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Abstract
Damage caused by frost on coffee plants can impact significantly in the reduction of crop 
quality and productivity. Remote sensing can be used to evaluate the damage caused by 
frost, providing precise and timely agricultural information to producers, assisting in deci-
sion making, and consequently minimizing production losses. In this context, this study 
aimed to evaluate the potential use of multispectral images obtained by unmanned aerial 
vehicle (UAV) to analyze and identify damage caused by frost in coffee plants in differ-
ent climatic favorability zones. Visual evaluations of frost damage and chlorophyll content 
quantification were carried out in a commercial coffee plantation in Southern Minas Ger-
ais, Brazil. The images were obtained from a multispectral camera coupled to a UAV with 
rotating wings. The results obtained demonstrated that the vegetation indices had a strong 
relationship and high accuracy with the frost damage. Among the indices studied the nor-
malized difference vegetation index (NDVI) was the one that had better performances 
(r = − 0.89,  R2 = 0.79, MAE = 10.87 e RMSE = 14.35). In a simple way, this study demon-
strated that multispectral images, obtained from UAV, can provide a fast, continuous, and 
accessible method to identify and evaluate frost damage in coffee plants. This information 
is essential for the coffee producer for decision-making and adequate crop management.
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Introduction

Coffee is a tropical crop that is currently grown in about 80 countries, being one of the 
most traded agricultural commodities worldwide. The coffee crop has great importance 
economically and socially in Brazil which is the world’s largest producer and exporter of 
coffee, but still, a wide number of factors strongly limit agricultural yields and quality of 
this commodity, including drought and extreme temperatures (Martins et al., 2019).
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The coffee crop cultivated in regions where air temperature reaches below 18 °C shows 
a substantially reduced growth index. Besides that, the occurrence of frosting in those 
regions can limit the economic viability of coffee production (Camargo, 2010). The dam-
age caused by frosting on the coffee plants can cause severe limitations, directly reducing 
the yield of the year, and impacting in the following years (Ramalho et al., 2014). One of 
the main effects of frosting in plants is the reduction of the leaf area which can be observed 
by the reduction of chlorophyll a and b, as well as by the processes of necrosis and senes-
cence of leaves, decreasing the solar radiation absorption and photosynthesis. In this sense, 
the awareness of the damage caused by frosting is essential for the producer mainly to 
assist in the decision making to perform, for example, pruning and fertilizing to maintain 
leaves that were not damaged.

A large part of the national production comes from the southern region of Minas Gerais, 
an area that has a strong feature on its topography, where high slope and lowlands char-
acterize the geographical relief. In varying terrain, the topography is a known factor that 
influences the frosting patterns (Kotikot & Onywere, 2014). Therefore, the identification 
of areas of climate favorability for frost occurrence becomes essential for crop manage-
ment (Gobbett et al., 2018; Nóia Júnior et al., 2019). Possessing that information, coffee 
producers could adequately choose the location, orientation, and low-temperature resist-
ant cultivars to be used. Also, for areas showing higher climate risk, especially lowland 
areas where cold air accumulates, the producer may use preventive measures to reduce the 
impact of frost on the coffee plants, for example, keep cultivation lines clean from weeds 
and apply calcium sulcate to increase solute of the plant as well as low-temperature resist-
ance (Camargo, 2010).

To establish a risk zone for frost occurrence is an important step to integrated manage-
ment and protection of coffee production. Considering the diversity of the geographical 
reliefs found in coffee-producing areas in Brazil, it is essential to understand how frost 
formation occurs and how topography influences frost occurrence in coffee plantations. 
Knowledge of climatic variability affected by topography can help producers identify high 
and low-risk areas, even when macroclimatic conditions are not favorable.

However, despite the importance of coffee plantations and the occurrence of frost in the 
producing regions, there are still few studies in the literature evaluating the impact of frost 
on the coffee crop. Moreover, monitoring damage due to frost requires intensive field sur-
vey work (Wei et al., 2017). These procedures, besides being expensive and subjective, are 
time-consuming and lead to market speculation for coffee, due to the lack of real knowl-
edge of the impact of frost in the region combined with the time to obtain the information 
(Rafaelli et al., 2006). Thus, it is necessary to develop a more effective approach to define 
and monitor frost damage for the coffee crop.

Remote sensing can be used to evaluate the damage caused by frost, providing precise 
and timely agricultural information to producers, assisting in decision making, and conse-
quently minimizing production losses (Marin et al., 2019). The use of remote sensing in 
agriculture is based on the reflectance characteristics of the leaves in the visible and near-
infrared spectral regions, obtained mainly by variations in the photosynthetic pigment con-
tent, cell structure, and moisture content (Feng et al., 2018). In the case of frost damage, 
the reflectance characteristic in the spectral region is modified according to the damage of 
the cell structure of the leaves (Wang et al., 2015; Wei et al., 2017). Based on that, remote 
sensing may successfully assess the damage caused by frosting in the coffee crop.

Previous studies have shown potential in orbital remote sensing to monitor damage by 
plant frosting in different cultures, such as wheat (Feng et al., 2009; Wang et al., 2015), 
oilseed rape (She et al., 2017; Wei et al., 2017), sugarcane (Tan et al., 2008) and tea (Lou 
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et al., 2013). For the coffee crop, Rafaelli et al. (2006) reported that normalized difference 
vegetation index (NDVI), obtained with MODIS images, was enough to monitor the effect 
of frost in the coffee plantation locally and regionally. However, these studies did not inves-
tigate suborbital remote sensing using unmanned aerial vehicle (UAVs) that offers advan-
tages in evaluating injury by frosting when compared to images obtained from satellites. 
The application of satellite images for evaluation of agricultural cultures might be limited 
due to the low spatial and temporal resolution, cloudiness, and high operating costs that 
may not be suitable, especially for smaller farms (Zhang et al., 2016; Zhou et al., 2016). On 
the other hand, UAVs can collect images with high spatial resolution, down to centimeters, 
and temporal frequency based on the producer’s needs (Zhang et al., 2016). Additionally, it 
can be used for evaluation in small areas (Santos et al., 2019) with the low-cost advantage 
in these areas (Zhou et al., 2016).

The lack of information about frost damage in coffee crops grown under different relief 
conditions limits the ability to understand related plant responses and the economic impacts 
of this extreme event at a local and regional scale. Therefore, the authors hypothesized that 
the use of UAVs may contribute to decision-making and adequate management of coffee 
crops affected by frosting. For this reason, the objective of this study was to evaluate the 
potential usage of multispectral images obtained by UAV to analyze and identify damage 
caused by frost in coffee plants in different climatic favorability zones.

