -1.692∗∗∗
(0.205) (0.226) (0.224)

Trips 1+ miles = [21,41) -1.368∗∗∗ -1.439∗∗∗ -1.453∗∗∗
(0.219) (0.240) (0.237)

Trips 1+ miles = [41,72) -1.105∗∗∗ -1.196∗∗∗ -1.225∗∗∗
(0.209) (0.232) (0.232)

Trips 1+ miles = [72,124) -0.678∗∗∗ -0.629∗∗∗ -0.676∗∗∗
(0.216) (0.238) (0.236)

Trips 1+ miles = [124,174) -0.592∗∗ -0.629∗∗ -0.622∗∗
(0.235) (0.264) (0.261)

Trips 1+ miles = [174,238) -0.404 -0.546∗ -0.568∗∗
(0.272) (0.291) (0.284)

Trips 1+ miles = [238,364) -0.410∗ -0.522∗∗ -0.551∗∗
(0.234) (0.258) (0.255)

Trips 1+ miles = 365 0 0 0
(.) (.) (.)

Has participated in CBC 0.0272 0.125 0.160∗
(0.0859) (0.0935) (0.0936)

Hunts birds 0.108 0.00874 -0.00447
(0.153) (0.170) (0.170)

Education: High school 0.427∗ 0.462∗
(0.235) (0.255)

Education: Some college 0.00506 -0.114
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(0.134) (0.150)

Education: Masters degree 0.176∗ 0.183∗
(0.0980) (0.108)

Education: Doctoral degree 0.147 0.0672
(0.133) (0.144)

Empl. status: Part time -0.116 -0.226
(0.169) (0.173)

Empl. status: Looking for work -0.718 -0.976∗
(0.587) (0.589)

Empl. status: Unemployed 0.0905 0.0520
(0.186) (0.185)

Empl. status: Retired -0.322∗∗∗ -0.342∗∗
(0.0976) (0.142)

Age: 24 years or less 0.755∗∗
(0.346)

Age: 25 to 34 years 0.206
(0.194)

Age: 35 to 44 years 0.281
(0.180)

Age: 55 to 64 years -0.110
(0.145)

Age: 65 years and up 0.130
(0.178)

/
cut1 -2.420∗∗∗ -2.670∗∗∗ -2.711∗∗∗

(0.202) (0.231) (0.235)

cut2 -1.243∗∗∗ -1.434∗∗∗ -1.457∗∗∗
(0.193) (0.221) (0.225)

cut3 -0.303 -0.496∗∗ -0.510∗∗
(0.188) (0.215) (0.220)

Observations 810 693 707
Max. log-likelihood -850.08 -711.03 -722.39
t in parentheses
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001
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Table A21: eBird sample: Model 19-21 (of 30) to accommodate missing values

Model 19 Model 20 Model 21
Engagement-level indicator
Travel 1+ mile data available 0 0 0

(.) (.) (.)

Trips 1+ miles = 0 -2.867∗∗∗ -2.810∗∗∗ -2.850∗∗∗
(0.212) (0.207) (0.228)

Trips 1+ miles = [1,4) -3.151∗∗∗ -3.071∗∗∗ -3.140∗∗∗
(0.245) (0.242) (0.267)

Trips 1+ miles = [4,7) -2.024∗∗∗ -2.120∗∗∗ -1.884∗∗∗
(0.259) (0.250) (0.286)

Trips 1+ miles = [7,10) -2.086∗∗∗ -2.084∗∗∗ -2.285∗∗∗
(0.318) (0.346) (0.370)

Trips 1+ miles = [10,21) -1.707∗∗∗ -1.800∗∗∗ -1.851∗∗∗
(0.227) (0.226) (0.249)

Trips 1+ miles = [21,41) -1.484∗∗∗ -1.494∗∗∗ -1.520∗∗∗
(0.241) (0.238) (0.261)

Trips 1+ miles = [41,72) -1.247∗∗∗ -1.341∗∗∗ -1.363∗∗∗
(0.234) (0.227) (0.253)

Trips 1+ miles = [72,124) -0.675∗∗∗ -0.844∗∗∗ -0.728∗∗∗
(0.239) (0.233) (0.258)

Trips 1+ miles = [124,174) -0.677∗∗ -0.696∗∗∗ -0.654∗∗
(0.265) (0.258) (0.292)

Trips 1+ miles = [174,238) -0.565∗ -0.465 -0.569∗
(0.292) (0.298) (0.321)

Trips 1+ miles = [238,364) -0.575∗∗ -0.396 -0.424
(0.260) (0.260) (0.286)

Trips 1+ miles = 365 0 0 0
(.) (.) (.)

