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Abstract 

We use a unique data set from a tornado shelter (safe-room) rebate program in Arkansas from 2006 
through 2010 to examine the role of risk perceptions in stimulating homeowner investments in self-
protection. Using empirical models that explore both extensive non-parametric specifications and 
streamlined parametric forms for lagged responses, we find that the decision to self-protect depends 
clearly upon both the recency and the proximity of tornado events, as well as on average education and 
income levels in the county in question. The pulse in self-protection investment after a tornado is 
relatively large yet short-lived and relatively local, and there is some evidence that short-run supply 
constraints limit the expression of peak demand over time and across space. Our findings suggest the 
potential importance of self-protection investments as an adaptive response to changes in the severity and 
spatial extent of extreme weather risks that may result from climate change. We also highlight the role 
that rebate policy design may play if the goal is to encourage self-protection investments at least cost. 
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1. Introduction 

The Intergovernmental Panel on Climate Change (IPCC) and other researchers predict that a 

continuation of climate change is likely to produce more measurable changes in extreme weather events 

across the world.2,3 Understanding the overall economic impact of changes in extreme weather events is a 

challenge, however, because individuals and households will gain new information about changes in the 

objective risks of extreme weather and then may choose to adapt their current behavior to reduce the risks 

from future events. If individuals choose to adapt, the costs of extreme weather may become less certain 

if adaption is not easily observed or if it is difficult to place a monetary value on the actions taken. 

Further, if adaptation is observed to at least partially occur due to individuals over estimating the 

objective dangers of climate change then the costs of adaption could be larger than under a scenario with 

no adaption. One type of adaptive behavior that individuals may adopt is self-protection—a response to 

risk exposure that reduces the probability of a loss from a future event (Ehrlich and Becker (1972)). The 

goal of our research is to characterize the temporal and spatial patterns of self-protective behavior in the 

response to one significant type of extreme weather event (tornadoes), constraints in the supply of 

services and infrastructure for self-protection, and the role, if any, that government policy might have in 

the efficient or cost-effective facilitation of self-protection efforts. 

We use five years of daily observations on applications to a well-publicized government safe-

room rebate program in the U.S. state of Arkansas, and model these applications as a function of tornado 

activity within (and near) 500 miles of households’ counties of residence. We use these models to reveal 

the temporal and spatial effects that extreme weather events may have on individuals’ perceived risks and 

their subsequent self-protection behavior. Our results show a significant jump in safe-room rebate 

 
2 The report, “Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation,” is to 
be officially released to the public in February 2012. A pre-release version of the report can be found at 
http://www.ipcc.ch/pdf/special-reports/srex/SREX_FD_SPM_final.pdf. 
3 Projected changes include, for example, increased frequencies for heavy precipitation (cite), longer durations for 
heat waves (cite), and greater maximum wind speeds for hurricanes (cite). Recent evidence suggests that 
California’s on-going drought has been made more severe than what would have occurred without climate change 
(cite). 

http://www.ipcc.ch/pdf/special-reports/srex/SREX_FD_SPM_final.pdf
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requests to a state rebate program in the weeks that follow an episode of nearby tornado activity, reaching 

a maximum of between 25%-50% above the usual county-level weekly average rebate requests during the 

ninth through twelfth weeks following nearby tornado activity. The magnitude of the effect then declines 

over the ensuing ten months until rebate requests are restored to their pre-tornado average levels. Notably, 

this pattern of investment in self-protection is likely inconsistent with any actual changes in the objective 

risks of tornadoes, since tornado strikes are essentially random within broad tornado-prone areas. This 

suggests that household motivation for self-protection behavior does not conform entirely to standard 

economic models of rational choice. 

We also find evidence that short-run supply constraints may temper what would otherwise be an 

even larger immediate increase in safe-room installations after a nearby tornado occurrence. Households 

in closer proximity to the path of a recent tornado must go farther afield, on average, to find an available 

contractor. They are also more likely, in these circumstances, to hire an “off-brand” contractor, or to 

install the safe-room themselves, suggesting that economies of scale (and from experience) are not being 

exploited. A nearby tornado could also increase demand for higher-quality and more expensive safe-

rooms. Our data on safe-room installation costs are heavily censored so we cannot robustly examine 

binding supply constraints with temporal and spatial information on prices. 

If self-projection is limited by supply constraints, better designed incentives for consumers or 

suppliers might lead to a greater amount of self-protection for the individuals most in need. Policies that 

incentivize self-protection behavior could be designed to smooth demand over time and across geographic 

space so that "peaking capacity" among local contractors is less likely to be exceeded. While such 

policies would come at a cost, they could have an overall net benefit for society by reducing injuries and 

fatalities from extreme weather events. 

 

2. Conceptual Framework 

There are many ways in which individuals and households might adapt to perceived risks from 

tornadoes and other extreme weather events. Households have been observed after a recent nearby 

Duquette, Eric
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hurricane to increase insurance coverage against the potential damage of future unexpected hurricanes 

(Browne and Hoyt (2000)). Farmer’s in the Midwestern U.S. increase insurance coverage after farmland 

droughts (cite) and households have been observed to increase home insurance coverage due to nearby 

forest fires in the Western U.S. (cite). These strategies reduce the potential loss to one’s economic welfare 

from property damage. If individuals on the other hand have a greater preference to avoid injury and 

death from an extreme event then self-protection strategies, i.e., strategies for reducing the probability for 

a loss, might represent a more valuable alternative. 

The preferred method of self-protection will be motivated by opportunity costs. Existing findings 

for self-protection strategies in response to tornadoes includes migration (Duquette and Cameron (2010)) 

and upgrades or improvement to housing infrastructure (Sutter and Poitras (2010)). 5 If the disutility from 

changes in perceived risks to one’s life and welfare is insufficient to overcome the threshold represented 

by direct and indirect costs of moving or buying a better-constructed home, households will find that 

“sheltering in place” with an residential shelter is a better alternative. For tornadoes, individuals can self-

protect by installing either an in-ground or an above-ground safe-room or shelter. For these shelter-in-

place households, a lower bound on the loss of utility from greater perceived tornado risks is then the 

amount of money that households are willing to spend on self-protection, i.e., to make their dwelling 

safer.7 

Our data show that demand for self-protection spikes after a tornado, which seemingly contrasts 

what would be predicted by a standard economic model of rational choice. That is, households fully 

informed about the randomness of tornado strikes across tornado-prone areas would not, under the 

 
5 Sutter and Poitras (2010) note that individuals may also invest in housing infrastructure that is less vulnerable to 
extreme weather. Similar to migration, switching to an alternative housing choice in the same local area may require 
that the household incur substantial direct and indirect costs. Observed self-protection costs in the form of trading up 
to a more tornado-resistant house in the same area might represent only a small fraction of the aggregate utility loss 
from an increase in perceived tornado risks because of all the other households whose utility is decreased, just not 
sufficiently to precipitate relocation to a different house. 
7 The degree to which self-insurance might affect our results in unclear and left for further research. As Ehrlich and 
Becker (1972) demonstrate in a theoretical model that the availability of public protection and market insurance do 
not necessarily reduce investments in self-protection. There is little empirical evidence on the potential relationship 
between these two adaptive mechanisms. 

Duquette, Eric
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standard model, be expected to systematically change their demand for self-protection after a tornado 

event. A reason for the fluctuation in observed self-protection could be a change in individuals’ risk 

perceptions in response to an event. The stress and trauma of a natural disaster has be found to lead 

individuals to have feelings of anxiety (cite) and fear (cite). If these feelings are present after an event, the 

objective risks of future events may have less of an impact of current decision-making. Specifically in 

regards to tornadoes, Suls et al. (2012) find individuals’ perception of vulnerability to a future tornado 

occurrence is affected by the amount of elapse time and an individual’s physical proximity to the last 

event.  

Another possible explanation for observing heightened demand in self-protection after a tornado 

event is if individuals were not fully informed about the objective risks prior to the event. This is 

plausible in the case of tornadoes and evidenced in the case of other extreme weather events because 

these events occur relatively infrequently within any given locality.  For instance, Hallstrom and Smith 

(2005) find that housing prices after Hurricane Andrew had lower year-to-year appreciation rates in flood-

risk zones where individuals were already more likely informed about the objective risks of a flooding. 

Likewise, Kousky (2010) finds the relative decline in housing prices in St. Louis County, Missouri after 

the devastating 1993 Midwest floods was smaller in areas where homeowners were less likely to be 

informed of the flood risks.8  

A consequence of individuals lacking the true objective risks of tornadoes can lead to 

“availability bias” (Tversky and Kahneman (1973, (1974)) in which individuals respond too much or too 

little  to the objective threat of a future tornado based upon their ability to recall previous tornado 

occurrences. The degree to which availability bias could affect response might depend on individual 

behavior traits and characteristics of the events. For instance, Gallagher (2010) studies the effect of flood-

risk information on observed response and finds that a learning model for flood events that incorporates a 

rate of forgetfulness is better at explaining temporal responses of insurance uptake after flood events than 

 
8 In the twelve years following the flood, however, there was no statistically significant (return) trend in the year-by-
year relative decline of housing prices in areas where homeowners were less likely to be aware of the risk. 

Duquette, Eric
Review findings of both cites to clarify connection to information disconnect.
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similar models that do not.9 This finding suggests that if individuals tend to quickly forget past extreme 

weather, traces of availability bias in self-protection behavior would diminish over time. That such 

temporal behavior may still be considered rational is argued by Becker and Rubinstein (2011), who find 

evidence of changing temporal patterns in self-protection due to infrequent terrorism events in Israel. 