Materials and methods

Description of the experimental area

The study was carried out in the coffee farm Bom Jardim, located in the city of Santo Anto-
nio do Amparo, State of Minas Gerais, Brazil, geographical co-ordinates 21°01′11.93″ S, 
44°55′24.46″ W and altitude 927 m (Fig. 1). The plantation area represents a total of 3.5 
ha cultivating coffee (Coffea arabica L.), cultivar Catucaí red IAC 144, aging 6 years old, 
spaced by 3.5 m between lines and 0.5 m between plants, resulting in 5,700 plants  ha−1.

Frost occurrence was observed on July 8th and 9th of 2019. The minimum temperatures 
on those days were 1.8 and 0.3 °C, respectively. Temperature data were collected from an 
automatic weather station, located within the coffee farm Bom Jardim. During the winter, 
the occurrence of extremely low temperatures is a considerable limitation for agriculture, 
especially for coffee, in the southern region of Minas Gerais. Temperatures there often 
reach 0 °C, and sometimes, below zero, enabling frost formation and consequently dam-
age to the coffee plants. Furthermore, due to the topographic conditions, frost formation is 
favored because this region has places with high altitudes and lower flat terrain (lowlands).

Frost risk area classification

To evaluate the effects of frosting in coffee plants, the study area was divided into three 
distinct areas of climate risk from frost damage. The criteria used were altitude variability 
and geographical configuration of the terrain. The areas were classified as low, medium, 
and high climate risk for frost occurrence (Fig.  1). The classification of the study area 
into three different risk zones was due to the need to understand factors related to climate 
favorability and to help the coffee producers in decision-making for reducing frost damage 
before it occurs.
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Also, the classification in different risk zones was carried out before the data analysis 
because the authors aimed to understand and recommend alternatives to reduce possible 
frost damage. If the coffee producer knows possible plantation areas that present climatic 
favorability for frost occurrence, he can use strategies to minimize the damage, which 
would not be possible with the classification of the area after the analysis of the results.

Canopy stratification

The determination of frost damage and chlorophyll content was carried out for each coffee 
canopy strata. The sampled plants were divided into three canopy sections of similar size 
to individually analyze the contribution of each canopy strata, according to the location 
of their vegetative and reproductive structures. The criterion used for sectioning the plant 
canopy was that to constitute the lower stratum, the plant structures should be located from 
0 to 33% of the height of the plants, the middle stratum of 33.34 to 66.66%, and the upper 
stratum of 66.67 to 100%, respectively.

To analyze the hypothesis that the most significant damage occurred in the upper stra-
tum of the coffee plants, the evaluation of different strata was carried out using vegetation 
indices obtained by the UAV.

Visual frost damage evaluation

Using a standard scale described in Table 1, based on the percentage of the plant show-
ing frost damage, a visual evaluation was conducted in the coffee plants, including leaves, 
branches, stem, and fruits on July 11, 2019. The authors considered as frost damage the 
plant parts that presented brown color and necrosis since that is the aspect caused by cell 
death by freezing.

Fig. 1  Geographical location of the study area. The sampling points are highlighted in red points and the 
climatic favorability zones were separated in yellow lines, where a High risk, b Medium Risk, and c Low 
risk (Color figure online)
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The visual evaluation was carried out in the three different climatic favorability areas 
and in the different plant strata. To perform the evaluation, three blocks were separated 
in each climatic favorability area. For each block, 10 plants were selected for evaluation, 
considering 5 plants of each line. In this context, 30 plants in each risk area were evaluated, 
resulting in 90 plants data for analysis. The sampling site was chosen, aiming to achieve 
greater possible representation and homogeneity of the plants in each plot. The location of 
the selected plants is indicated in Fig. 1.

In this system of evaluation, grades from 0 to 10 were assigned to the different strata of 
the plant (Table 1). Three experienced observers performed the visual assessment of the 
frost damage. The end value attributed to the data analysis was the average of the three 
observer’s values.

Evaluation of chlorophyll content

Measurements were made with the atLEAF + chlorophyll meter (FT Green LLC, Wilm-
ington, DE, USA) by clipping the sensor onto the coffee leaf. The measurement area of 
the sensor atLEAF + was 6  mm2. All of the measurements were conducted in the morning 
period, from 9 to 10 am on July 11, 2019, to avoid sunlight interference. In each plant, 15 
measurements were conducted, divided into 5 for each stratum. The measurements were 
conducted in representative leaves of each stratum. To perform the measurement, leaves 
positioned on the third and fourth pair from the top of the plant were selected. Once the 
measurement was read, the equations developed and described by Padilha et. al. (2018) 
were used to estimate the chlorophyll a and chlorophyll b content in mg  cm−2.

(1)Total Chlorophyll = 0.078 × atLEAF1.63

(2)Chlorophyll a = − 5.774 + 0.430 × atLEAF + 0.0045 × atLEAF2

Table 1  Classification index and 
description for assessing frost 
damage in coffee plants

a % of the plant with visible damage; frost damage in this study was 
characterized as damage (cell death by necrosis) caused by the effect 
of frost on the plant parts (leaf, branch, stem, and fruit)

Damage index Description

0 No visible damage, %
1 10a

2 20
3 30
4 40
5 50
6 60
7 70
8 80
9 90
10 100
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where atLEAF is the value measured by the sensor.

Acquisition of multispectral images

The commercial UAV 3DR Solo (3D Robotics, Berkeley, CA, USA) was used to collect 
the multispectral images on July 11, 2019, 2 days after the frost occurrence. The UAV had 
rotating wings and four motors (quadcopter), driven by the automatic pilot system 3DR 
Pixhawk 2, and flight controller APM: Copter (Duffy et  al., 2018) (Fig.  2a). The UAV 
was equipped with a multispectral camera Parrot Sequoia (MicaSense, Seattle, WA, USA) 
(Fig. 2b), comprising four spectral sensors, 1.5 megapixels resolution (1280 × 960), spec-
tral bands of green (530–570 nm), red (640–680 nm), red-edge (730–740 nm) and near-
infrared (770–810 nm). This camera was used to map and monitor vegetation. It includes 
a sunshine sensor (Fig. 2c) pointing upwards, that allowed radiometric calibration during 
image collection (MicaSense Sequoia, 2018). Additionally, to transform digital numbers 
(gray levels) from sensors to reflectance values, a calibrated reflectance panel (MicaSense, 
Seattle, WA, USA) (Fig. 2d) was used before and after the flight (Freitas et al., 2019).

The 3DR Solo is capable of performing flights being remotely controlled or autono-
mously while using a global navigation satellite system (GNSS) and a navigation system 
by waypoint. For this study, the flights were operated autonomously. The flight missions 
were planned using the Mission Planner (Oborne, 2018), a complete and open source 
ground station software for UAV autopilot systems (Lu et al., 2016), running on a portable 
computer. The flight altitude was fixed at 60 m from the ground, and the speed was 3 m  s−1. 