Has participated in CBC 0.150 0.103 0.183∗
(0.0948) (0.0972) (0.106)

Hunts birds -0.0170 0.0233 -0.0400
(0.171) (0.164) (0.177)

Age: 24 years or less 0.640∗ 0.902∗∗∗ 1.019∗∗
(0.370) (0.334) (0.423)

Age: 25 to 34 years 0.267 0.208 0.298
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(0.196) (0.191) (0.215)

Age: 35 to 44 years 0.301∗ 0.308∗ 0.325∗
(0.181) (0.174) (0.192)

Age: 55 to 64 years -0.128 -0.300∗∗ -0.117
(0.148) (0.137) (0.159)

Age: 65 years and up 0.102 -0.184 0.161
(0.181) (0.137) (0.200)

Empl. status: Part time -0.189 -0.169
(0.175) (0.187)

Empl. status: Looking for work -0.908 -0.825
(0.593) (0.650)

Empl. status: Unemployed 0.0780 -0.0457
(0.189) (0.214)

Empl. status: Retired -0.307∗∗ -0.343∗∗
(0.145) (0.162)

Education: High school 0.392 0.606∗∗ 0.718∗∗
(0.275) (0.280) (0.308)

Education: Some college -0.0874 0.0891 0.00245
(0.152) (0.150) (0.169)

Education: Masters degree 0.222∗∗ 0.305∗∗∗ 0.259∗∗
(0.110) (0.110) (0.121)

Education: Doctoral degree 0.116 0.160 0.0245
(0.147) (0.150) (0.164)

Income: Less than 25K 0.0219 -0.0785
(0.209) (0.254)

Income: 25 K to 50 K 0.154 0.154
(0.138) (0.150)

Income: 75 K to 100 K 0.0584 0.00504
(0.144) (0.157)

Income: 100 K or more 0.240∗ 0.167
(0.123) (0.136)

/
cut1 -2.632∗∗∗ -2.483∗∗∗ -2.586∗∗∗

(0.250) (0.249) (0.282)

cut2 -1.370∗∗∗ -1.211∗∗∗ -1.246∗∗∗
(0.240) (0.241) (0.273)
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cut3 -0.425∗ -0.241 -0.302

(0.236) (0.236) (0.268)
Observations 692 674 573
Max. log-likelihood -704.13 -697.49 -583.38
t in parentheses
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001
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Table A22: eBird sample: Model 22-24 (of 30) to accommodate missing values

Model 22 Model 23 Model 24
Engagement-level indicator
Travel 1+ mile data available 0 0 0

(.) (.) (.)

Trips 1+ miles = 0 -2.735∗∗∗ -2.732∗∗∗ -2.810∗∗∗
(0.188) (0.191) (0.211)

Trips 1+ miles = [1,4) -2.886∗∗∗ -2.952∗∗∗ -3.082∗∗∗
(0.214) (0.219) (0.243)

Trips 1+ miles = [4,7) -1.922∗∗∗ -1.956∗∗∗ -1.933∗∗∗
(0.223) (0.226) (0.258)

Trips 1+ miles = [7,10) -1.545∗∗∗ -1.659∗∗∗ -1.948∗∗∗
(0.284) (0.291) (0.315)

Trips 1+ miles = [10,21) -1.514∗∗∗ -1.512∗∗∗ -1.650∗∗∗
(0.203) (0.206) (0.227)

Trips 1+ miles = [21,41) -1.334∗∗∗ -1.341∗∗∗ -1.416∗∗∗
(0.217) (0.220) (0.240)

Trips 1+ miles = [41,72) -1.089∗∗∗ -1.098∗∗∗ -1.189∗∗∗
(0.206) (0.209) (0.232)

Trips 1+ miles = [72,124) -0.668∗∗∗ -0.658∗∗∗ -0.611∗∗
(0.213) (0.216) (0.238)

Trips 1+ miles = [124,174) -0.551∗∗ -0.581∗∗ -0.623∗∗
(0.231) (0.235) (0.265)

Trips 1+ miles = [174,238) -0.429 -0.411 -0.563∗
(0.265) (0.272) (0.291)

Trips 1+ miles = [238,364) -0.394∗ -0.410∗ -0.518∗∗
(0.229) (0.234) (0.258)

Trips 1+ miles = 365 0 0 0
(.) (.) (.)