They argue the observed responses are because individuals at least partially recalibrate based on 

economic incentives and their “mental human capital investments.”10, 11  

Additional findings that support availability bias as a mode of behavior in response to extreme 

weather include evidence that insurance coverage and housing prices for individuals and households in 

areas that were designated, a priori, flood-prone deviate less from previous levels and/or return more 

quickly to previous levels after a flooding event (Browne and Hoyt (2000), Kousky (2010)).12 Some 

experimental studies have also found that choices by individuals to self-protect against events with 

negative consequences are affected by the recency of a similar event (e.g., Shafran (2011)).13  

The importance of information about the objective risks of tornadoes is also evidence by Zahran 

et al. (2012) (Sutter’s work?) who find that the day of week that a hurricane or tornado event occurs can 

differentially affect the number of observed casualties. Specifically, Zahran et al. find hurricanes produce 

less casualties on weekends than on weekdays and tornadoes produce relatively more on weekdays. This 

seemingly paradoxical occurrence appears to be partially a result of the increased lead-times in the 

 
9 The potential diminishing rate of responses presents a challenge to researchers trying to measure and understand 
individual behavior to infrequent weather events. If the time-delineated data in a study is too aggregated in 
comparison to the rate at which individuals and households may return to a level of normal behavior then ‘non-
findings’ are likely to occur. [THE THOUGHT IN THIS FOOTNOTE COULD BE PUSHED TO EMPIRICAL 
SECTION.] 
10 Specifically, the authors suggest that the impact of terrorism is “limited by the economic benefits of controlling 
that innate, emotional response.” 
11 There are similar findings for this kind of behavior in response to environmental hazards such as Superfund sites. 
Depressed housing prices generally subside with time and return to their levels prior to the revelation of risk 
information (e.g., Dale et al. (1999; Gayer et al. (2000; Messer et al. (2006)).  
12 Browne and Hoyt (2000) finds that individuals’ level of flood insurance coverage increases the number of flood 
occurrences the previous year(s), Kousky (2010) finds that homeowners in flood-prone areas may underinsure due 
to the infrequency of high-cost floods. 
13 CHECK that this the right characterization? Shafran (2011) performs a repeated-choice experiment with feedback 
where subjects can choose to self-protect from an unknown future loss. He finds more self-protection in response to 
a recent low-probability high-consequence event than for a recent high-probability event (suggesting a variant of a 
certainty/severity tradeoff). 
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revelation of the objective risk information of hurricanes relatively to tornadoes.14 The increased lead-

times for hurricanes allow individuals to consider the opportunity costs of relocating and preparing for an 

impending hurricane. There are larger opportunity costs on weekdays because relocation and preparation 

would have to occur during typical business hours and leads to greater measure of safety taken by 

individuals for hurricanes that occur on weekends. For tornadoes, there is not enough lead-time to 

consider a decision to temporarily relocate. The apparent over-riding effect on individuals increased 

safety on the weekdays for tornadoes is due to greater access of the protective building of one’s place of 

employment than the relatively low quality structure of a typical home.15  
 eve ral rece nt pa pers use historical data for the .. to provide greater e vidence of the temporal e ffect s of extreme weathe r eve nts on economic activity. al laghe r () finds that insura nce take-up rate s in floode d communit ies increa se, but return to pre-eve nt levels a fter about nine years, and that the e ffect on communitie s in a djace nt counties is only a bout one-third a s large. or countie s affected by hurricane s, e ryugina () finds a decline in t he construction sector (em ployme nt levels, num ber of e stabl ishment s, pay rol l count) that is large st around five to eight yea rs a fter the eve nt. trobl () finds a n ove ral l negative effect on growt h rates in hurrica ne-im pacted coasta l counties t hat is statistical ly significant only in the yea r of impact. s evide nced in the case of environme ntal hazards, prolonge d impacts of extreme weathe r may be more symptomatic of a cha nge in neig hborhood composit ion tha n repre sent forget fulne ss that

slowly decays over ma ny years (e.g., ameron et al. (; ameron and conna ha ()). eside nts with chronical ly elevate d risk perce ptions may choose to move out of ha rm’s wa y and those who remain may ada pt psycholog ically by recalibrat ing t heir perce ptions of risk so that, for them, greater torna do activity become s the “new normal.” he tem poral dynamic s of household be havior and, in pa rticula r, the potentia l endoge neity of the local sociodemog ra phic mix, may be le ss of a n issue when t he adve rse event s re sult in just a short-liv ed elevation in perceive d risk.  
 NEED PARAGRAPH ON PROXIMITY EFFECTS 

[MOVE THIS PARAGRAPH TO EMPIRICAL SECTION?]In contrast to these other studies, 

our research uses weekly observations on the demand for safe-room construction as evidenced by 

applications for construction rebates. These data allow us to detect changes in household behavior that 

may be apparent only at this finer time scale. Our analysis also explores the relationship between the 

spatial proximity of recent tornado events and the self-protection responses of homeowners. As noted in 

the hedonic literature (e.g. Bin et al. (2008); Hallstrom and Smith (2005)), the identification of spatial 

patterns in risk perceptions can be difficult when the level or location of the environmental threat is 

spatially correlated with other geographically heterogeneous amenities or disamenities that might also 

affect the economic response variable in question such as housing prices. Fortunately for our analysis, 

tornado paths are much more spatially random across a wide geographical region than many other threats, 

such as floods.24 Our analysis also includes a large number of tornado events, so we are less likely to 

observe an incidental correlation between the location of one or two event paths and amenities.25  

 
14 CITE changes in forecasting of tornadoes.  
15 DOES ZAHRAN DISCUSS TORNAODES THAT OCCUR AT NIGHT? 
24 In comparison, flood risks identified by FEMA Flood Zone designations in the U.S. are spatially very specific.  
25 [MOVE THE SENTENCE OF THIS FOOTNOTE TO EMIPRICAL SECTION.] In our empirical models, we are 
also careful to include county-level fixed effects to sweep out the influence of any unobserved time-constant county-
specific heterogeneity that may systematically affect safe-room installations in response to tornadoes. 

Duquette, Eric
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Several states have enacted rebate programs to provide partial subsidies to homeowners and 

communities for the construction of safe-rooms in homes and other buildings, so our Arkansas data are 

merely an illustration. These Arkansas data have not been previously studied by economists. For the State 

of Oklahoma, however, Merrell et al. (2005) assess the net social benefits of a broad-based program to 

rebate the cost of safe-rooms for homeowners using Census data on the number of housing units in 

Oklahoma. These authors estimate the potential benefits in terms of reduced injuries and fatalities 

associated with a program that would pay the full costs of safe-room construction in all primary 

residences. They calculate that these costs would vastly exceed the expected benefits for safe-room 

installations at permanent homes, but net benefits would be marginally positive for the protection of 

occupants of mobile homes. In contrast, our goal is not to undertake a comprehensive benefit-cost 

analysis of a 100 percent subsidy to retrofit all homes. Instead, we seek to characterize temporal and 

spatial patterns in this particular type of extreme-weather-related adaptive behavior in the wake of 

tornadoes that occur both nearby and farther way, and to understand the potential policy implications for 

programs which may directly or indirectly incentivize this and other similar types of self-protection 

behavior. 

 

3. Data 

3.1. The Arkansas Safe-Room/Shelter Program 

In recognition of the shelter-in-place option as a form of adaptation, this paper uses a unique dataset on 

applications for a subsidy for safe-room construction or installation in Arkansas between 2006 and 2010. 

Our data record the date of application for each rebate, which gives us a window on the approximate 

timing of household decisions to build these safe rooms and a way to understand the extent to which 

nearby tornado activity stimulates observed self-protection investments by households. For example, one 

might expect to see a small up-tick in safe-room construction shortly after a tornado, but that this effect 

may dissipate with the passage of time (at least until the next tornado). A tornado that is nearer to a 

household’s primary residence may also result in a higher level of perceived risk for the homeowner. 
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Therefore, the closer the proximity of a tornado, ceteris paribus, the greater might be the effect on a 

homeowner’s observed demand for new safe-room construction at their residence. 

We use data on safe-room construction from the Arkansas Safe-Room/Shelter Program.26 The 

Arkansas Department of Emergency Management (ADEM) administers the program, which provides 

rebates to homeowners for the construction or installation of a safe-room. To qualify for a rebate, safe-

rooms must have been built (or come under contract) after January 21, 1999 at the homeowner’s primary 

residence and they must meet the design criteria for “safe-rooms” outlined in the Federal Emergency 

Management Agency’s (FEMA) publication 320 or the National Performance Criteria for Tornado 

Shelters standard.27 FEMA characterizes their design criteria as providing “near-absolute protection” for 

individuals during weather events with extreme winds. This is in contrast to other construction standards 

which FEMA states as meeting only a basic requirement for protection. In addition to the FEMA criteria, 

eligible safe-rooms must also meet all state, city, and county codes. The rebates from ADEM cover 50% 

of the cost up to $1000. As of December 2011, more than $17 million has been distributed to over 17,500 

Arkansas households since the program’s inception in 1999.  

 Adequate safe-room rebate application data for our analysis are available from May 2006 to 

December 2010. During this period, a total of 6,637 safe-rooms were accorded rebates. The average 

annual number of applications for safe-room rebates, across all of the state’s 75 counties, is roughly 

1,400. The average number of applications per county varies considerably across counties. There is only 

one county which had no granted rebate within the time frame of our data. A valuable feature of the safe-

room data is that they include the locations of safe-room installations to an exact street address. For our 

analysis, we aggregate weekly safe-room rebate requests spatially to the county level using the address of 

each homeowner’s primary residence reported on the rebate application. Figure 1, however, shows the 

point locations of individual safe-rooms in Arkansas for which rebate requests were filed during our 

sample period. Figure 2 shows the state boundary for Arkansas, along with the polygons for individual 

 
26 We obtained these data through a Freedom of Information Act (FOIA) request.  
27 See FEMA publication 361, 2nd edition, August, 2008 and FEMA publication 320, 2nd edition, August, 2008. 
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counties and points for the geographic centroids of each county, overlaid by the approximate paths of all 

recorded tornadoes within 350 miles of any Arkansas county centroid from the beginning of 2005 through 

the end of 2010. 