(3)Chlorophyll b = 0.040 × atLEAF1.57

Fig. 2  a UAV 3DR Solo; b Multispectral Parrot Sequoia camera; c Sunshine sensor; d Calibrated reflec-
tance panel
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The images were captured at every 1 s, with a frontal and lateral overlap of 80%, resulting 
in a total of 150 images with a spatial resolution of 64.4 mm.

Image processing

The image processing was performed by the software Pix4Dmapper, version 4.4.12 
(Pix4D, Lausanne, Switzerland). This software contains computational vision technics that 
allow photogrammetry algorithms that obtain high precision processing in aerial images 
(Ruzgienė et al., 2015). The standard template "Ag Multispectral" from Pix4Dmapper was 
used to generate the orthomosaics from individual spectral bands (green, red, red-edge, and 
near-infrared). To improve the precision and the accuracy of the orthomosaics, the images 
were georeferenced using control points collected previously in the field area by a differ-
ential GNSS (Trimble Navigation Limited, Sunnyvale, California, USA) spectra precision 
model SP 60 with a horizontal and vertical accuracy of 0.07 m. Additionally, the calibrated 
reflectance panel corrected the reflectance of the images. After generating the orthomo-
saics, the vegetation indices were calculated using the Pix4D and exported to the TIFF 
extension for later analysis. For that, the average value extracted from the pixels in a 0.20 
m radius was calculated from the center of each plant sampled, using the Zonal Statistics 
resource available on the QGIS 2.18.13 (QGIS Development Team, 2017).

Vegetation indices

Based on the literature, there are no studies applying vegetation indices to evaluate the 
damage caused by frost in coffee plants. However, for choosing vegetation indices, a litera-
ture revision was made to identify the indices capable of differentiating characteristics from 
stress conditions in coffee plants, and with the capacity to evaluate the spectral response of 
the plants due to frost damage. After this revision, the vegetation indices chosen were the 
ones that had two characteristics at the same time, that is the capacity to assess the stress 
conditions of the coffee plants and the spectral response of the plants after frost damage 
(Table 2).

Statistical analysis

The statistical analysis was performed on the software R version 3.4 (R Core Team 2017). 
The significant differences in the frost damage analysis and the chlorophyll content in the 
climatic favorability zones were measured by the Tukey test (p < 0.05). To evaluate the lin-
ear relation between the vegetation indices and the occurrence of frost in the upper stratum 
of the plants, and in the whole plant, the respective data sets were subjected to Pearson’s 
correlation (r) analysis (p < 0,01) and coefficient of determination  (R2). The average values 
for vegetation indices were obtained from the present pixels in a 0.20 m radius from the 
center of each plant.

To value the performance of the vegetation indices on the estimation of the damage 
caused by frost in coffee plants, the following statistical indices were applied: mean abso-
lute error (MAE) (Eq. 4), root mean square error (RMSE) (Eq. 5), and index of agreement 
(d) (Eq. 6).
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where, n is the number of observations,  Pi the predicted observation based on the linear 
regression model,  Oi is a measured observation, Pʹi =  Pi − M and Oʹi =  Oi − M (M is the 
mean of the observed variable).

Results and discussion

Frost damage in different coffee canopy strata

The coffee plants evaluated in the low climate risk areas did not show frost damage for any 
stratum of the plant (Table 3). This indicates a significant interference of the topography in 
the favorability for frost occurrence since, in the other evaluated areas, the effect of frost 
was observed, mainly in the upper stratum of the plants.
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Table 2  Vegetation indices of multispectral images obtained using UAV

ρgreen: green band reflectance; ρred: red band reflectance; ρedge: red-edge band reflectance; ρnir: near-infrared 
band reflectance

Vegetation indices Calculation References

NDVI (normalized difference vegetation 
index)

ρnir−ρred

ρnir+ρred

Rouse et al. (1974)

MSR (modified simple ratio)
(

ρnir

ρred

)
−1

√(
ρnir

ρred

)
+1

Chen (1996)

SAVI (soil adjusted difference vegetation 
index)

(1+L)ρnir−ρred

ρnir+ρred+L
Huete (1988)

GNDVI (green normalized difference 
vegetation index)

�nir−�green

�nir+�green

Gitelson et al. (1996)

MTCI (terrestrial chlorophyll index) �nir−�edge

�edge+�red

Dash and Curran 
(2004)

NDRE (normalized difference red edge) �nir−�edge

�nir+�edge

Gitelson and Mer-
zlyak (1994)

NDI (normalized different index) �green−�red

�green+�red+0.01
Mao et al. (2003)

MPRI (modified photochemical reflec-
tance index)

�green−�red

�green+�red

Yang et al. (2008)

MCARI1 (first modified chlorophyll 
absorption ratio index)

1.2[2.5
(
�nir − �red

)
− 1.3(

(
�nir − �green

)
] Haboudane et al. 

(2004)
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Significant differences for frost damage in coffee plants were observed among the 
climatic risk zones. The higher frost damage value was observed in the upper canopy 
stratum that was located in the high climate risk zone for frost occurrence. The coffee 
evaluated in the average climate risk zone showed higher values than the low climatic 
risk for the middle and upper canopy stratum. When combined with the whole plant, the 
average damage caused by frost in the areas of high, medium, and lower climatic favora-
bility was 45, 15, and 0% respectively.

The frost damage in the upper stratum of the plant can have a significant effect on the 
coffee production, reducing the leaf area and, consequently, the photosynthetic activity, 
compromising the accumulation of dry matter, decreasing productivity in the current 
harvest and during the next cycles of the crop (DaMatta & Ramalho, 2006).

Being aware of the damage caused by frost is essential for coffee producers to assist 
in decision-making and agricultural planning. For example, in the high climatic risk 
areas, plants have shown 45% of the leaf area damaged. In this case, the producer could 
decide to perform a drastic pruning on the plants. Also, according to the results of this 
study, the most damaged area in the plant was the upper stratum. In this case, the pro-
ducer could perform the pruning only in that region of the plant, exposing the less dam-
aged leaves.

The establishment of risk zones for frost occurrence and coffee leaf damage is an 
important step towards an integrated management plan for these events. The identifica-
tion and classification of zones of greater or lesser climatic favorability are important 
for the coffee producers, for them to perform appropriate management in the production 
area, considering, for example, the topography and the areas where cold air accumu-
lates. Because of the effects of land surface heterogeneity on spatial variation of near-
surface temperatures, the spatial occurrence of frost can be linked to land surface char-
acteristics (Kotikot et al., 2020). Of most importance is the concept of cold air pooling 
where cold dense air flows downslope and settles beneath warmer air (Kotikot et  al., 
2020). For this reason, low temperatures and therefore frost zones tend to accumulate 
in low regions of the landscape (Bigg et al., 2014; Chung et al., 2006). In this context, 
the information generated in this study can help coffee producers to avoid the use of 
susceptible cultivars in those zones where frost occurrence poses the greatest risk, and 
to optimize strategies for reducing the damage by frost in coffee plants.

