
Monday, April 16, 2018

Unit 3: Python (cont’d)

Readings in PCfB:  
	 Ch 7 (“Components of Programming”)  
	 Ch 9 (“Decisions and Loops”)

Topics:

• more operations on strings, string methods 
(concepts you’ll need for Project 3)

• in-class projects: gc_content.py, gp.py

• executable files

• if statements

• Boolean operators

• notes on programming style

�1 Bi 410/510 Spring 2018

Review: Strings

Previously we learned how to create strings in Python:

In [1]: s1 = 'aloha'

In [2]: s2 = 'Area 51'

And we learned about functions and operators that work with strings:

In [3]: len(s1)  
Out[3]: 5

In [4]: len(s2)  
Out[4]: 7

In [5]: s1 + "!"  
Out[5]: 'aloha!'

Square brackets (also known as the “index operator”) are used to access
characters in a string:

In [6]: s2[0]  
Out[6]: 'A'

�2 Bi 410/510 Spring 2018

Important: The first character is at s[0]
(not s[1])

Methods

Most functions that work with strings use an alternative syntax

Instead of writing

f(s)

we write

s.f()

Simply take the string name out of the parentheses and put it before the
function name, with a period between the string and function name

Functions that are called using this syntax are referred to as methods

Example

In [12]: s = 'nice!'

In [13]: s.upper()  
Out[13]: 'NICE!'

�3 Bi 410/510 Spring 2018

Strings are Immutable

The call to upper did not change s — it returned a copy of s, with all
letters set to upper case

In [14]: s  
Out[14]: 'nice!'

In [15]: t = s.upper()

In [16]: print(s,t)  
nice! NICE!

Often a program will “update” a string by throwing away the old version
and replacing it with a new one:

In [17]: s = s.upper()

In [18]: s += '!'

In [19]: s  
Out[19]: 'NICE!!'

�4 Bi 410/510 Spring 2018

More Methods

Here is a method used in an example program in PCfB

• call s.count(t) to find the number of times t occurs in s

In [20]: seq = 'GATTACA'

In [21]: seq.count('A')  
Out[21]: 3

In [22]: seq.count('C')  
Out[22]: 1

We can pass any substring to count, and it will return the number of times
that substring is found

In [25]: lyric = 'fa la la la la, la la la la'

In [26]: lyric.count('la')  
Out[26]: 8

In [27]: lyric.count('foo')  
Out[27]: 0

�5 Bi 410/510 Spring 2018

See dnacalc.py in PCfB

startswith and endswith

These two methods check to see if s string starts or ends with a specific
substring

In [32]: lyric  
Out[32]: 'fa la la la la, la la la la'

In [33]: lyric.startswith('fa')  
Out[33]: True

In [34]: lyric.startswith('la')  
Out[34]: False

In [35]: lyric.endswith('la la')  
Out[35]: True

In [36]: lyric.endswith('la la land')  
Out[36]: False

�6 Bi 410/510 Spring 2018

The values returned by startswith and endswith are
Boolean values

They’re named for George Boole (1815--1864), a pioneer in
the field of symbolic logic

If the result of evaluating an expression is True or False we
say it is a Boolean expression

In-Class Project

Let’s do an in-class programming project

Write a program named gc_content.py that will compute the GC
content of a strand of DNA

[see Exercise.pdf]

�7 Bi 410/510 Spring 2018

Slices

The index operator also allows us to select a range of characters

The notation s[i:j] means “all the characters from position i up through
position j-1 in s”

In [1]: s = 'abcdefghij'

In [2]: len(s)  
Out[2]: 10

In [3]: s[0]  
Out[3]: 'a'

In [4]: s[0:4]  
Out[4]: 'abcd'

In [5]: s[3:8]  
Out[5]: 'defgh'

In [6]: s[3:]  
Out[6]: 'defghij'

In [7]: s[:5]  
Out[7]: 'abcde'

�8 Bi 410/510 Spring 2018

Individual letters are s[0] through s[9]

The first 4 letters in s

Letters 4 through 8

All the letters from position 3 on

From the beginning up to letter 5

Hint: you’ll want to use slices in the “Pig Latin”
program on Project 3

Conditional Execution

Suppose we want to write a program that creates the plural form of a word

It’s simple to write a statement that appends 's' to the input:

word = argv[1]  
word += 's'  
print(word)

Here’s the output from some test cases:

$ python plural.py duck  
ducks

$ python plural.py cat  
cats

But as we know English isn’t that regular:

$ python plural.py fish  
fishs

To solve this problem we need a form of conditional execution

• tell Python to test some condition (“does the word end with an h?”)