 One drawback to the date reported in the rebate application is that it represents the date on which 

the application was processed by ADEM. It is not the date when the homeowner first decided to install a 

safe-room. The decision to install a safe-room will obviously predate the application for the rebate. We 

expect that the (unobserved) initial decision to install a safe-room may be precipitated by an elevation in 

perceived risk as a result of a nearby tornado. The earliest point at which the rebate may be sought is 

when the project first comes under contract. Thus there may be lags that stem from a shortage of 

contractors. Contractors for safe-rooms may be in short supply for more than one reason: (1) they may 

already have been engaged for other non-safe-room-related projects during the usual construction season, 

(2) they may already have committed to do other repair and rebuilding projects as a consequence of 

tornado damage in the same county or elsewhere, or (3) they may already be working on other safe-room 

installations in the same area.  

Our lack of information about the exact date when a homeowner decides to invest in self-

protection by installing a safe-room does not preclude our ability to draw conclusions about how the 

overall response of safe-room installation varies with the level of tornado activity or the distance of the 

tornado event from the homeowner’s location. If the distribution of delay times (between the decision to 

install a safe-room and the time an application is processed at ADEM) is relatively stable, this reporting 

delay will only add noise to the process. The “time since tornado” will be measured with error and can be 

expected to produce some errors-in-variables attenuation in estimated coefficients. If we find statistically 

significant effects of elapsed time since a tornado on the number of rebate requests, we can anticipate that 

the real effects, in the absence of random heterogeneity in application delays, are probably at least as 

large as the estimated effects.  

 

3.2. Tornado Events 
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The tornado events depicted in Figure 2 are derived from NOAA’s National Weather Service (NWS). 

These data provide starting and ending coordinates for the paths of individual tornadoes. For each pair of 

coordinates, we approximate the tornado’s path using a straight line between these two points. From the 

date of our first recorded safe-room rebate application in the last week of May in 2006, until December 

2010, there were 186 recorded tornadoes in Arkansas. We also consider tornadoes beyond the border of 

Arkansas, to a distance of up to 150 miles, and tornadoes that occurred as early as the beginning of 2005, 

before the first recorded safe-room rebate application in 2006. This avoids truncation at the boundaries of 

space and time and permits the use of spatial and time-wise lagged tornadoes to explain safe-room rebate 

requests in each county in each time period. These extensions of the tornado sample result in a total of 

1,462 tornadoes from which we construct our measures of tornado activity by interval of distance. 

 We construct spatial and time-wise measures of tornado activity related to each county using the 

NWS data on tornado events. We first develop a distance matrix that codes the minimum distance from 

each county centroid to every one of these 1,462 tornadoes. The tornado data include the date of 

occurrence of each tornado. In combination with the distance matrix, this allows us to construct measures 

of the presence of tornado activity within a given distance band relative to the centroid of each county in 

each time period. We choose weeks as the time-unit for our analysis and create weekly binary indicator 

variables for each county for the occurrence of any tornado activity within each distance range of a 

county’s centroid. In our results section, we report estimates only for the set of weekly indicators for any 

occurrence of tornado activity within 0-50, 50-100, and 100-150 miles of a county’s centroid.  

Figure 3 shows the pattern of seasonality between January and December in the average number 

of safe-room rebate requests per county recorded by ADEM, as well as the average number of counties 

affected by tornadoes anywhere in Arkansas by week-of-year during the period from 2006 to 2010. The 

pattern depicted in the figure suggests that both tornado activity and safe-room rebate requests are most 

numerous during the early half of the year, roughly from early March (calendar week 10) to the end of 

June (calendar week 25), with rebate requests tending to trail tornado events during this part of the year. 

These simple multi-year averages of seasonal patterns in tornado frequency and safe-room rebate 
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applications suggest that the relationship between these two variables can be clarified using regression-

based methods. 

 

4. Empirical Specifications 

4.1. Basic Model 

The time-period of our analysis is 240 weeks starting from the last week of May in 2006 and ending in 

December, 2010. The 75 counties in Arkansas yield a total of 18,000 county-week observations in our 

panel. Let cwS  be the total number of safe-room rebate requests recorded by ADEM for county c during 

week w . The number of rebate requests in a given county and week is a strictly non-negative integer, so 

for a majority of our regressions of the conditional mean of cwS  on a set of covariates cwX  we employ 

count data models.  

 Traditional regression models for count data include the standard Poisson (P) model, which 

constrains the conditional mean and variance of the count distribution to be equal, i.e.,  

[ | ] [ | ]cw cw cw cw cwE S X Var S X η= = . The negative binomial (NB) model relaxes the equality constraint 

between the mean and the variance and has a conditional mean and variance given instead by 

[ | ]cw cw cwE S X η=  and 1 2[ | ]cw cw cw cwVar S X η ν η−= +  , where ν (an additional parameter to be estimated) is a 

measure of the amount of dispersion in the errors. Many types of count data have some degree of 

overdispersion ( 0ν > ). The overall marginal distribution for the number of safe-room rebate requests has 

a mean of .368 rebate requests and standard deviation of 1.1, suggesting that the conditional distribution, 

as a function of regressors, might also display a degree of overdispersion.  

 We specify a log-linear relationship for the NB conditional mean model of cwS , of the form: 

 ( ) ,log [ | ] ( )d
cw cw c w l woy cE S X Tτ µ µ−= + +  (1) 

where ,( )d
c w lTτ −  is the temporal response portion of a county c’s (log) conditional mean number of safe-

room applications. The temporal response in week w (where w indexes the week of the safe-room 

applications processed at ADEM) is allowed to be affected by the occurrence of tornado activity in the lth 
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week prior to week w. The woyµ are week-of-year indicators that we use as controls for unobserved 

variation in county-specific and seasonal factors that can affect the demand for safe-rooms. The cµ are 

simple binary indicators for counties. For now, we include no other specific regressors. To start with, we 

adopt a non-parametric form for the temporal response function: 

 , 8 ,0 ,4 0, 8 0 0 4( ) ... ...d
c w l

d d d d d
w w

d
c w c c wT T T Tτ β β β− + −+ −= + + + + . (2) 

In this equation, the temporal response is specified by a linear and additively separable function of binary 

indicators, ,
d

c w lT − , for “any tornado activity” the function includes eight weeks of leading activity and forty 

weeks of lagging activity. These binary variables take a value of one for any occurrence of a tornado in 

distance band d  from the centroid of county c  during the lth  week prior to week w and zero otherwise. 

The specification thus allows rebate requests to depend upon future, contemporaneous, and past tornado 

activity. We include future tornado activity indicators as a “falsification test,” to permit us to check for 

the direction of causality. To economize on notation, we will omit the superscript d in what follows, 

except when necessary. The estimated coefficients w lβ −  will reveal the temporal pattern of safe-room 

construction activity in response to recent and nearby tornado activity. 

 To contain the size of the parameter space, our actual implementation of the non-parametric 

model aggregates the weekly indicators into four-week sets (except for the contemporaneous week) such 

that 

 ,8/5 ,4/1 ,, 8/5 4/1 0 10 , 1/ 4 37/ 4/ 4 , 30 7/ 40( ) ...c c cc c cw lT T T T T Tτ β β β β β− − − − −− − − −= + + + + + . (3) 

For ,0cT , the measure of tornado activity is for tornadoes that occur during the same week as the 

processing of the safe-room applications. The variable , 1/ 4cT − − , for example, counts tornado events for the 

first through fourth weeks prior to the application processing week w . The other tornado activity 

indicator variables are analogous. We directly test the adequacy of the standard Poisson regression model 

by examining the statistical significance of the overdispersion parameter estimate in the results for the NB 

model. We also compare the estimates of the temporal lag coefficients of the NB model to those of 
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Poisson model. Finally, we compare these estimates to corresponding estimates obtained via ordinary 

least squares.28,29 w .Given the size of the geographic region we consider in our analysis, it is not 

uncommon for multiple tornadoes to occur in the course of a week (and in some cases on the same day) 

within a given distance buffer around the centroid of a given county. For this reason, we present 

additional models which simultaneously control for tornado activity between 50 and 100 miles (d=100), 

and between 100 and 150 miles (d=150) of a county’s centroid over the same time periods. This 

generalization helps preclude omitted variables bias that may be present when modeling the temporal 

response function only for the closest distance band (of 0-50 miles). This richer model also allows us to 

examine explicitly the dependence of self-protection activity on the spatial proximity of tornadoes. 

We control for time-wise heterogeneity shared across all counties by including indicators for each 

month of the year, moyµ . As in many parts of the country, peak season for housing construction in 

Arkansas starts in spring and continues until fall. This annual cycle for construction coincides closely 

with the season for peak tornado activity in Arkansas. Without including moyµ , there would be potential 

upward bias in the magnitude of the temporal coefficients in (1).30 In addition, topography may 

systematically affect expected tornado frequencies and may thus mediate individuals’ perceived risk of 

tornado activity. Likewise, differences in average income levels across counties will affect the expected 

number of safe-room rebate applications. Rather than trying to quantify all the possible relevant time-

 
28 Coefficient estimates in Table 1 were obtained with pre-packaged commands in Stata 11. 
29 Of the three distance ranges from a particular county centroid that we consider for a given tornado to possibly 
enter, only the closest “affected” range is registered by the binary tornado activity indicator. The activity indicators 
for all other distance bands for that county would be coded as zero unless there happen to be another nearby tornado 
in the same week. Thus, we essentially make the assumption that homeowner behavior with regard to self-protection 
is determined by their “nearest point of contact” to a given tornado. For example, the tornado activity indicator 

50
, 0c wT −  takes on a value of one if there is any tornado path whose closest point is within 50 miles of the centroid of 

county c for safe-room rebate requests that are contemporaneous with the week of the tornado occurrence. We 
initially generate separate estimates of specification (3) for tornado activity in the distance band from 0 to 50 miles 
(d=50) of a county’s geographic centroid. 
30  In an earlier working paper, we considered the use of 52 weekly time fixed effects. We found that the overall 
temporal response is minimally sensitive to the use of the weekly versus monthly fixed effects. 
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invariant factors, specification (1) includes county fixed-effects cµ  as controls for any unobserved 

county-level heterogeneity that is constant between 2006 and 2010. 