When analyzing the chlorophyll content in the different canopy strata and climatic 
risk zones (Table 4), it is possible to observe a little variation in the chlorophyll a, b, 

Table 3  Frost damage (FD) 
and standard deviation (SD) in 
different coffee canopy strata and 
whole plant at different climatic 
favorability zones in the area 
studied

* Different small letters indicate significant differences (p < 0.05) by 
Tukey test among climatic favorability zones for each coffee canopy 
strata and whole plant

Coffee canopy Climatic favorability zones

Low Average High

FD (%) SD FD (%) SD FD (%) SD

Lower 0 b*  ± 0 3 b  ± 0.29 14 a  ± 2.25
Middle 0 c  ± 0 11 b  ± 1.74 43 a  ± 4.92
Upper 0 c  ± 0 30 b  ± 5.8 78 a  ± 8.45
Whole plant 0 c – 15 b – 45 a –

hms25
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and total content for middle and lower strata, regardless of the climate risk zone. How-
ever, for the upper stratum of the coffee plants, the content of chlorophyll a, b, and total 
were higher for the area of lower climate risk. Considering the total value of chlorophyll 
(a + b), a significant reduction in the medium and high-risk zones was observed when 
comparing it to the low-risk zone of climate favorability.

The response observed in the chlorophyll content follows the same pattern seen in the 
results reported on frost damage, shown in Table 3, where the upper stratum has presented 
greater frost damage and lower chlorophyll content. It is important to highlight that the 
reduction in the chlorophyll content of coffee leaves is due to the damage caused by frost-
ing. In cases of extreme temperatures, such as frost occurrence, the degradation of chloro-
phyll is associated with the structural changes that release cellular acids and various deg-
radative enzymes (Hodges & Forney, 2000). Therefore, the reduction of the chlorophyll 
content in coffee plants due to frosting, mainly in the upper stratum, significantly impacts 
the photosynthetic efficiency, and in the productivity of the plant. In this sense, the two 
variables are associated, being the visual damage observed and reduction of the chloro-
phyll content.

Table 4  Chlorophyll index (a, b, and total) and standard deviation (SD) in different coffee canopy strata and 
whole plant at different climatic favorability zones in the studied area

* Different small letters indicate significant differences (p < 0.05) by Tukey test among climatic favorability 
zones for each coffee canopy strata and whole plant

Coffee canopy Climatic favorability zones

Low Average High

Chlorophyll a

CA (µg  cm−2) SD CA (µg  cm−2) SD CA (µg  cm−2) SD

Lower 39.48 a*  ± 1.4 36.69 a  ± 1.9 40.21 a  ± 0.6
Middle 40.16 a  ± 2.4 37.73 a  ± 3.3 36.17 b  ± 0.5
Upper 46.41 a  ± 2.7 32.8 b  ± 5.1 21.39 c  ± 1.4
Whole plant 42.02 a  ± 1.5 35.74 b  ± 3.4 32.59 b  ± 0.5

Coffee canopy Chlorophyll b

CB (µg  cm−2) SD CB (µg  cm−2) SD CB (µg  cm−2) SD

Lower 26.93 a  ± 0.9 25.07 a  ± 1.3 27.42 a  ± 0.4
Middle 27.39 a  ± 1.8 25.77 a  ± 2.2 24.72 a  ± 0.3
Upper 31.56 a  ± 1.6 22.48 b  ± 3.4 14.91 c  ± 0.9
Whole plant 28.63 a  ± 1.1 24.44 ab  ± 2.3 22.35 b  ± 0.3

Coffee canopy Total Chlorophyll

CT (µg  cm−2) SD CT (µg  cm−2) SD CT (µg  cm−2) SD

Lower 66.41 a  ± 2.3 61.76 a  ± 2.2 67.63 a  ± 1.0
Middle 67.55 a  ± 4.0 63.5 ab  ± 5.5 60.89 b  ± 0.8
Upper 77.98 a  ± 4.3 55.28 b  ± 8.5 36.3 c  ± 2.3
Whole plant 70.65 a  ± 2.7 60.18 b  ± 5.7 54.94 c  ± 0.8
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Spatial distribution of vegetation indices

The spatial distribution of the vegetation indices in the study area can be seen in Fig. 3. 
The maps of NDVI, MSR, NDI, and MPRI have shown the lower values in the high cli-
matic favorability area of the crop, and the greater values in low-risk areas, evidencing 
the effect of relief in the frost occurrence. According to Caramori et al. (2001), the crops 
located in lowlands and terrains with concave configuration and small slopes have a higher 
probability of frost occurrence. As for the indices GNDVI, SAVI, MTCI, NDRE, and 
MCARI1, the spatial distribution made it difficult to identify and map the effect of frost in 
the coffee plants.

Knowledge of the characteristics and spatial distribution of the frosting effect on the 
coffee crop is highly applicable in the orientation of extension workers in the field, gov-
ernmental agencies, and agricultural producers to support decision-making regarding the 
management of the coffee crop. This is more emphasized by the fact that one of the effects 
of frosting in coffee plants is a reduction in the productivity of the crop (Carvalho et al., 
2017). Therefore, the vegetation indices can quickly, precisely, and continuously indi-
cate areas of the crop that need lighter or drastic pruning, or even dispense with pruning. 
Besides that, in severe cases, it can be a useful tool to assist the application of agricultural 
insurance to compensate for losses. In this context, Rafaelli et al. (2006) have successfully 
demonstrated the potential of the NDVI index, obtained with MODIS sensor images, for 
monitoring coffee crops affected by frosting at a state scale, for the state of Paraná, in the 
South of Brazil.

However, orbital sensors like MODIS show limitations that make it difficult to monitor 
and evaluate the frosting effect continuously at local scales. Those limitations include low 
spatial resolution (250–500 m) that can be influenced by other spectral targets compromis-
ing its accuracy (Feng et al., 2017; Ke et al., 2016). A potential solution for this problem is 
high spatial resolution satellites, even though, the acquisition of data from them is expen-
sive and limited due to cloudiness (Hellweger et al., 2007; Müllerová et al., 2017), which 

Fig. 3  Spatial distribution of vegetation indices in the study area
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is not ideal for analyzing the effect of frost in coffee plants. When working with vegetation 
indices obtained from UAVs, those limitations are reduced, since the images can be cap-
tured continuously and with high spatial resolution, decreasing the interference of other 
spectral targets present in the crop.

Evaluation of the estimation of frost damage generated by vegetation indices

The results of the performance evaluation of the vegetation indices on estimating the 
frost damage in the upper stratum of coffee plants are shown in Table 5. It was possible 
to observe that the occurrence of frost in the upper stratum and the whole plant presented 
similar correlation coefficients with the vegetation indices, validating the hypothesis that 
the evaluation of the upper stratum is enough to measure the frost damage when using 
images captured by UAVs.