Has participated in CBC 0.0210 0.0183 0.115
(0.0848) (0.0862) (0.0939)

Hunts birds 0.0512 0.0583 -0.0406
(0.155) (0.156) (0.172)

Gender: Female -0.160∗ -0.132 -0.148
(0.0830) (0.0855) (0.0940)

Education: High school 0.404∗ 0.437∗
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(0.235) (0.255)

Education: Some college 0.00943 -0.114
(0.134) (0.151)

Education: Masters degree 0.174∗ 0.183∗
(0.0981) (0.108)

Education: Doctoral degree 0.115 0.0368
(0.135) (0.146)

Empl. status: Part time -0.0868
(0.170)

Empl. status: Looking for work -0.716
(0.584)

Empl. status: Unemployed 0.135
(0.188)

Empl. status: Retired -0.305∗∗∗
(0.0980)

/
cut1 -2.587∗∗∗ -2.490∗∗∗ -2.738∗∗∗

(0.192) (0.207) (0.236)

cut2 -1.415∗∗∗ -1.309∗∗∗ -1.498∗∗∗
(0.182) (0.198) (0.225)

cut3 -0.466∗∗∗ -0.365∗ -0.557∗∗
(0.176) (0.193) (0.220)

Observations 826 808 691
Max. log-likelihood -868.79 -847.83 -708.91
t in parentheses
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001
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Table A23: eBird sample: Model 25-27 (of 30) to accommodate missing values

Model 25 Model 26 Model 27
Engagement-level indicator
Travel 1+ mile data available 0 0 0

(.) (.) (.)

Trips 1+ miles = 0 -2.750∗∗∗ -2.820∗∗∗ -2.838∗∗∗
(0.192) (0.209) (0.212)

Trips 1+ miles = [1,4) -2.969∗∗∗ -3.053∗∗∗ -3.123∗∗∗
(0.221) (0.241) (0.245)

Trips 1+ miles = [4,7) -2.031∗∗∗ -1.928∗∗∗ -1.997∗∗∗
(0.227) (0.255) (0.260)

Trips 1+ miles = [7,10) -1.786∗∗∗ -1.850∗∗∗ -2.041∗∗∗
(0.294) (0.310) (0.320)

Trips 1+ miles = [10,21) -1.559∗∗∗ -1.658∗∗∗ -1.678∗∗∗
(0.207) (0.224) (0.228)

Trips 1+ miles = [21,41) -1.378∗∗∗ -1.419∗∗∗ -1.459∗∗∗
(0.221) (0.238) (0.241)

Trips 1+ miles = [41,72) -1.157∗∗∗ -1.210∗∗∗ -1.235∗∗∗
(0.210) (0.232) (0.234)

Trips 1+ miles = [72,124) -0.693∗∗∗ -0.652∗∗∗ -0.656∗∗∗
(0.216) (0.236) (0.239)

Trips 1+ miles = [124,174) -0.612∗∗∗ -0.617∗∗ -0.669∗∗
(0.236) (0.261) (0.265)

Trips 1+ miles = [174,238) -0.413 -0.573∗∗ -0.578∗∗
(0.272) (0.284) (0.291)

Trips 1+ miles = [238,364) -0.456∗ -0.536∗∗ -0.567∗∗
(0.235) (0.255) (0.260)

Trips 1+ miles = 365 0 0 0
(.) (.) (.)

Has participated in CBC 0.0882 0.150 0.142
(0.0880) (0.0939) (0.0952)

Hunts birds -0.00231 -0.0533 -0.0639
(0.158) (0.173) (0.174)

Gender: Female -0.136 -0.154∗ -0.138
(0.0862) (0.0927) (0.0951)

Age: 24 years or less 0.649∗∗ 0.737∗∗ 0.628∗
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(0.288) (0.346) (0.370)

Age: 25 to 34 years 0.194 0.216 0.271
(0.178) (0.194) (0.197)

Age: 35 to 44 years 0.279∗ 0.288 0.304∗
(0.165) (0.180) (0.181)

Age: 55 to 64 years -0.268∗∗ -0.110 -0.131
(0.127) (0.145) (0.148)

Age: 65 years and up -0.223∗ 0.109 0.0808
(0.124) (0.179) (0.182)