In the Appendix, we discuss alternative count models such as the conditional fixed-effects 

negative binomial (FENB) estimator (Hausman et al. (1984)), the zero-inflated negative binomial (ZINB) 

estimator, and a NB specification that includes yearly indicator variables for the five calendar years of our 

data. The results from the FENB and ZINB specifications provide estimates of the lag coefficients that are 

very similar to those for the NB. The magnitude of the peak percent change in safe-room demand in 

response to a tornado occurrence, based on the NB specification that includes year fixed effects, is about 

half the peak response produced by the NB specification without year fixed effects. 31 

 

4.2. A More-Parsimonious Parametric Specification for the Temporal Response Function 

 Use of the full set of leading and lagging indicators for tornado occurrences in the specification of 

( )τ ⋅  in equation (2) allows for a highly flexible time pattern in safe-room rebate applications in response 

to recent tornadoes. However, we would prefer to represent the temporal response of self-protection more 

parsimoniously, using a smooth functional form defined over the elapsed time since tornado events. 

Distributed lag models are a traditional method for estimating smooth temporal functions of an outcome 

variable in response to a time-denominated regressor (e.g., see Zellner and Geisel (1970) and Davidson 

and MacKinnon (2009)). A smooth lag function reduces the dimensionality of the parameter space and 

can considerably alleviate the burden of identifying individually statistically significant time effects 

among a large set of lag indicators, often without much loss of fit.  

 
31 We attribute this to the yearly variation in tornado activity found in our data. Of the 186 recorded tornadoes in 
Arkansas, only a single F4 tornado (on the Fujita scale (F0-F5) for tornado intensity) is recorded during the time 
period of our analysis. This tornado occurred in early February of 2008 and caused 13 fatalities and 139 injuries. 
There are no F5 tornado occurrences during this period. Thus, our results in Tables 1 – 3, which do not include year 
indicator variables, are best interpreted as capturing the average tornado intensity effects that occurred during the 
time period. 
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We smooth our temporal response by constraining the coefficients in equation (2) to vary across 

lags according to a function that mimics the basic shape of a two-parameter gamma distribution, which 

takes the general form: 

 1 exp( / )( ; , )
( )

lh l lλ λ

φλ φ
λ φ

− −
=

Γ
, (4) 

where λ  is a shape parameter, and φ  is a scale parameter. When 1λ = , the gamma distribution becomes 

an exponential distribution with a value for the decay rate of 1/φ .32  

The domain of the gamma distribution is non-negative, so we restrict our models to include only 

contemporaneous and lagged tornado activity, i.e. 0l ≥ .33 We scale the overall height of ( )h ⋅  by a third 

parameter β to obtain the systematically varying lag coefficient lβ  (i.e., ( ; , )l h lβ λβ φ= ). This structure 

for the lag coefficients allows first for an increasing, then a decreasing, effect of lagged tornado activity 

on safe-room rebate requests. 

 With this relatively flexible gamma-distribution form for the lag coefficients, the log-conditional 

mean of the NB count model is: 

 ( ) ,

40
50

50 50 50
0

log [ ] ( ; , ) c w l ccw moy
l

E S h l Tβ λ φ µ µ−
=

 = + + 
 
∑ , (5) 

where ( )h ⋅  is the same across for each county c and week w. In specification (5), the subscripts on λ , φ ,  

and β indicate that these coefficients are relevant for tornado activity that occurs within 0 to 50 miles of 

each county centroid. Similar to our non-parametric models, we then also estimate the differentiated 

effects for tornado activity in the two nearest bands to county centroids (i.e., 0-50 and 50-100 miles in 

 
32 This is merely a richer alternative to the widely used geometrically declining lag structure. The use of lag 
functions in the shape of a gamma distribution was first suggested by Tsurumi (1971) and Schmidt (1974).  
33 With this assumption we sacrifice our ability to model rebate requests as a function of future tornadoes. This 
should not be a major concern since tornado activity in future periods should have no systematic effect on current 
period shelter installations. In Figure 4, of course, our results show that the estimated leading coefficients in the non-
parametric model in specification (3) fail to reject the assumption of a zero effects on rebate requests of future 
tornado events. 
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proximity) and then for each of three bands. For the specification with all three bands, the parametric 

model is:   

 
( )

40
50 100 150

50 50 50 100 100 100 150 150 150, , ,
0

log [ ] [ ( ; , ) ( ; , ) ( ; , ) ]

                                                         + ,

cw
l

c w l c w l c w
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l

c

E S h l T h l T h l Tβ λ φ β λ φ β λ φ

µ µ

− − −
=
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+

∑


 (6) 

where the number of parameters to be estimated is reduced to just nine (from potentially 120 in a 

specification that uses the non-parametric temporal response function in (2)).34 Finally, in an illustration 

that uses just the 50-mile distance band, we allow each of 50λ , 50φ ,  and 50β  in specification (5) to vary 

systematically with both median household income (income) and the percent of individuals with some 

college experience (education). County-level information on income and education come from the year 

2000 U.S. Census.35  

In the discussion of our findings, we will report the six additional estimated coefficients (i.e. the 

three pairs) related to county-level income and education levels and then illustrate the overall effects of 

these household characteristics on the magnitude of peak demand and the elapsed time until the peak in 

safe-room rebate requests. We can calculate the individual effects of income and education predicted by 

our model, ceteris paribus, by using the fact that the location of the mode of a gamma-type function (i.e., 

elapsed time until peak applications) for our basic two-parameter distribution is given by ( 1)λ φ−  for a 

shape parameter of 1λ ≥  , which is independent of the height of the function as measured by β . To 

calculate the magnitude of the peak estimated change in safe-room rebate requests after a tornado, we 

simply allow l  in the temporal response function ( )h ⋅  to be the calculated mode and predict the percent 

 
34 The nonlinear form of the lag structure in our models with specifications similar to (5) and (6) precludes the use of 
convenient pre-programmed estimators. We programmed the specialized log-likelihood for our estimators using the 
ml routine in Stata 11. 
35 The strongest household response is likely to appear for tornado occurrences within the range of 0-50 miles. This 
distance band is likely to provide the clearest empirically estimated effects of income and education. It is much 
harder to identify distinct income and education effects simultaneously on all nine of the time profile parameters in 
equation (6) if each is simultaneously generalized to a systematically varying parameter that is influenced by both 
current income and current education levels in the county in question. 



17 
 

change in peak demand at simulated values for λ  and φ over specified observed values of income and 

education. 

  

5. Findings 

5.1. Non-Parametric Temporal Response for Tornado Activity within 50 Miles 

The parameter estimates in Table 1 are for the non-parametric form in specification (3). The individually 

estimated lag coefficients represent the average percent change in the number of safe-room rebate 

requests as a consequence of future, concurrent, and past tornado activity within fifty miles of each 

county’s centroid in a given week. In these models, we control for seasonal effects with monthly 

indicators and allow for thirteen individually estimated lag and lead coefficients. Coefficients represent 

the average percent change in the number of safe-room rebate requests for a change in the respective 

independent variable. 

For the conditional fixed effects linear estimator in Model 1, the average effect of tornado activity 

on safe-room rebate requests is indistinguishable from zero in the week of the tornado event and up until 

the fourth week after an event. Safe-room rebate requests begin to reflect increased subjective tornado 

risks at a point roughly one month after the precipitating tornado event. The predicted average effect on 

safe-room rebate applications, according to Model 1, reaches a maximum of 68.9 percent above normal 

for the number of safe-room rebate requests between nine and twelve weeks after a nearby tornado 

event.36 After this surge in applications, household demand returns to pre-event levels within about nine 

 
36 We obtain the coefficients in Model 1 by scaling the dependent variable by .3687, the mean number of weekly 
rebate requests per county over the entire time period. The log transformation of the number of shelter rebate 
requests, along with adding 1 to the number of shelter rebate requests before transforming, are two other possible 
scaling alternatives to obtain percentage change effects. In both cases, we find that the analyses based on these 
alternative transformations have drawbacks. Since the simple log transformation is undefined at zero, its use limits 
our sample to only those 3,461 observations for which the number of shelter rebate requests in a county is nonzero. 
For the shifted log transformation, the presence of a disproportionate share of county-weeks with zero rebate 
requests biases downward the temporal lag estimates. The alternative count-data models featured in Table 1 (and 
Appendix Table A1, which includes the zero-inflated models) more appropriately treat the number of rebate requests 
as a non-negative integer. They allow us to model the temporal effects of nearby tornado activity while also 
including disproportionate numbers of county-week observations with zero rebate requests.  
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months (i.e., 36 weeks) after a tornado occurrence. Model 1 also includes a full set of seasonal indicator 

variables for each week of the year. In another model without the monthly indicators (not reported), we 

find a shorter delay in the increase in safe-room rebate requests after an event. The monthly indicators 

thus appear to control for seasonal correlation between tornado activity and unobserved time-wise 

heterogeneity in the market for safe-room construction (such as general levels of construction activity and 

the availability of contracting resources over the course of a year). 