The correlation coefficients (r) and the determination coefficients  (R2) have shown 
strong relationships to vegetation indices and frost damage. Regarding the accuracy, most 
of the vegetation indices have presented MAE and RMSE values between 10 to 20%, evi-
dencing the potential of the vegetation indices in evaluating damage by frost. According to 
Jamieson et al. (1991), the model is considered excellent if the normalized RMSE is infe-
rior to 10%, good if the normalized RMSE is between 10 and 20%, fair if the normalized 
RMSE is greater than 20 but inferior to 30%, and bad if the normalized RMSE is greater 
than 30%. Besides that, the values of the index of agreement (d) between 0.73 to 0.89 

Table 5  Statistics indices 
between frost damage and 
vegetation indices

a Statistics indices: MAE (mean absolute error), RMSE (root mean 
square error), d (index of agreement),  R2 (determination coefficient), 
and r (correlation coefficient)

Vegetation Indice MAEa RMSE d R2 r

Whole plant
NDVI 13.66 16.72 0.87 0.72 −0.85
MSR 14.01 16.99 0.86 0.69 −0.83
GNDVI 21.21 25.99 0.79 0.38 −0.62
SAVI 19.88 23.51 0.81 0.42 −0.65
MTCI 27.99 31.54 0.73 0.20 0.45
NDRE 28.09 32.11 0.73 0.19 0.44
NDI 14.13 17.08 0.85 0.66 −0.81
MPRI 14.14 17.10 0.85 0.66 −0.81

 MCARI1 23.57 27.77 0.77 0.29 −0.54
Upper stratum
NDVI 10.87 14.35 0.89 0.79 −0.89
MSR 11.01 14.70 0.88 0.77 −0.88
GNDVI 19.92 23.67 0.82 0.46 −0.68
SAVI 17.45 21.89 0.83 0.55 −0.74
MTCI 25.31 28.84 0.76 0.26 0.51
NDRE 27.93 31.50 0.73 0.20 0.45
NDI 13.95 16.92 0.86 0.69 −0.83
MPRI 13.88 16.82 0.87 0.70 −0.84

 MCARI1 25.36 28.80 0.76 0.26 −0.51
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confirm the quality of the model, because the (d) represents the ratio between the squared 
average error and the potential error, where the concordance value equals 1 indicates the 
perfect combination (Willmott, 1981).

In general, the vegetation indices NDVI and MSR, which are indices that use the com-
bination of near-infrared reflectance with the red reflectance, showed better performance 
in estimating the damage caused by frost in coffee plants. On the other hand, the indices 
GNDVI, SAVI, MTCI, and NDRE, which combine the near-infrared reflectance with the 
green and red-edge reflectance, showed the worst performance. The NDI and MPRI indices 
that use reflectance of the green and red wavelengths, showed performance close to the 
best ones (NDVI and MSI), demonstrating that the visible spectral region is directly related 
to the frost damage in the coffee plants.

The best performance for indices that used the red wavelength can be associated with 
the color change in the leaves due to the frosting. According to Larcher (1981), frost causes 
the death of vegetation tissue by a physical–chemical process. The results of these pro-
cesses are dehydration of the cell, loss of turgor potential, increase of solute concentra-
tion, reduction of cellular volume, and rupture of the plasmatic membrane. Thus, the leaves 
become dark brown colored, with a burning aspect.

Although these indices presented the best performance, better results were expected 
for indices that use green and red-edge wavelengths, since these wavelengths are directly 
related to the chlorophyll content in leaves damaged by frosting (Table 4). This relationship 
is in line with other studies that have shown that the chlorophyll content is significantly 
correlated to the green and red-edge wavelengths (Devadas et al., 2009; Li et al., 2007).

It is worth mentioning that the NDI and MPRI are indices that use only visible wave-
lengths, showed elevated performance and results, close to the vegetation indices with the 
best results (NDVI and MSR). Because of that, RGB cameras have become an interesting 
alternative for producers, being easier to operate and lower cost compared to multispectral 
cameras. They also require little data processing and present reliable results (Barbosa et al., 
2019; Svensgaard et  al., 2019). As in this study, Nuttall et  al. (2019) also observed that 
RGB vegetation indices are reliable in evaluating the damage caused by frost. However, 
NDVI still stands as more efficient to map, monitor, and identify damage in plants pro-
voked by frosting (Feng et al., 2009; Rafaelli et al., 2006; Wei et al., 2017).

Conclusion

The multispectral images obtained using UAV can provide for the coffee producers a fast, 
continuous and accessible method to identify and evaluate frost damage in coffee plants, 
confirming the hypothesis of this study. Specifically, the NDVI and MSR (indices that use 
the combination of near-infrared and red spectral bands) have shown better results. Other-
wise, the indices MTCI and NDRE which use the red-edge band showed the worst results. 
The spatial distribution of the vegetation indices indicated that the topography is directly 
related to the frost occurrence in the coffee plantation. Greatest damage and lower chloro-
phyll a and b content were observed in areas with greater climatic risk (lowlands) for the 
upper strata of the plant.

Due to climate change and its consequences, extreme events are becoming more fre-
quent, making it even more essential to comprehend the physiological response of coffee 
plants after frosting. Therefore, other research using UAVs with greater autonomy and 
other sensors can contribute even more to the understanding of this relationship, as well as 
assisting producers on how to manage their crops.

hms25



 Precision Agriculture

1 3

Acknowledgements This work was supported by the Embrapa Café—Consórcio Pesquisa Café, pro-
ject approved in the call n° 20/2018, the National Council for Scientific and Technological Development 
(CNPq), the Coordination for the Improvement of Higher Education Personnel (CAPES), the Federal Uni-
versity of Lavras (UFLA) and farm Bom Jardim.

Declarations 

Conflict of interest The authors declare that they have no conflict of interest.

References

Barbosa, B. D. S., Ferraz, G. A. S., Santos, L. M., Marin, D. B., Maciel, D. T., Ferraz, P. F. P., & Rossi, 
G. (2019). RGB vegetation indices applied to grass monitoring: A qualitative analysis. Agronomy 
Research, 17(2), 349–357

Bigg, G. R., Wise, S. M., Hanna, E., Mansell, D., Bryant, R. G., & Howard, A. (2014). Synoptic climatol-
ogy of cold air drainage in the Derwent Valley, Peak District, UK. Meteorological Applications, 21(2), 
161–170. https:// doi. org/ 10. 1002/ met. 1317

Camargo, M. B. P. D. (2010). The impact of climatic variability and climate change on Arabic coffee crop in 
Brazil. Bragantia, 69(1), 239–247. https:// doi. org/ 10. 1590/ S0006- 87052 01000 01000 30

Caramori, P. H., Caviglione, J. H., Wrege, M. S., Gonçalves, S. L., Faria, R. T., Filho, A. A., Sera, T., 
Chaves, J. C. D., & Koguishi, M. S. (2001). Climatic risk zoning for coffee (Coffea arabica L.) in Par-
aná state, Brazil. Revista Brasileira de Agrometeorologia, 9(3), 486–494.