Education: High school 0.323 0.374
(0.250) (0.275)

Education: Some college 0.0255 -0.0841
(0.137) (0.152)

Education: Masters degree 0.269∗∗∗ 0.224∗∗
(0.101) (0.110)

Education: Doctoral degree 0.203 0.0900
(0.137) (0.148)

Empl. status: Part time -0.189 -0.156
(0.175) (0.177)

Empl. status: Looking for work -0.978∗ -0.908
(0.587) (0.590)

Empl. status: Unemployed 0.103 0.121
(0.188) (0.191)

Empl. status: Retired -0.308∗∗ -0.276∗
(0.144) (0.147)

/
cut1 -2.567∗∗∗ -2.768∗∗∗ -2.691∗∗∗

(0.227) (0.238) (0.254)

cut2 -1.345∗∗∗ -1.510∗∗∗ -1.425∗∗∗
(0.218) (0.227) (0.244)

cut3 -0.388∗ -0.558∗∗ -0.476∗∗
(0.213) (0.222) (0.239)

Observations 807 705 690
Max. log-likelihood -833.29 -720.01 -702.08
t in parentheses
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001
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Table A24: eBird sample: Model 28-30 (of 30) to accommodate missing values

Model 28 Model 29 Model 30
Engagement-level indicator
Travel 1+ mile data available 0 0 0

(.) (.) (.)

Trips 1+ miles = 0 -2.757∗∗∗ -2.791∗∗∗ -2.767∗∗∗
(0.204) (0.208) (0.224)

Trips 1+ miles = [1,4) -2.928∗∗∗ -3.047∗∗∗ -3.002∗∗∗
(0.237) (0.244) (0.262)

Trips 1+ miles = [4,7) -2.043∗∗∗ -2.105∗∗∗ -1.773∗∗∗
(0.246) (0.251) (0.281)

Trips 1+ miles = [7,10) -1.792∗∗∗ -2.052∗∗∗ -1.943∗∗∗
(0.335) (0.349) (0.356)

Trips 1+ miles = [10,21) -1.751∗∗∗ -1.774∗∗∗ -1.777∗∗∗
(0.226) (0.229) (0.247)

Trips 1+ miles = [21,41) -1.450∗∗∗ -1.475∗∗∗ -1.450∗∗∗
(0.235) (0.240) (0.257)

Trips 1+ miles = [41,72) -1.312∗∗∗ -1.335∗∗∗ -1.317∗∗∗
(0.224) (0.227) (0.251)

Trips 1+ miles = [72,124) -0.841∗∗∗ -0.830∗∗∗ -0.714∗∗∗
(0.230) (0.233) (0.255)

Trips 1+ miles = [124,174) -0.670∗∗∗ -0.685∗∗∗ -0.609∗∗
(0.253) (0.258) (0.287)

Trips 1+ miles = [174,238) -0.466 -0.467 -0.540∗
(0.294) (0.298) (0.316)

Trips 1+ miles = [238,364) -0.396 -0.392 -0.418
(0.255) (0.260) (0.279)

Trips 1+ miles = 365 0 0 0
(.) (.) (.)

Has participated in CBC 0.0778 0.0956 0.160
(0.0954) (0.0975) (0.104)

Hunts birds 0.00672 -0.00191 -0.0502
(0.166) (0.167) (0.179)

Gender: Female -0.110 -0.0712 -0.125
(0.0936) (0.0965) (0.104)

Age: 24 years or less 0.909∗∗∗ 0.893∗∗∗ 1.144∗∗∗
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(0.324) (0.334) (0.413)

Age: 25 to 34 years 0.119 0.207 0.218
(0.188) (0.191) (0.212)

Age: 35 to 44 years 0.249 0.307∗ 0.284
(0.172) (0.174) (0.190)

Age: 55 to 64 years -0.267∗∗ -0.298∗∗ -0.0908
(0.134) (0.137) (0.156)

Age: 65 years and up -0.170 -0.186 0.188
(0.135) (0.137) (0.197)

Income: Less than 25K -0.0147 0.0242 -0.128
(0.200) (0.209) (0.240)

Income: 25 K to 50 K 0.113 0.146 0.135
(0.134) (0.138) (0.145)

Income: 75 K to 100 K 0.0129 0.0453 -0.0415
(0.143) (0.145) (0.156)

Income: 100 K or more 0.191 0.225∗ 0.116
(0.121) (0.124) (0.134)