We assess the robustness of the results from the log-linear regression in Model 1 of Table 1 

against Poisson and standard NB count models in Model 2 and Model 3. These count-data models allow 

the log of the expected value of the number of safe-room rebate requests in a given county-week to vary 

according to the same set of regressors used in Model 1. Both the Poisson and NB models have lag 

coefficients that are noticeably smaller in absolute value, which is to be expected because the dependent 

variable in Models 2 and 3 is implicitly logged. The positive and statistically significant dispersion 

parameter in Model 3 suggests the presence of overdispersion even after conditioning on the leads and 

lags of tornado activity and the other covariates. Overdispersion not captured by the Poisson model may 

thus explain Model 2’s statistically negative effects on rebate requests for concurrent week tornado 

activity, as well as the apparent decrement in applications during weeks 37 through 40.  

However, it is not implausible that there could be a negative differential in safe-room rebate 

requests in the week corresponding to a nearby tornado. Subsidy applications might fall off because of the 

distraction of a local tornado, and many non-specialized local contractors may be busy responding to the 

demand for emergency repairs due to local tornado damage. Contractors would be less available for 

“preventive” projects such as safe-room installations and, thus, there could be delays in the negotiations 

of the contracts required before safe-room rebate applications can be processed. In the immediate 

aftermath of a tornado, the most directly affected households may also be taking care of their own needs 

or the needs of their neighbors or their community, and thus do not have the time to complete the rebate 

application process, so that demand falls below normal levels. It may also be the case that the types of 
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storms which produce tornadoes coincide with weather and soil conditions that are unfavorable for the 

planning or excavation/construction of outdoor in-ground safe-rooms. 

The substantial post-tornado up-tick in safe-room rebate requests revealed in Table 1 (peaking at 

9-12 weeks and returning to the long-run steady-state by about 37-40 weeks after a nearby tornado) is 

considerably more short-term than the yearly temporal adjustment process found in the existing literature 

for the effects of hurricanes and floods on post-disaster insurance take-up and housing prices (e.g., 

Gallagher (2010)). Furthermore, despite the fact that safe-room supply constraints may bind differently 

over time, the overall temporal response of households suggests that average risk perceptions of 

households vary with elapsed time since recent nearby tornado events. The eventual decline in the 

demand for safe-room rebates with increasing time since the last tornado event could be evidence for the 

underlying influence of availability bias in household behavior, where a spike in demand for self-

protection appears to decay over time, due either to an increasing tendency to forget, or to the dissipation 

of fear/anxiety about similar future events.  

 

5.2. Differences in the Temporal Response Function across Distance Bands 

The left-hand panel of Figure 4 shows the estimated individual lag coefficients (with confidence intervals) 

based on Model 3 in Table 1 for tornado paths that come within 50 miles of each county centroid. The 

right-hand panel of Figure 4 shows the analogous coefficients when we separately estimate a model that 

uses indicators for tornado paths that pass between 50 and 100 miles of each county’s centroid. There is a 

significant decrease in the strength of the response as the distance of the tornado activity increases from 

0-50 miles to 50-100 miles. 

The effects for the two distance bands shown in Figure 4 are not produced by a single model, so 

omitted variables bias may afflict the estimated coefficients in each case. Including multiple sets of these 

thirteen lead/lag coefficients in an expanded non-parametric model, however, can reduce the precision of 

the distinct lag-coefficient estimates due to the potential correlation of tornado activity across distance 

bands. Instead, the parametric models in Table 2 (based upon a flexible but systematic gamma-
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distribution pattern for the lag coefficients) show the same reduction in the effects on household safe-

room demand as we consider tornado activity that is farther away.37   

In Model 1 of Table 2, we model only tornado activity within 50 miles of each county centroid 

based on specification (5). The results show that all three parameters, φ , λ , and β  of  the gamma-

distribution form of the temporal response are statistically significantly different from zero. The other 

columns of Table 2 shows the parameter estimates for the analogous parametric lag structure in 

specification (6) when we expand the specification to simultaneously model tornado activity between 0-

50 and 50-100 miles (Model 2), and then for 0-50, 50-100, and 100-150 miles of each county centroid 

(Model 3). In comparison to Model 1, the estimate for overall scale parameter, β , for the 0-50 lag 

coefficient function of the temporal response declines across Models 2 and 3 (as well as across distance 

bands within Models 2 and 3). This suggests that the single-band estimate in Model 1 of the overall scale 

of the response of safe-room rebate requests to tornado activity within 0-50 miles of county centroids (i.e. 

the β in Model 1 of Table 2) partially reflects correlated tornado activity within the other distance bands 

farther away.38 As apparent in Models 2 and 3, the overall scale of the response to tornado activity 

between 50-100 miles of county centroids is about one-third the size of the overall scale for activity 

between 0-50 miles. Model 3 indicates that by the time we consider tornado activity between 100-150 

miles of each county centroid, the parameter for the overall scale of response, β , is the only one of the 

three gamma-distribution parameters that has any role in explaining safe-room rebate requests.  

Although the estimates of φ  and λ  in Model 3 of Table 2 are insignificant for the 100-150 mile 

distance band, all three parameters of the temporal response are highly significant for the other two closer 

distance bands. For Model 3 in Table 2, Figure 5 displays the estimated lags for the gamma-shaped 

temporal response function (along with 95% confidence intervals) for the 0-50 and 50-100 distance 

bands. For tornado activity within 50 miles of each county’s centroid, estimated peak safe-room rebate 

 
37 The Models in Table 2 also include controls for county fixed effects and month-of-year effects. 
38 Such correlated activity could result from a single storm that produces multiple tornadoes over a short period of 
time within a region.  
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requests represent roughly a 20% increase at about 13 weeks after a tornado. When the tornado activity is 

between 50 and 100 miles away, however, the size of the peak response of applications is reduced to less 

than 10%, and this peak appears to occur in the first couple of weeks after the tornado event (perhaps 

because contractors are less likely to be fully booked at these distances). The results from the 

simultaneously parametric model thus confirm the results suggested by the separate non-parametric 

models for each distance band: in addition to the elapsed time since the last tornado occurrence, a 

household’s proximity to a recently affected area also appears to be a factor in the formulation of risk 

perceptions and subsequent demand for safe-rooms. 

 

5.3. Income and Education Effects 

The results discussed in the previous section indicate that the overall magnitude of household response is 

at least partially determined by a household’s temporal and spatial proximity to a tornado occurrence. 

Systematic differences in subjective tornado risks might be captured by county income levels (to 

represent the value of the housing assets at risk and the opportunity cost of time lost to injury), and by 

education levels (as a proxy for comprehension of probability concepts). For the 0-50 mile distance band, 

Table 3 shows the estimated effects of education and income when we permit both of these variables to 

shift each of three parameters of the gamma-distribution form of the temporal response function. County 

median household income and the percent of individuals with college experience have no effect on the 

overall amplitude of the lag coefficients, β , but they do both affect the shape and scale parameters, λ  and  

φ , of the gamma distributed form of the temporal response function.  

These income and education variables enter the nonlinear gamma-distribution function in more 

than one place, so it is difficult to summarize the overall marginal impact of either variable on the 

temporal response pattern in safe-room rebate requests based only on the estimates shown in Table 3. To 

provide a clearer summary, we explore in Figure 5 how the height of the peak response, and the timing of 

this peak, change as we hold one variable constant at its sample mean value and adjust the other variable 
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across the range of its observed values in our county-level data. Specifically, we calculate the predicted 

timing of peak applications, ( 1)λ φ− , and the percent difference in the height of the function at this mode 

(which will also involve the β  parameter). Figure 6 shows how each of these two features of the fitted 

lag structure changes in response to independent variations in income and education. 

Specifically, Panel A of Figure 6 shows that counties with higher incomes tend to exhibit a higher 

peak in safe-room rebate requests than counties with lower incomes, holding the education variable 

constant.39 Panel B shows the effect of income on the timing of peak applications, and suggests that peak 

applications are reached somewhat sooner both in low-income and in high-income counties, compared to 

medium-income counties. Thus, high-income households are likely more willing to pay a premium for a 

safe-room than low-income counties (suggesting that observed self-protection patterns for higher-income 

households may be more volatile if demand is prompted by a strong yet short-lived fear response). High-

income households would also be more willing to pay a premium to recruit an out-of-area contractor to 

speed up their safe-room installation process. Given that lower-income areas exhibit a shorter-duration 

response to tornadoes (as implied by Panel B), short-run supply constraints may be less binding in lower-

income areas, so that a contractor can be identified, and a contract drawn up, more quickly.  

Panels C and D of Figure 6 show the effect on safe-room rebate requests of differences in 

education (i.e. the percent of individuals in a county with any college experience). In Panel A, the 

predicted magnitude of peak demand drops quickly as education is greater, holding household income 

constant at its observed mean value. This may capture the effect of education on subjectively formulated 

risks—individuals with more education appear less likely to over-react because they are more capable to 

assess accurately the objective probability of a future adverse event. As was the case for differences in 

 
39 The correlation between the income and education variables is 0.742. Thus, in the observed data, an increase in 
income (which raises the height of peak applications) would be offset by an increase in educational attainment 
(which decreases the height of peak applications). If, on the other hand, there is a negative or positive income shock 
to a county or set of counties without a corresponding change in education levels (as might be the case with the 
recent payments made to residents in some counties in Arkansas by natural gas companies for exploration and 
leasing rights), our results provide an indication of the expected change in safe-room rebate requests that would 
occur as a result.  
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income, however, the timing of peak applications first increases with education and then decreases. 

Higher levels of education may make it easier for homeowners to track down an available out-of-area 

safe-room contractor, accounting for the earlier peak in more highly educated communities. There may be 

more available contractors and laborers per household in areas with lower levels of college attendance, 

which could account for earlier peak applications in these communities. 

 

5.4. Price Sensitivity 

If markets for safe-room installations are somewhat localized, so that suppliers have market power, 

contractors may be quick to increase their prices in response to sharp increases in demand after a tornado. 