Carvalho, L. C., Silva, F. M. D., Ferraz, G. A., Stracieri, J., Ferraz, P. F., & Ambrosano, L. (2017). Geosta-
tistical analysis of Arabic coffee yield in two crop seasons. Revista Brasileira De Engenharia Agrícola 
e Ambiental, 21(6), 410–414. https:// doi. org/ 10. 1590/ 1807- 1929/ agria mbi. v21n6 p410- 414

Chen, J. M. (1996). Evaluation of vegetation indices and a modified simple ratio for boreal applications. 
Canadian Journal of Remote Sensing, 22(3), 229–242. https:// doi. org/ 10. 1080/ 07038 992. 1996. 10855 
178

Chung, U., Seo, H. H., Hwang, K. H., Hwang, B. S., Choi, J., Lee, J. T., & Yun, J. I. (2006). Minimum tem-
perature mapping over complex terrain by estimating cold air accumulation potential. Agricultural and 
Forest Meteorology, 137(1–2), 15–24. https:// doi. org/ 10. 1016/j. agrfo rmet. 2005. 12. 011

DaMatta, F. M., & Ramalho, J. D. C. (2006). Impacts of drought and temperature stress on coffee physiol-
ogy and production: A review. Brazilian Journal of Plant Physiology, 18(1), 55–81. https:// doi. org/ 10. 
1590/ S1677- 04202 00600 01000 06

Dash, J., & Curran, P. J. (2004). The MERIS terrestrial chlorophyll index. International Journal of Remote 
Sensing, 25(23), 5403–5413. https:// doi. org/ 10. 1080/ 01431 16042 00027 4015

Devadas, R., Lamb, D. W., Simpfendorfer, S., & Backhouse, D. (2009). Evaluating ten spectral vegetation 
indices for identifying rust infection in individual wheat leaves. Precision Agriculture, 10(6), 459–470. 
https:// doi. org/ 10. 1007/ s11119- 008- 9100-2

Duffy, J. P., Pratt, L., Anderson, K., Land, P. E., & Shutler, J. D. (2018). Spatial assessment of intertidal sea-
grass meadows using optical imaging systems and a lightweight drone. Estuarine, Coastal and Shelf 
Science, 200, 169–180. https:// doi. org/ 10. 1016/j. ecss. 2017. 11. 001

Feng, G., Anderson, M. C., Zhang, X., Yang, Z., Alfieri, J. G., Kustas, W. P., Mueller, R., Johnson, D. M., 
& Prueger, J. H. (2017). Toward mapping crop progress at field scales through fusion of Landsat and 
MODIS imagery. Remote Sensing of Environment, 188, 9–25. https:// doi. org/ 10. 1016/j. rse. 2016. 11. 
004

Feng, M., Guo, X., Wang, C., Yang, W., Shi, C., Ding, G., Zhang, X., Xiao, L., Zhang, M., & Song, X. 
(2018). Monitoring and evaluation in freeze stress of winter wheat (Triticum aestivum L.) through can-
opy hyperspectrum reflectance and multiple statistical analysis. Ecological Indicators, 84, 290–297. 
https:// doi. org/ 10. 1016/j. ecoli nd. 2017. 08. 059

Feng, M. C., Yang, W. D., Cao, L. L., & Ding, G. W. (2009). Monitoring winter wheat freeze injury using 
multi-temporal MODIS data. Agricultural Sciences in China, 8(9), 1053–1062. https:// doi. org/ 10. 
1016/ S1671- 2927(08) 60313-2

Freitas, P., Vieira, G., Canário, J., Folhas, D., & Vincent, W. F. (2019). Identification of a threshold mini-
mum area for reflectance retrieval from thermokarst lakes and ponds using full-pixel data from Senti-
nel-2. Remote Sensing, 11(6), 657. https:// doi. org/ 10. 3390/ rs110 60657

https://doi.org/10.1002/met.1317
https://doi.org/10.1590/S0006-87052010000100030
https://doi.org/10.1590/1807-1929/agriambi.v21n6p410-414
https://doi.org/10.1080/07038992.1996.10855178
https://doi.org/10.1080/07038992.1996.10855178
https://doi.org/10.1016/j.agrformet.2005.12.011
https://doi.org/10.1590/S1677-04202006000100006
https://doi.org/10.1590/S1677-04202006000100006
https://doi.org/10.1080/0143116042000274015
https://doi.org/10.1007/s11119-008-9100-2
https://doi.org/10.1016/j.ecss.2017.11.001
https://doi.org/10.1016/j.rse.2016.11.004
https://doi.org/10.1016/j.rse.2016.11.004
https://doi.org/10.1016/j.ecolind.2017.08.059
https://doi.org/10.1016/S1671-2927(08)60313-2
https://doi.org/10.1016/S1671-2927(08)60313-2
https://doi.org/10.3390/rs11060657


Precision Agriculture 

1 3

Gitelson, A. A., Kaufman, Y. J., & Merzlyak, M. N. (1996). Use of a green channel in remote sensing of 
global vegetation from EOS-MODIS. Remote Sensing of Environment, 58(3), 289–298. https:// doi. org/ 
10. 1016/ S0034- 4257(96) 00072-7

Gitelson, A., & Merzlyak, M. N. (1994). Quantitative estimation of chlorophyll-a using reflectance spectra: 
Experiments with autumn chestnut and maple leaves. Journal of Photochemistry and Photobiology b: 
Biology, 22(3), 247–252. https:// doi. org/ 10. 1016/ 1011- 1344(93) 06963-4

Gobbett, D. L., Nidumolu, U., & Crimp, S. (2018). Modelling frost generates insights for managing risk of 
minimum temperature extremes. Weather and Climate Extremes, 27, 100176. https:// doi. org/ 10. 1016/j. 
wace. 2018. 06. 003

Haboudane, D., Miller, J. R., Pattey, E., Zarco-Tejada, P. J., & Strachan, I. B. (2004). Hyperspectral vegeta-
tion indices and novel algorithms for predicting green LAI of crop canopies: Modeling and validation 
in the context of precision agriculture. Remote Sensing of Environment, 90(3), 337–352. https:// doi. 
org/ 10. 1016/j. rse. 2003. 12. 013

Hellweger, F. L., Miller, W., & Oshodi, K. S. (2007). Mapping turbidity in the Charles River, Boston using 
a high-resolution satellite. Environmental Monitoring and Assessment, 132(1–3), 311–320. https:// doi. 
org/ 10. 1007/ s10661- 006- 9535-8