Education: High school 0.590∗∗
(0.281)

Education: Some college 0.0934
(0.151)

Education: Masters degree 0.303∗∗∗
(0.111)

Education: Doctoral degree 0.146
(0.151)

Empl. status: Part time -0.162
(0.187)

Empl. status: Looking for work -0.861
(0.646)

Empl. status: Unemployed -0.00203
(0.213)

Empl. status: Retired -0.369∗∗
(0.160)

/
cut1 -2.706∗∗∗ -2.525∗∗∗ -2.749∗∗∗

(0.240) (0.255) (0.272)
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cut2 -1.457∗∗∗ -1.252∗∗∗ -1.424∗∗∗

(0.230) (0.246) (0.262)

cut3 -0.488∗∗ -0.281 -0.483∗
(0.225) (0.241) (0.257)

Observations 687 673 584
Max. log-likelihood -718.20 -696.80 -599.55
t in parentheses
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001
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H Calculating heterogeneous population weights for eBird
member survey sample

Selection-correction models allow the analyst to accommodate the possibility that there is
a correlation between the unobserved error term in the process that leads to an individual’s
presence in the estimating sample and the unobserved error term in the process that gen-
erates the outcome variable for that individual. However, it is possible that the observable
heterogeneity across the individuals who show up in the estimating sample could also be
different from the observable heterogeneity in the general population.

In such a case, researchers often consider the use of exogenous weights. Weights are
used to scale the relative frequency of people of different types in the estimating sample
so that group proportions more closely match the corresponding group proportions in the
population. With a fully representative estimating sample, each observation represents an
equal number of people in the population as a whole, so that average preferences in the
sample (for example) should be the same as average preferences in the population. If each
observation in the sample represents a very different number of people in the population,
then estimated average preferences are less likely to scale up to the general population.

We seek an appropriate set of weights to use when estimating our outcome equation, to
explain consideration-set radius (i.e. the maximum one-way distance a respondent is willing
to travel on a day-trip to see wild birds). Many weighting schemes employ the relative
frequencies of people of different types in the population divided by the relative frequencies
of people of those same types in the estimating sample. The ratios of relative frequencies are
then scaled so that they sum to the size of the estimating sample. Typically, the researchers
bins both the population and the estimating sample according to the values of some set of
exogenous variables.

For rudimentary weights, we could use the observed undifferentiated proportions of re-
spondents at each engagement level in the two samples, (qBus, eBird) = (0.273, 0.398),
(0.252, 0.275), (0.265, 0.179), and (0.210, 0.146). However, we are also concerned that
engagement intensity is not fully exogenous to the maximum distance variable we seek to
model. Observed proportions do not allow for the possibility of systematically different
mixes of people in the two samples. Thus we adapt the conventional exogenous weighting
approach to express the fitted probabilities of an individual from each sample exhibiting the
engagement intensity that they report. We compute our weights based on the within-sample
fitted probabilities that each respondent participated in eBird at each of the four possible
engagement levels, where these fitted probabilities are expressed as functions of the individ-
ual’s exogenous characteristics, and any error term in the fitted probabilities is implicitly
discarded, making each fitted probability a function of exogenous variables only.

For our eBird data, we are concerned that (a) the relative proportions of respondents
in our eBird sample who engage with the project at different levels might differ from (b)
the corresponding proportions in the population of eBird members who turn up in a ran-
dom sample from the general population (i.e. our qBus sample). We again transfer our
qBus parameter estimates for the six-level ordered-probit models with the sociodemographic
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characteristics of each person in our eBird member survey sample to calculate the predicted
individual conditional engagement-level probabilities for respondents in our eBird member
survey sample, as are shown in panel C of Figure 1 in the body of the paper. But then we also
use our eBird member survey sample, independently, to estimate four-level ordered-probit
models for engagement levels 3, 4, 5 and 6, and calculate predicted probabilities for these four
engagement levels based on those parameters, where the distribution of these probabilities is
shown in panel B of Figure 1 in the paper. We treat these two sets of predicted probabilities
as the “expected” probabilities and the “observed” probabilities in the eBird member survey
sample.