Price discrimination is certainly possible in the market for custom-installed equipment like safe-rooms, 

since resale opportunities for just a safe-room by itself are certainly limited by the cost of removal and 

relocation, if resale is feasible at all. If short-run demand becomes much less price-elastic in the wake of a 

nearby tornado, contractors may profit-maximize by differentiating their prices over time as demand 

conditions vary. Homeowners might also demand shelters with more premium safety features after a 

recent and nearby tornado. All of these factors lead us to hypothesize that the prices of safe-rooms should 

be higher after a tornado. 

The lags between tornado events and the peak number of ensuing safe-room rebate applications 

could also be explained in part by a reluctance of many homeowners to pay inflated prices when supplies 

are most severely constrained. Homeowners may continue to shop around, or to wait until their preferred 

contractor has an opportunity to bid for the job and draw up a contract, or they may give up looking for a 

contractor and install a safe-room themselves if they have the skills to do so. 

To investigate the possibility of short-term changes in safe-room prices after a tornado 

occurrence, it would be highly desirable to have actual safe-room installation expenditures for each 

household that applied for a safe-room rebate. Unfortunately, installation costs in our data are heavily 

censored. The official records include only the rebate amount the applicant received, which is 50% of the 

installation costs up to $1000. There is only a very small share (i.e. 10%) of applications for which 
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reported safe-room installation costs are not top-censored. For top-censored data, however, it is still 

possible to use a random effects top-censored Tobit regression model to attempt to obtain estimates of the 

effects of recent nearby tornado activity on safe-room expenditures.  

In results reported in Appendix Table A2, we use this Tobit-type estimator to explain these 

heavily censored safe-room installation costs using the same set of explanatory variables employed in 

Model 1 of Table 1. In this case, however, the censoring is so extreme that the estimated lag coefficients 

for tornadoes in the 0-50 miles distance band do not seem to follow any distinguishable pattern. In our 

preferred specification (which includes year indicators and adjusts costs for inflation), we find statistically 

significant effects for only two of the lag coefficients (for weeks 1 through 4, and weeks 17 through 20).  

The signs on these two lag coefficients are also negative, which runs counter to our hypothesis at supply 

constraints after a tornado should result in price increases. The point estimates for the other lag 

coefficients vary widely in size and sign. Thus, based on these extremely censored price data alone, there 

does not seem to be sufficient evidence to support the conjecture that equilibrium prices for safe-room 

installations are bid up substantially after nearby tornado events. We must look for other indications. 

 

5.5. Direct Evidence for Supply Constraints 

Supply constraints may also be acting in such way as to lead to other differences in the observed response 

of household demand for safe rooms. As an indication of this possibility, Figure 5 also shows that the 

estimated timing of peak rebate requests is earlier by roughly ten weeks if the tornado activity occurs at 

50-100 miles from a county’s centroid, rather than within 50 miles of its centroid. The short-run supply of 

local contractor time is likely to be less binding at greater distances from actual tornado activity. Short-

run labor supply constraints could be more binding if there is greater demand for construction labor to 

repair to damaged buildings or homes closer to the vicinity of the tornado event. Competing demands for 

safe-rooms in closer proximity to recent tornado strikes may also cause delays. For those households 

which are farther away from a damaged area, the absence of these factors could mean shorter delays in 

the arrangement of individual safe-room construction contracts.  
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We look for direct evidence of the evidence of binding supply constraints using a separate 

dataset. The ADEM began collecting the names of the contractors associated with safe-room construction 

or installation in the last week of July 2008. Although the addresses of these contractors were not 

recorded in the application materials, we were able to track down street addresses and zip codes for 2,634 

of the 3,401 applications processed by ADEM between late July of 2008 until the end of December 2010, 

where the end of this sample corresponds to the most recent information about tornadoes in the 

SHELDUS data set.40  We geocoded the zip codes of each contractor for which an address could be 

identified, and joined the locations of zip code centroids to each of the 75 counties in Arkansas. We 

similarly geocoded the zip codes of the home addresses where safe-rooms were installed. This allowed us 

to measure the distance, in miles, between the zip code centroids for each job site and the business 

address of the contractor involved in the project.41 

Based on the SHELDUS tornado data concerning individual tornado events indexed by county, 

we aggregated the information on tornadoes to the level of the county and the week (measured since 

January 1, 1960). We calculated the number of tornadoes in each county/week, the number of tornado-

related injuries and tornado-related fatalities, as well as the measure of total property damage. We then 

constructed 15 weekly lags of the variables available for tornadoes and linked all of this tornado 

information to each safe-room application (according to the county and the week of the application). We 

also calculated a measure of total tornadoes across all counties in Arkansas, with 15 weekly lags of this 

variable as well. 

The spatial distribution of houses and the corresponding spatial distribution of safe-room 

contractors will dictate the average distance to all available contractors for each house. This can be 

expected to vary across counties, so any model to explain “distance to contractor used” as a function of 

recent and nearby tornado activity must employ county-level fixed effects. We also employ weekly fixed 

 
40 The Spatial Hazard Events and Losses Database for the United States, described at 
http://webra.cas.sc.edu/hvri/products/sheldus.aspx 
41 Only the names of contractors were collected in the safe-room applications database. It was necessary to search 
elsewhere (laboriously, mostly via the web pages of each business) for address information for each contractor. 

http://webra.cas.sc.edu/hvri/products/sheldus.aspx
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effects to control for ordinary seasonality in the contracting industry. In these data, however, our 15-week 

lags reach back to capture two particularly bad weeks in the early spring of 2008 where a total of 40 

tornadoes struck in Arkansas. In contrast, only 25 additional tornadoes struck the state between the end of 

July 2008, when our safe-room application data with contractor addresses starts, and the end of December 

2010.42   

Table 4 reports selected lag coefficients from three different models, each of which seeks to 

explain a different indicator of supply constraints in the market for safe-room installations. Each model 

includes current-week own-county tornado events as well as 15 weekly lags of this number of events. 

Any coefficient on these current or lagged tornado event variables is statistically insignificantly different 

from zero if it is not reported in Table 4. Model 1 reveals that it seems to take eight weeks for a tornado in 

the same county to have any statistically significant effect on average contractor distances, at which time 

the average distance is greater by 8.7 miles. Recall that Table 1 reveals that safe-room rebate requests do 

not tend to become strongly statistically significantly different from normal until five to eight weeks after 

there has been tornado activity within a 50-mile radius of the county centroid. It seems reasonable that, as 

homeowners jockey for space in contractors’ schedules during this increase in demand, they will have to 

range further afield to find a contractor.43 

People may also be more likely to install a safe-room themselves, without the help of a 

contractor, if the supply of contractors is tight. Model 2 in Table 4 reveals that the only statistically 

significant difference in the propensity for homeowners to self-install their safe-room is positive, although 

small, and it occurs at a point eleven weeks after a tornado in the same county. The eventual decision to 

 
42 We opt to exclude the severe rash of tornadoes in the early spring of 2008 by beginning our panel more than 15 
weeks after those events. Those 40 tornados were sufficiently unusual to imply a different data-generating process. 
A total of 73 tornados were recorded in Arkansas during the periods reflected in our analysis (weeks 2,515 to 2,651, 
counting from January 1, 1960).  
43 The sparseness of rebate applications in the weeks immediately following a tornado is not surprising. Certainly, in 
the week after the rash of tornadoes in early 2008, only eight safe-room applications across the whole state were 
recorded at the ADEM. 



27 
 

self-install a safe-room may be a consequence of an inability to identify an available contractor during the 

immediate weeks after a tornado event.44 

Finally, homeowners may use high-volume experienced safe-room contractors when the market is 

slack. However, they may resort to smaller non-specialist or less-experienced contractors when the 

market it tight. For non-specialist and infrequently used contractors, we assume we are less likely to be 

able to track down an address and zip code for the contractor in question. About 22% of the contractors in 

our sample of safe-room applications fall into this “obscure contractor” category. Model 3 in Table 4 

reveals that for safe-room rebate applications that are processed one week after a tornado in the same 

county, there is a statistically significantly greater chance that an obscure contractor will be involved. 

This suggests that if a homeowner wants a safe-room in a big hurry after a tornado, he or she may be 

happy with whatever contractor can be found on short notice, even if the contractor in question may not 

be equipped to provide the price and quality advantages associated with specialization, experience, and 

economies of scale.  

One final set of analyses using this later sample of safe-room rebate requests (for which 

contractor information is available) focuses on distance to the contractor as the dependent variable. The 

models for which selected coefficients are reported in Table 5 rotate through a selection of alternative 

tornado metrics in addition to simple counts of tornado events. Models 2 and 3 in Table 5 reflect the 

intuition that own-county tornadoes that result in more injuries or more deaths are likely to result in 

homeowners going farther afield (i.e. incurring greater costs) to find an available contractor. The evidence 

suggests that homeowners who submit safe-room rebate requests the soonest after an own-county tornado 

has caused injuries or fatalities use contractors an average of 24 miles farther away per tornado injury in 

their county in the third week after these injuries. By week eight, however, the extra distance per injury 

has shrunk to only about three miles. While there are few fatalities in these data, a tornado fatality adds 33 

miles to contractor distance by the eighth week after that fatality. By the eleventh week after own-county 

 
44 If they self-install their safe-room, rebate applicants can claim the subsidy only for materials, not labor. 
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tornado injuries or fatalities, however, average distance to contractors is statistically significantly lower 

than usual. Perhaps households with the most urgent demands for safe-rooms in response to injuries or 

fatalities have by that time engaged their contractors and submitted their rebate requests. 

The final model in Table 5, for the effects of lagged own-county property damage from tornadoes 

suggests the possibility of a second wave in contractor demand, perhaps due to two latent classes among 

homeowners. At week 3, distances to contractors are as much as 20 miles greater per million dollars in 

own-county tornado damage, but they shrink by week 8 and become even slightly less than average by 

eleven weeks after an event. However, there is a significant increase in average distances again at week 

15. Of course, some caution must be used in interpreting these results because there are relatively few 

events over the short time-span of the data for which contractor names are known so that distances, self-

installation, or obscurity of contractors can be determined. 