Hodges, D. M., & Forney, C. F. (2000). The effects of ethylene, depressed oxygen and elevated carbon 
dioxide on antioxidant profiles of senescing spinach leaves. Journal of Experimental Botany, 51(344), 
645–655. https:// doi. org/ 10. 1093/ jexbot/ 51. 344. 645

Huete, A. R. (1988). A soil-adjusted vegetation index (SAVI). Remote Sensing of Environment, 25(3), 295–
309. https:// doi. org/ 10. 1016/ 0034- 4257(88) 90106-X

Jamieson, P. D., Porter, J. R., & Wilson, D. R. (1991). A test of the computer simulation model 
ARCWHEAT1 on wheat crops grown in New Zealand. Field Crops Research, 27(4), 337–350. https:// 
doi. org/ 10. 1016/ 0378- 4290(91) 90040-3

Ke, Y., Im, J., Park, S., & Gong, H. (2016). Downscaling of MODIS One kilometer evapotranspiration using 
Landsat-8 data and machine learning approaches. Remote Sensing, 8(3), 215. https:// doi. org/ 10. 3390/ 
rs803 0215

Kotikot, S. M., Flores, A., Griffin, R. E., Nyaga, J., Case, J. L., Mugo, R., Sedah, A., Adams, E., Limaye, A., 
& Irwin, D. E. (2020). Statistical characterization of frost zones: Case of tea freeze damage in the Ken-
yan highlands. International Journal of Applied Earth Observation and Geoinformation, 84, 101971. 
https:// doi. org/ 10. 1016/j. jag. 2019. 101971

Kotikot, S. M., & Onywere, S. M. (2014). Application of GIS and remote sensing techniques in frost risk 
mapping for mitigating agricultural losses in the Aberdare ecosystem, Kenya. Geocarto International, 
30, 104–121. https:// doi. org/ 10. 1080/ 10106 049. 2014. 965758

Larcher, W. (1981). Effects of low temperature stress and frost injury on plant productivity. In C. B. Johnson 
(Ed.), Physiological processes limiting plant productivity. (pp. 253–269). London, UK: Butterworths.

Li, X. Y., Liu, G. S., Yang, Y. F., Zhao, C. H., Yu, Q. W., & Song, S. X. (2007). Relationship between 
hyperspectral parameters and physiological and biochemical indexes of flue-cured tobacco leaves. 
Agricultural Sciences in China, 6(6), 665–672. https:// doi. org/ 10. 1016/ S1671- 2927(07) 60098-4

Lou, W., Ji, Z., Sun, K., & Zhou, J. (2013). Application of remote sensing and GIS for assessing economic 
loss caused by frost damage to tea plantations. Precision Agriculture, 14(6), 606–620. https:// doi. org/ 
10. 1007/ s11119- 013- 9318-5

Lu, B., He, Y., & Liu, H. (2016). Investigating species composition in a temperate grassland using 
Unmanned Aerial Vehicle-acquired imagery. In 2016 4th international workshop on earth observa-
tion and remote sensing applications (EORSA). IEEE, (pp. 107–111). https:// doi. org/ 10. 1109/ EORSA. 
2016. 75527 76.

Mao, W., Wang, Y., & Wang, Y. (2003). Real-time detection of between-row weeds using machine vision. 
Paper No. 031004, St Joseph, MI, USA: ASAE. https:// doi. org/ 10. 13031/ 2013. 15381.

Marin, D. B., Alves, M. C., Pozza, E. A., Gandia, R. M., Cortez, M. L. J., & Mattioli, M. C. (2019). Mul-
tispectral remote sensing in the identification and mapping of biotic and abiotic coffee tree variables. 
Revista Ceres, 66(2), 142–153. https:// doi. org/ 10. 1590/ 0034- 737x2 01966 020009

Martins, M. Q., Partelli, F. L., Golynski, A., Sousa Pimentel, N., Ferreira, A., de Oliveira Bernardes, C., 
Ribeiro-Barros, A. I., & Ramalho, J. C. (2019). Adaptability and stability of Coffea canephora geno-
types cultivated at high altitude and subjected to low temperature during the winter. Scientia Horticul-
turae, 252, 238–242. https:// doi. org/ 10. 1016/j. scien ta. 2019. 03. 044

MicaSense Sequoia. (2018). Sequoia User Guide. Drones Parrot SAS, (pp. 4–13). Paris, France. Retrieved 
30 Mar, 2021 from www. micas ense. com/ sequo ia.

Müllerová, J., Brůna, J., Bartaloš, T., Dvořák, P., Vítková, M., & Pyšek, P. (2017). Timing is important: 
unmanned aircraft vs. satellite imagery in plant invasion monitoring. Frontiers in Plant Science, 8, 
887. https:// doi. org/ 10. 3389/ fpls. 2017. 00887

https://doi.org/10.1016/S0034-4257(96)00072-7
https://doi.org/10.1016/S0034-4257(96)00072-7
https://doi.org/10.1016/1011-1344(93)06963-4
https://doi.org/10.1016/j.wace.2018.06.003
https://doi.org/10.1016/j.wace.2018.06.003
https://doi.org/10.1016/j.rse.2003.12.013
https://doi.org/10.1016/j.rse.2003.12.013
https://doi.org/10.1007/s10661-006-9535-8
https://doi.org/10.1007/s10661-006-9535-8
https://doi.org/10.1093/jexbot/51.344.645
https://doi.org/10.1016/0034-4257(88)90106-X
https://doi.org/10.1016/0378-4290(91)90040-3
https://doi.org/10.1016/0378-4290(91)90040-3
https://doi.org/10.3390/rs8030215
https://doi.org/10.3390/rs8030215
https://doi.org/10.1016/j.jag.2019.101971
https://doi.org/10.1080/10106049.2014.965758
https://doi.org/10.1016/S1671-2927(07)60098-4
https://doi.org/10.1007/s11119-013-9318-5
https://doi.org/10.1007/s11119-013-9318-5
https://doi.org/10.1109/EORSA.2016.7552776
https://doi.org/10.1109/EORSA.2016.7552776
https://doi.org/10.13031/2013.15381
https://doi.org/10.1590/0034-737x201966020009
https://doi.org/10.1016/j.scienta.2019.03.044
http://www.micasense.com/sequoia
https://doi.org/10.3389/fpls.2017.00887


 Precision Agriculture

1 3

Nóia Júnior, R. N., Schwerz, F., Safanelli, J. L., Rodrigues, J. C., & Sentelhas, P. C. (2019). Eucalyptus rust 
climatic risk as affected by topography and ENSO phenomenon. Australasian Plant Pathology, 48(2), 
131–141. https:// doi. org/ 10. 1007/ s13313- 018- 0608-2

Nuttall, J. G., Perry, E. M., Delahunty, A. J., O’Leary, G. J., Barlow, K. M., & Wallace, A. J. (2019). Frost 
response in wheat and early detection using proximal sensors. Journal of Agronomy and Crop Science, 
205(2), 220–234. https:// doi. org/ 10. 1111/ jac. 12319