We construct our weights for each observation in the eBird sample by considering the
observed engagement level for that person. We then generate a weight that reflects (a) the
out-of-sample predicted probability that a person with these same characteristics would be at
that level of engagement in the general population (qBus) sample, in ratio to (b) the within-
sample fitted probability, estimated using the eBird member survey data, that they are at
their observed level of engagement. As usual, we scale these weights so that they sum to
the sample size for the eBird member survey. Figure A1 shows the smoothed density for the
resulting distribution of heterogeneous weights for use in estimation of the outcome model
that uses only the eBird member survey data (with a dotted line highlighting unit weights).
For comparison, Figure A1 also shows what would be the four unique values of the set of
homogeneous weights that would be calculated if we based the weight calculations only on
the marginal distributions of engagement intensities, without reference to the heterogenity in
respondent characteristics across the qBus general population sample and the eBird member
survey sample.
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Figure A1: Distribution of weights across eBird member survey observations, where
these weights serve to match engagement-intensity probabilities in the eBird mem-
ber survey sample to engagement-intensity probabilities in the general-population
qBus sample (six outlier weights, between 2.66 and 7.93, are not shown)

A67



Figure A2: For 4,161 qBus general population respondents
only: Fitted engagement propensities calculated from the higher-
resolution ordered-probit model plotted against those from the
simpler binary-probit model; equal values fall along the line

I Visualization of estimates of intermediate components
For the qBus dataset alone, which includes both members and non-members of eBird, Fig-
ure A2 shows the joint distribution of the (adjusted) fitted propensity index, Ziγ̂q, for our
new ordered-probit selection equation as well as the fitted propensity index, Ziγ̂q from a
conventional binary-probit selection model using the same qBus data. The propensity in-
dex from our new ordered-probit selection model is somewhat higher than the index for the
conventional binary model among people with low propensities to belong to eBird, but the
upper part of the joint distribution coincides fairly closely. Our ordered-probit selection
model recruits more information, with its multiple categories, from both non-members and
members of eBird in the qBus sample, which likely accounts for the differences.

We can also consider the differences in the distributions of our two alternative IMR
terms, calculated using parameter estimates from the qBus sample, applied to individuals in
our eBird member survey sample. These two IMR variables are based on our two different
selection models: (1) the binary-probit model and (2) the re-normalized (adjusted) ordered-
probit model. Figure A3 shows the joint distribution of these two IMR terms.
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Figure A3: For 1,081 eBird member survey respondents: Pre-
dicted ordered-probit-based IMRs calculated with parameters
estimated using qBus sample, plotted against predicted binary-
probit-based IMRs calculated with parameters estimated using
the qBus sample. For each individual observation in the eBird
sample, we use the most-detailed qBus specification consistent
with missing Zj data for that observation.

Figure A4 illustrates the high degree of collinearity between the predicted inverse Mills
ratio correction term and the predicted engagement propensity for the eBird sample. Had
we devoted space in Table 4 to a model with only an interaction term between the demeaned
engagement propensity and the intercept term in the model, the coefficient on the single
additional would have adapted to the change of scale and sign in the propensity, as opposed
to the inverse Mills ratio, and essentially the same values for the remaining parameters would
result.
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Figure A4: The relationship between our adjusted ordered-probit
inverse Mills ratio term used in Model 4 in Table 4 and the un-
derlying demeaned engagement propensity variable used to shift
the basic coefficients in Model 5.
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J Issues still to be addressed in the transfer of selection
propensities

J.1 When the outcome equation is a conditional logit choice model,
rather than a regression model

Our broader research project with the eBird sample involves destination choice models and
inferred preferences for site attributes, employed to estimate non-market benefits associated
with wild birds. However, Heckman selection-correction models are not appropriate when
the outcome variable of interest is a discrete choice, because the latent choice propensity in
a multiple discrete-choice model is not conditionally normally distributed.40 When there is
no bivariate normal error term to justify the use of a fitted IMR from a selection model as
an additional regressor in an outcome equation, it is nevertheless still possible to explore the
more ad hoc correction that accommodates systematic differences in selection propensities
across respondents by allowing second-stage parameters to differ systematically with devia-
tions of fitted respondent selection propensities from the average propensity in the general
population. This ad hoc correction is used in Cameron and DeShazo (2013), Johnston and
Abdulrahman (2017), Kolstoe and Cameron (2017) and Kolstoe et al. (2018). As mentioned
in Appendix B, Terza (2009) offers models that hint at the possibility of selection-correction
methods for conditional logit models, but his method would need to be adapted extensively
to suit the case where the selection model is to be transferred to a different sample.