• if so append “es”, otherwise append “s"

�9 Bi 410/510 Spring 2018

Flow Chart

Figure 7.3 from PCfB shows the general idea:

�10 Bi 410/510 Spring 2018

if Statements

In Python conditional execution is controlled by an if statement

Here’s how we can append “es” if a word ends with “h”:

if word.endswith('h'):

 word += 'es'

else:

 word += 's'

The Details

An if statement starts with the word if

• immediately following if there should be a Boolean expression
(something that evaluates to True or False)

• note the colon at the end of the expression

• there can be any number of statements in the body of the if
statement

Important: the statements in the body must be indented, and they must
all be indented exactly the same [the “standard” indent is 4 spaces]

The else statement is optional (see the flow chart on the previous page)

• note the colon following else and the statements in the body are
indented

�11 Bi 410/510 Spring 2018

See plural.v1.py

Another Rule for plural.py

Here’s an example of where our current program won’t produce the right
answer:

 $ python plural.py company  
companys

We can fix this problem by adding another rule: if a word ends with “y”
replace the “y” with “ies”

Before we start coding we should do some interactive experiments to
see how to find the end of a word and how to change it

In [1]: s = 'company'

The index operator (square brackets) should tell us which letter is at the
end:

In [2]: s[len(s)]  
IndexError: string index out of range

Oops. Indexes range from 0 to 1 less than the length (in this case 0 to 6):

In [3]: s[len(s)-1]  
Out[3]: ‘y'

As a shortcut we can use negative numbers to index from the right:

In [3]: s[-1]  
Out[3]: 'y'

�12 Bi 410/510 Spring 2018

Another Rule (cont’d)

Let’s see if we can change what’s there now to “ies”

In [4]: s[len(s)] = 'ies'  
TypeError: 'str' object does not support item

assignment

Bummer! Python string are immutable — we can’t change them.

A New Strategy

We can make “companies” by using the + operator: make a substring
using all but the last character in s and append “ies”

The slice operator will give us the substring:

In [5]: s[0:len(s)-1]  
Out[5]: ‘compan’

We can use negative indexes in slices, too:

In [6]: s[0:-1]  
Out[6]: 'compan'

�13 Bi 410/510 Spring 2018

Don’t be misled by word += ’s’
Python makes a new string and replaces the old value of word

elif

Here is the new program.

It also introduces a new statement: elif. The name is a combination of
“else” and “if”:

�14 Bi 410/510 Spring 2018

Style Notes

Note again that this program gets the values it needs from argv at the
beginning of the program

• there is no reference to argv after line 11

Note also the general outline:

• get input values from argv

• do the calculations

• print the results

We could have print statements inside the bodies of the if/elif/else
statements, but this design lets us change the output format more easily

• try to keep the code that does I/O separate from the main program
logic

Beware elif

A program that has a long “cascade” of if/elif statements can often be
rewritten in a better style — we’ll show an example below and throughout
the term

�15 Bi 410/510 Spring 2018

Running the New Version

Here are some tests of the latest version of the program

The first two tests are regression tests: make sure previous cases still
work and we didn’t break anything:

$ python plural.v2.py duck  
ducks

$ python plural.v2.py cat  
cats

Test the new rule:

$ python plural.v2.py fish  
fishes

$ python plural.v2.py finch  
finches

But we still have work to do:

$ python plural.v2.py moth  
mothes

$ python plural.v2.py albatross  
albatrosss

�16 Bi 410/510 Spring 2018

Testing Multiple Conditions

A more accurate rule for adding “es” to a word is to see if the word ends
with “s”, “x”, “ch”, or “sh”

We could write this using elif:

if word.endswith('s'):

 word += 'es'

elif word.endswith('x'):

 word += 'es'

elif word.endswith('ch'):

 word += 'es'

elif word.endswith('sh'):

 word += 'es'

Bad form — the bodies are all identical.

Can we combine them into a single case?

�17 Bi 410/510 Spring 2018

🤢

Boolean Operators

We can combine tests using Boolean operators

	 x and y	 	 True if both x and y are True

	 x or y	 	 True if either x or y (or both) are True

	 not x	 	 True is x is False

Using the or operator in plural.py:

if word.endswith('x') or word.endswith('s')  
 or word.endswith('ch') …

[we’ll leave it as an exercise to revise and test the program with this
Boolean expression]

�18 Bi 410/510 Spring 2018

Comparison Operators

Python has a number of ways to compare number and strings (and other
types of data)

Here are some examples —

In [1]: n = 10

In [2]: m = 20

In [3]: n > 0  
Out[3]: True

In [4]: m < 100  
Out[4]: True

In [5]: n > 0 and m < 100  
Out[5]: True

In [6]: n > 0 and m < 10  
Out[6]: False

In [7]: n > 0 or m < 10  
Out[7]: True

In [8]: n == 10  
Out[8]: True

In [9]: n == 0  
Out[9]: False

�19 Bi 410/510 Spring 2018

NOTE! To see if two items are the
same use a double equal sign

(the single equal sign is the
assignment operator)

List of Boolean Operators

Table 7.3 from PCfB:

�20 Bi 410/510 Spring 2018

Don’t use these — they’re special purpose
operators defined for integers

In-Class Project

Let’s write a program that converts letter grades to point values:

$ python gp.py B  
3

$ python gp.py A  
4

Next week we’ll extend the program so it computes a GPA based on
several grades:

$ python gp.py B A  
3.5

�21 Bi 410/510 Spring 2018