Padilla, F. M., Souza, R., Peña, T., Gallardo, M., Gimenez, C., & Thompson, R. (2018). Different responses 
of various chlorophyll meters to increasing nitrogen supply in sweet pepper. Frontiers in Plant Science, 
9, 1752. https:// doi. org/ 10. 3389/ fpls. 2018. 01752

Oborne, M. (2018). Mission Planner. Retrieved 30 Mar, 2021 from https:// ardup ilot. org/ plann er/ index. html
QGIS Development Team. (2017). QGIS geographic information system. Open Source Geospatial Founda-

tion Project. Retrieved 30 Mar, 2021 from http:// www. qgis. org
R Development Core Team. (2017). R: A language and environment for statistical computing. R Foundation 

for Statistical Computing, Vienna, Austria.
Rafaelli, D. R., Moreira, M. A., & Farias, R. (2006). Analysis of the MODIS data potential to monitor (state 

and local level) frost impact on coffee. Agricultura Em São Paulo, 53(1), 5–15
Ramalho, J. C., DaMatta, F. M., Rodrigues, A. P., Scotti-Campos, P., Pais, I., Batista-Santos, P., Partelli, F. 

L., Ribeiro, A., Lidon, F. C., & Leitão, A. E. (2014). Cold impact and acclimation response of Cof-
fea spp. plants. Theoretical and Experimental Plant Physiology, 26(1), 5–18. https:// doi. org/ 10. 1007/ 
s40626- 014- 0001-7

Rouse, J. W., Haas, R. H., Deering, D. W., Schell, J. A., & Harlan, J. C. (1974). Monitoring the Vernal 
Advancement and Retrogradation (Green Wave Effect) of Natural Vegetation. Greenbelt: NASA/
GSFC, Type III, Final Report, 371p.

Ruzgienė, B., Berteška, T., Gečyte, S., Jakubauskienė, E., & Aksamitauskas, V. Č. (2015). The surface 
modelling based on UAV Photogrammetry and qualitative estimation. Measurement, 73, 619–627. 
https:// doi. org/ 10. 1016/j. measu rement. 2015. 04. 018

Santos, L. M. D., Andrade, M. T., Santana, L. S., Rossi, G., Maciel, D. T., Barbosa, B. D. S., Maciel, D. T., 
& Rossi, G. (2019). Analysis of flight parameters and georeferencing of images with different control 
points obtained by RPA. Agronomy Research, 17(5), 2054–2063

She, B., Huang, J. F., Zhang, D. Y., & Huang, L. S. (2017). Assessing and characterizing oilseed rape freez-
ing injury based on MODIS and MERIS data. International Journal of Agricultural and Biological 
Engineering, 10(3), 143–157

Svensgaard, J., Jensen, S. M., Westergaard, J. C., Nielsen, J., Christensen, S., & Rasmussen, J. (2019). 
Can reproducible comparisons of cereal genotypes be generated in field experiments based on UAV 
imagery using RGB cameras? European Journal of Agronomy, 106, 49–57. https:// doi. org/ 10. 1016/j. 
eja. 2019. 03. 006

Tan, Z., Ding, M., Wang, L., Yang, X., & Ou, Z. (2008). Monitoring freeze injury and evaluating losing to 
sugarcane using RS and GPS. In International Conference on Computer and Computing Technologies 
in Agriculture (pp. 307–316). Boston, USA: Springer.

Wang, H., Huo, Z., Zhou, G., Wu, L., & Feng, H. (2015). Monitoring and forecasting winter wheat freeze 
injury and yield from multi-temporal remotely sensed data. Intelligent Automation & Soft Computing, 
22(2), 255–260. https:// doi. org/ 10. 1080/ 10798 587. 2015. 10954 75

Wei, C., Huang, J., Wang, X., Blackburn, G. A., Zhang, Y., Wang, S., & Mansaray, L. R. (2017). Hyper-
spectral characterization of freezing injury and its biochemical impacts in oilseed rape leaves. Remote 
Sensing of Environment, 195, 56–66. https:// doi. org/ 10. 1016/j. rse. 2017. 03. 042

Willmott, C. J. (1981). On the validation of models. Physical Geography, 2(2), 184–194. https:// doi. org/ 10. 
1080/ 02723 646. 1981. 10642 213

Yang, Z., Willis, P., & Mueller, R. (2008). Impact of band-ratio enhanced AWIFS image to crop classifica-
tion accuracy. In Proceedings of the 17th william pecora memorial remote sensing symposium, (pp. 
1–11). Bethesday, MD, USA: American Society for Photogrammetry & Remote Sensing.

Zhang, J., Hu, J., Lian, J., Fan, Z., Ouyang, X., & Ye, W. (2016). Seeing the forest from drones: Testing the 
potential of lightweight drones as a tool for long-term forest monitoring. Biological Conservation, 198, 
60–69. https:// doi. org/ 10. 1016/j. biocon. 2016. 03. 027

Zhou, J., Pavek, M. J., Shelton, S. C., Holden, Z. J., & Sankaran, S. (2016). Aerial multispectral imaging 
for crop hail damage assessment in potato. Computers and Electronics in Agriculture, 127, 406–412. 
https:// doi. org/ 10. 1016/j. compag. 2016. 06. 019

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

https://doi.org/10.1007/s13313-018-0608-2
https://doi.org/10.1111/jac.12319
https://doi.org/10.3389/fpls.2018.01752
https://ardupilot.org/planner/index.html
http://www.qgis.org
https://doi.org/10.1007/s40626-014-0001-7
https://doi.org/10.1007/s40626-014-0001-7
https://doi.org/10.1016/j.measurement.2015.04.018
https://doi.org/10.1016/j.eja.2019.03.006
https://doi.org/10.1016/j.eja.2019.03.006
https://doi.org/10.1080/10798587.2015.1095475
https://doi.org/10.1016/j.rse.2017.03.042
https://doi.org/10.1080/02723646.1981.10642213
https://doi.org/10.1080/02723646.1981.10642213
https://doi.org/10.1016/j.biocon.2016.03.027
https://doi.org/10.1016/j.compag.2016.06.019

	Unmanned aerial vehicle to evaluate frost damage in coffee plants
	Abstract
	Introduction
	Materials and methods
	Description of the experimental area
	Frost risk area classification
	Canopy stratification
	Visual frost damage evaluation
	Evaluation of chlorophyll content
	Acquisition of multispectral images
	Image processing
	Vegetation indices
	Statistical analysis

	Results and discussion
	Frost damage in different coffee canopy strata
	Spatial distribution of vegetation indices
	Evaluation of the estimation of frost damage generated by vegetation indices

	Conclusion
	Acknowledgements 
	References