J.2 Estimated regressors and inference in a second-stage model

Of course, any two-step estimation process that does not account for the estimated property
of the γ̂q parameters embodied in the calculated IMR terms—as in Models 3 and 4 (or the
fitted de-meaned response propensities, as in Model 5)—can risk some bias in the inferences
to be drawn in the second step. The IMR term (or fitted de-meaned predicted response
propensity) is an “estimated regressor” that likely overstates the amount of information in the
data. It may be straightforward (if tedious), to implement an appropriate FIML estimator in
the case where one does not need to contend with any missing data in the dataset to which
the selection specification is to be transferred. Recall that in this case, it was necessary
to estimate 30 different selection equation specifications using many combinations of none,
some, or all of the categories of indicators in the full selection model.

If all variables for the selection equation were available for every observation in the CS
sample having the outcome variable of interest, one could define the log-likelihood function
over the full set of parameters: γ, β, ση, σε, ρ. The structure of the two-step model could
be preserved, but the two equations could be estimated simultaneously, constraining the γ
parameters to be the same in both the selection equation (using the qBus sample) and the

40Some researchers (e.g. Yuan et al. (2015)) have inserted a fitted inverse Mills ratio (IMR) into a
second-stage discrete-choice model, although there seems to be no statistical justification for this particular
transformation of the fitted selection propensity.

A71



outcome equation (using the IMR term), where the index for the IMR variable is constructed
using the γ parameters combined with the Zj variables for the eBird dataset. The matter of
how to construct the weights would need to be resolved, of course. We do not attempt this
FIML estimation here, because of the significant amount of missing data for the selection
equation applied to the eBird sample, and corresponding proliferation of different specifi-
cations necessary to provide predicted propensities, IMRs, and weights that maximize our
use of the available data for each eBird respondent. While joint estimation of 30 different
ordered-probit equations plus the outcome equations would likely be possible, we would not
expect it to make any qualitative difference in our findings.

J.3 Other possible layers of selection

Our estimating sample for the illustrative market-extent model in this paper consists of
respondents to our eBird member survey who provided complete data for all except the
(typically sensitive) detailed income variable. The selection-correction strategies we feature
in this paper presume that this group of eBird member survey respondents is representative
of eBird members, an assumption we make to permit us to focus on the problem of systematic
selection into eBird engagement at different levels of intensity.

Of course, there may be a variety of reasons why invited eBird members decide not to
participate in our survey. In other research, we have sought to control for heterogeneous
selection across all eBird members (rather than the general population) by linking the cen-
ter of gravity of their birding trips to a specific census tract, which we impute to be their
home census tract. We have employed census tract attributes as proxies for possible system-
atic variation across birder characteristics because there is no sociodemographic information
available for eBird members who did not respond to our survey. We then employ these vari-
ous census tract attributes to construct a “propensity of an invited eBird member to respond
to our survey” and use this propensity in an attempt to control crudely for selection into our
estimating sample for destination choice models. We do not attempt to overlay that correc-
tion procedure in addition to the strategies employed here. It is possible that the selection
of eBird members into our survey, based on the attributes of their home zipcode relative to
those of the general population, is dominated by the selection of the general population into
eBird participation, but this is an empirical question that is beyond the scope of this study.

Even with the illustrative example concerning the the radii of consideration sets for bird-
ing excursions, it is possible that sample selection may occur along more than one dimension.
Respondents to our eBird survey may have unobserved characteristics that make them simul-
taneously more likely (than otherwise expected) to be members of eBird and also more-likely
than average to participate in travel of more than one mile from home to observe birds. In
other research, it is this second behavior upon which we base our models of the “active”
recreational use of opportunities to watch wild birds. In addition to the eBird engagement-
level variable captured by our ordinal variable CS6i, we can also distinguish between birders
who do, or do not, travel more than one mile to see birds, in both the qBus sample and the
eBird sample. Three categories of actual bird-watching might be distinguished: no birding
trips, trips only less than 1 mile, and trips of one mile or more. Thus the ordinal eBird
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engagement levels might be supplemented by a second (presumably correlated) ordinal vari-
able that captures heterogeneity in the actual bird-watching behavior of respondents in both
surveys. Models with selection on two (correlated) latent variables would require working
with trivariate normal joint distributions of the error terms. These models are also beyond
the scope of the current paper, again because of the 30 different ordered-probit selection
equations necessary to accommodate transfer of our selection model from the qBus sample
to the eBird member survey sample with its missing values for different variables.
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