The results in Tables 4 and 5, taken together, constitute evidence for (a.) greater, rather than 

lesser, distances from the job site to the contractor’s location, (b.) increases (rather than decreases) in 

decisions to self-install a safe-room, and (c.) the greater (rather than lesser) use of obscure contractors 

immediately after a nearby tornado. On the whole, these findings suggest that the supply side for safe-

rooms may represent a discernibly binding constraint in the wake of tornadoes. This supports our 

contention that prices of safe-rooms, though mostly unobserved, are likely to be driven up after each 

tornado strike. This means that some portion of the safe-room subsidy is merely passed through to 

contractors, or stimulates additional demand to an extent that homeowners resort to less experienced or 

non-specialist suppliers and may therefore get less quality for their money. 

 

6. Discussion and Conclusions 

Our findings suggest that individuals’ adaptive behavior in response to tornadoes—and thus likely to 

other extreme weather risks or intermittent natural hazards such as earthquakes—are mediated both by the 

elapsed time since the event and by distance from the event. We estimate a time pattern in applications for 

safe-room rebates that reaches a maximum at about 10 weeks after a tornado occurrence within a distance 



29 
 

of 50 miles. Peak safe-room rebate requests increase with income and decrease with education levels. The 

up-tick in safe-room rebate requests remains statistically greater than zero for 36 weeks (about 9 months). 

For tornadoes that occur farther away (>50 miles), peak rebate requests appear to occur sooner suggesting 

that short-run supply constraints may be less binding at greater distances from a recent tornado.  

The “half-life” of elevated risk perceptions over time and space appears to be an important 

determinant of the extent to which individuals can be expected to self-protect when they live in an area 

that exposes them to extreme weather events. The overall response of self- protection from tornadoes, 

however, may not be warranted by any changes in the actual objective risks of tornadoes. The 

forthcoming IPCC report on the current and likely future characteristics of extreme weather specifically 

notes that there is little if any statistical evidence for changes in local tornado activity since 1950.45 

Observed aggregate safe-room demand appears to reflect finer patterns of temporarily heightened and 

relatively localized subjective perceptions of tornado risks. The salience of these risks will vary over time 

and space because individuals’ fear/anxiety and recollections of tornadoes may decline over time and with 

the geographical distance from affected areas. Fortunately, however, safe-room installations represent 

more-or-less permanent changes to the stock of housing capital in a region. While the salience of tornado 

risks may fade when there has been no recent tornado nearby, the safe-rooms remain. Each tornado may 

serve to “ratchet” upwards the percent of dwellings with safe-rooms, although conceivably by a 

decreasing amount because the proportion of unprotected dwellings will decline over time. 

The variation in safe-room demand over time as a function of the location of tornadoes presents a 

challenge for policy makers, especially given the current uncertainty of the IPCC about trends in the 

objective risks of tornadoes and other extreme weather events. Policy makers may decide that individuals 

are providing insufficient self-protection because of the decline in households’ perceived risks over time 

and across space. In this case, our results provide some clues as to how policy improvements might be 

 
45 The report does not, however, entirely preclude the possibility for some future change. The IPCC’s “low 
confidence” in possible future trends in tornado activity is largely attributed to the inadequacy of monitoring 
systems and variations in the quality of historical data on tornadoes. 
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made. Policies that encourage private investment for adaption but ignore the temporal and spatial nature 

of individuals’ behavioral response may be able to achieve greater levels of economic efficiency by 

targeting incentives towards households according to whether an area has, or has not, been recently 

exposed to a nearby hazardous event. This might entail that rebate programs accommodate the presence 

of supply constraints by adjusting incentives over time and space as a form of “peak load” management to 

reduce costs. In the extreme case where few additional qualified contractors are available and the 

marginal cost curve is nearly vertical, the urge to take self-protective action may dissipate before supply 

catches up to demand.  

The temporal and spatial targeting of safe-room installation incentives of course does not mean 

that less public assistance would be given to areas that have actually suffered damage from extreme 

weather events. Instead, it simply means that homeowners in the vicinity of a recent tornado may require 

much less in the way of a publicly funded subsidy to be encouraged to engage in an appropriate amount 

of self-protection. Homeowners in other areas—that may have comparable long-term risks but have 

escaped any recent or nearby damage from extreme weather events—may need more subsidization to 

undertake an appropriate amount of self-protection. If these types of homeowners can be induced to 

undertake safe-room installations during a lull in nearby tornado activity, local safe-room contractors 

could remain more fully employed. This type of “load management” would also help to reduce the 

apparent spikes in installation costs in the wake of a nearby tornado.  

Policy makers may also decide that individuals desire too much self-protection relative to the 

level of concern warranted by any actual changes in the objective risks of extreme weather. In a related 

discussion, Sunstein and Zeckhauser (2011) suggest the potential need for a government to “not swiftly 

capitulate” to demands for public protection in cases where individuals appear to overreact to fearsome 

risks, such as to potential flooding or environmental threats. In the case of private investments, the self-

limiting effects of the market, such as higher prices in response to heightened demand, can slow 

unwarranted protection investments if short-run and long-run supply constraints are present. Thus, a 

government may decline to provide public protection for extreme weather risks. However, if private 
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demand for investments in self-protection is sufficiently strong, there may still be public support for well-

targeted incentive programs. This can be the case even if an individual’s subjective risk perception 

matches the long-run objective risks of extreme weather. Recent exposure to an event like a tornado may 

still not be sufficient to overcome other overriding deterrents to action, such as inappropriately high 

individual discount rates, or binding income constraints combined with imperfect capital markets. 

The lack of high-quality price data for each safe-room installation limits our ability to draw 

causal inferences from our findings. Price data would be ideal because these would provide the clearest 

way to identify the temporal and spatial adjustment effects of imperfectly elastic supply for safe-room 

installation in the wake of a recent and nearby tornado. As a further prospective generalization of our 

analysis of supply constraints, it may be possible to acquire data on housing starts in each county, by 

month (or even by week) based on other types of permit applications. This may be a reasonable proxy for 

the amount of slackness in the construction industry in each county in each time period.  

The heavy censoring of installation costs also restricts our ability to estimate bounds on the 

willingness to pay (WTP) for the perceived reductions in injury and mortality risks from tornado activity. 

An understanding of Arkansas homeowners’ WTP for these protective measures could be used to evaluate 

the effectiveness of the Safe Shelter Program in increasing the level of self-protection undertaken and the 

degree to which the effectiveness of the program diminishes with elapsed time and distance from a 

tornado occurrence. Furthermore, expenditures for self-protection would be just one crude measure of the 

potential losses in social welfare if the overall frequency of severe weather events increases or if the 

geographic footprint of severe weather widens or shifts. If the need for adaptive behavior could be 

reduced by climate change mitigation measures, these avoided costs could be counted as one component 

of the “social cost of carbon.” The broader economic impacts of extreme weather may also go well 

beyond just repair and rebuilding of structures directly damaged. Greater perceived risks from tornadoes 
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and other extreme weather events may spawn numerous new demands for methods of self-protection over 

a much wider area and lead to growth in industries that can more efficiently provide these goods.46 

The notion that individuals tend to underestimate the risk of injury or death from tornadoes is in 

some sense validated by the prevalence of government subsidies to encourage the construction of safe-

room shelters. If climate change increases the frequency and spatial density of tornadoes, however, our 

model suggests that homeowners may be increasingly inclined to purchase safe-rooms on their own 

initiative. This suggests that state or federal programs to encourage safe-rooms via subsidies may become 

less necessary in the future, although some complement of carefully designed government incentives may 

be necessary to smooth demand and keep marginal costs as low as possible. In particular, if all safe-rooms 

must meet a common standard and are equally effective, and a recent nearby tornado drives up safe-room 

costs by as much as $2000 while the size of the safe-room rebate to homeowners is capped at $2000, the 

rebate program begins to look like a “pass-through” to contractors that would be unnecessary if that 

recent tornado had not driven up costs by this amount. 

 

 
46 An article by AP Science Writer Seth Borenstein was carried by many U.S. newspapers on December 8, 2011, 
most commonly under the title “US shatters record for billion-dollar weather disasters.”  The May 26, 2011 edition 
of the New York Times included an article by Kim Severson entitled “Storms Create a Scramble to Install Shelters” 
that notes “…record-breaking sales for companies that sell safe rooms and shelters designed to withstand the 
powerful storms that have killed hundreds of people this spring” 
(http://www.nytimes.com/2011/05/26/us/26shelter.html) 

http://www.nytimes.com/2011/05/26/us/26shelter.html
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9. Figures and Tables 

 
Figure 1. – 6,687 locations of safe-rooms for which subsidies were granted (May 2006 - December 2010) 

 
 
 

 
Figure 2. – Locations of tornadoes within 350 miles of any Arkansas county centroids beginning in 2005 
through the end of 2010. We construct county-level measures of tornado activity by week and three 
distance bands (0-50, 50-150, and 100-150 miles from county centroids) for our empirical analysis based 
on the paths of 1,462 tornadoes within 150 miles of the state. 
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Figure 3. – This figure shows the relative seasonal patterns of the average number of safe-room 
rebate requests per county and the average number of counties affected by tornado activity. The week-
of-year averages are computed across years from May 2006 to the last week of December 2010. 
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Figure 4. – The left and right panels plot the mean estimates (along with 95% confidence intervals) 
of the percent change in safe-room rebate requests from the weekly average total for the occurrence 
of a nearby tornado. These estimates are obtained from using a non-parametric specification for the 
temporal response. The left panel shows the estimates for the temporal response of rebate requests for 
any tornado activity within 0 to 50 miles of county centroids. All estimates, except for the 
contemporaneous “0” week estimate, represent any occurrence of activity aggregated to a month. The 
right panel shows the same estimated coefficients in a separately estimated model for tornado activity 
within 50 to 100 miles of county centroids.  
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Figure 5. – These graphs show fitted lag coefficients under parametric models for the temporal response 
function for tornado activity at different spatial proximities. The left panel contrasts the response for rebate 
requests within a county when a tornado occurs within 50 miles of the county’s centroid versus tornado 
activity that occurs within 50 to 100 miles for a county. The right panel shows the proximity contrast when 
the spatial proximity of tornado activity is redefined to be either in the same county or in an adjacent county. 
 



39 
 

 
Figure 6. – In panels A and B, we hold constant the education variable (“any college experience”) at its 
sample mean across counties, which is 32.0 percent. We then calculate predicted peak safe-room rebate 
requests (panel A) and the predicted timing of peak applications (panel B) as a function of median 
household income for the range of household incomes observed across counties in our sample (from 
$29,656 through $51,669). In panels C and D, we hold median household income at its average value across 
counties ($38,670) and calculate predicted peak safe-room rebate requests (panel C) and the predicted 
timing of peak applications (panel D) as a function of the percent of “any college experience” for the range 
observed in our sample (from about 20.7 percent to 55.1 percent). 
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Table 1 – Non-Parametric Temporal Specifications for Tornado Activity within 50 mi. of 

County Centroids (during specified time intervals); Selected Coefficients 
Dependent variable: Weekly number of safe-room rebate requests by county(c) 

Leads or lags of tornado activity: Model 1 
FE Linear 

Model 2 
Poisson 

Model 3 
Neg. Bin.  

50
,8/5cT  0.0570 0.0145 0.00301 

 (0.839) (0.221) (0.051) 
50
,4/1cT  0.0495 0.0455 0.0395 

 (0.732) (0.704) (0.679) 
50
,0cT  -0.140 -0.150* -0.143 

 (-1.221) (-1.798) (-1.593) 
, 1/
50

4cT − −  0.0869 0.0662 0.121* 
 (1.297) (0.952) (1.832) 

, 5/
50

8cT − −  0.542*** 0.409*** 0.382*** 
 (8.225) (6.769) (5.790) 

, 9/
5

12
0

cT − −  0.689*** 0.483*** 0.509*** 
 (10.845) (6.245) (7.070) 

, 13/
5

16
0

cT − −  0.533*** 0.371*** 0.341*** 
 (8.541) (6.190) (5.761) 

, 17/
5

20
0

cT − −  0.422*** 0.313*** 0.283*** 
 (6.763) (5.622) (4.835) 

, 21/
5

24
0

cT − −  0.398*** 0.326*** 0.306*** 
 (6.492) (5.925) (5.253) 

, 25/
5

28
0

cT − −  0.323*** 0.260*** 0.359*** 
 (5.488) (5.150) (6.403) 

, 29/
5

32
0

cT − −  0.141** 0.158*** 0.197*** 
 (2.428) (2.707) (3.198) 

, 33/
5

36
0

cT − −  0.0552 0.100** 0.118** 
 (0.950) (2.034) (2.075) 

, 37/
5

40
0

cT − −  -0.0720 -0.0645* 0.00642 
 (-1.217) (-1.659) (0.152) 
Month indicators (seasonality) Yes Yes Yes 
County fixed effects Conditional Uncond. Uncond. 
Dispersion parameter - - 0.341** 
# of observations 18,000 18,000 18,000 
Log likelihood -43,271 -12,325 -11,201 
# of counties 75 75 75 
Notes: Coefficients give the average decimal percentage change in weekly county safe-room rebate requests 
for a unit change in the independent variable. Estimates in Model 1 were obtained by scaling the dependent 
variable by .3687, the mean number of weekly requests over the entire sample. T-test statistics for Models 1 
and 3; z-statistics with standard errors clustered by county for Models 2 and 3. *** p<0.01, ** p<0.05, * 
p<0.1. Dispersion parameter indicates significant overdispersion after conditioning on the covariates. The 
“conditional” county fixed effects in Model 1 use demeaned variables to control for unobserved county 
differences in the average of number of shelter rebate requests. “Unconditional” fixed effects include county-
level binary indicators to control for the unobserved differences across counties. 
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Table 2 – Parametric Pattern in Lag Coefficients for Tornado Activity by Proximity 

Dependent variable: Total Safe-room installations in a county-week 
ESTIMATED 
PARAMETERS 

Model 1  
-------------  

Model 2 
------------------------- 

 Model 3 
----------------------------------------- 

Distance band: 0-50 miles   _0-50_   50-100  _0-50_ _50-100_ 100-150 
β̂  9.379***  7.427*** 2.696***  6.897*** 1.917*** 0.971*** 

 (9.370)  (6.206) (3.386)  (5.701) (2.680) (2.965) 
λ̂  2.119***  2.395*** 1.377**  2.282*** 1.245** 90.99 

 (6.530)  (5.207) (2.317)  (5.369) (2.347) (1.362) 
φ̂  10.67***  10.37*** 12.73**  11.05*** 12.91** 0.464 

 (4.617)  (3.746) (1.998)  (3.455) (2.264) (1.441) 
Constant -2.685***  -2.832***   -2.836***  
 (-25.676)  (-26.334)   (-26.576)  
County FE Yes  Yes   Yes  
Month-of-year FE Yes  Yes   Yes  
Overdispersion 0.336**  0.320**   0.312**  
# of observations 18,000  18,000   18,000  
Log likelihood -11,196  -11,177   -11,166  
Notes: z-statistics with standard errors clustered by county are reported in parentheses. *** p<0.01, ** p<0.05, * 
p<0.1. A significant positive value for the overdispersion parameter indicates that the error dispersion is 
significantly greater than the expected value of the dependent variable after conditioning on the independent 
covariates. 

 
 

Table 3 – Demographic Effects on the Parameters of the Parametric 
 Temporal Response 

Dependent variable: Total Safe-room installations in a county-week 

ESTIMATED PARAMETERS  
Model 1 

0-50 miles 
 

 β̂  λ̂  φ̂  
Baseline coefficient 12.30*** -0.857 17.79** 
 (3.598) (-0.772) (2.077) 
Effect of Income ($10K) -0.0674 1.571*** -7.041** 
 (-0.049) (2.663) (-2.252) 
Effect of % Any college -6.734 -9.465*** 62.70*** 

 (-0.488) (-2.609) (2.995) 
    
Constant (overall)  -2.712***  
  (-25.788)  
Overdispersion  0.326**  
# of observations  18,000  
Log likelihood  -11,185  
Notes: z-statistics with standard errors clustered by county are reported in parentheses. *** 
p<0.01, ** p<0.05, * p<0.1. A significant positive value for the overdispersion parameter 
indicates a significant level of overdispersion after conditioning on the independent covariates. 
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Table 4 – Effects of Current and Past Own-county Tornado Events on Proxies for 
Supply Constraints in the Local Market for Safe-room Contractors 

  Model 1 Model 2 Model 3 

(Different, later sample; t = week) Distance to 
contractor useda 

Self-installed 
safe-roomb 

Used “obscure” 
 contractorb 

Count of Tornadoes in County at t-1 -6.892 -0.002 0.119** 
 (-0.98) (-0.08) (2.12) 
Count of Tornadoes in County at t-8 8.750** -0.001 0.037 
 (2.05) (-0.04) (1.06) 
Count of Tornadoes in County at t-11 -11.875 0.063** -0.076 
 (-1.46) (2.20) (-1.21) 
Observations 2397 3085 3085 
R2 0.202 0.081 0.135 
Week and County FE Yes Yes Yes 
Log L -12362.162 1020.817 -1450.263 
Notes:  t-statistics in parentheses; *** p<0.01, ** p<0.05, * p<0.1. All models control for the 
count of same-county tornado events in current week and all lags up to t-15. No other lag 
coefficients are statistically significantly different from zero. During the time period in question, 
tornado events per county-week averaged 0.01, with a maximum of two. 
a Sample is limited by safe-room rebate applications for which a contractor zip-code could be 
identified. If no contractor address could be found for any of the safe-room rebate applications in 
a county in a particular week, no average distance could be calculated. 
b Linear probability model; results are qualitatively identical to probit specification. 

 
Table 5 – Influence of Lags of Four Tornado Metrics on Selected Coefficients 

(n=2397) 
Dependent variable: Distance to contractor used for safe-room installation 

 Model 1 Model 2 Model 3 Model 4 

Distance to contractor as a 
function of metric in same county: 

County 
Tornado 
Events 

County 
Tornado 
Injuries 

County 
Tornado 
Fatalities 

County 
Property 
damage 

Metric at t-3 4.583 24.150*** -6.366 20.568** 
 (0.60) (3.02) (-0.19) (2.08) 
Metric at t-8 8.750** 2.885*** 32.527*** 1.177*** 
 (2.05) (3.88) (3.81) (4.78) 
Metric at t-11 -11.875 -2.509** -25.192** -0.486** 
 (-1.46) (-2.25) (-2.25) (-1.97) 
Metric at t-15 7.587 2.726 -8.001 18.406*** 
 (0.95) (0.89) (-0.25) (2.71) 
R2 0.202 0.208 0.204 0.212 
Week and County FE Yes Yes Yes Yes 
Log L -12362.162 -12352.716 -12359.019 -12346.103 
Notes: t-statistics in parentheses: *** p<0.01, ** p<0.05, * p<0.1. All models control for same-
county metric in current week and all lags up to t-15. No other lag coefficients are statistically 
significantly different from zero. During the time period in question, tornado events per county-
week averaged 0.01, with a maximum of two. Tornado injuries averaged 0.00097 with a 
maximum of 3. Tornado fatalities averaged 0.00032 with a maximum of 1. Tornado property 
damage averaged $ 3,700 with a maximum of $ 4.75 million (2011 dollars) 

 


