
21 May 2018

Analysis Pipeline

Unit 7: Python scripts to control an analysis pipeline

Topics this week:

• overview of 16S analysis pipeline

• how to write Python programs that run other programs

• examples: generate artificial reads used to test the pipeline, run
vsearch to “merge” paired end reads

• project: write Python scripts to run vsearch to do the next two
steps (dereplicate, cluster)

�1 Bi 410/510 Spring 2018

16S rRNA

Ribosomes are an essential part of the “machinery of life”

The ribosome consists of several strands of RNA, which are themselves
the result of transcribing an RNA gene

Our data comes from the DNA sequences of genes that encode for the
“16S sub-unit” in bacteria

�2 Bi 410/510 Spring 2018

Variable Regions

Within the 16S gene are variable regions, labeled V1, V2, etc; our data
come from the V4 region

• the other parts of the gene are highly conserved

• the V4 regions act as a “fingerprint” -- they have enough differences
that we can use them to distinguish between bacteria

�3 Bi 410/510 Spring 2018

Illumina Data

The V4 regions are about 253bp long.

The Illumina sequencer can reliably sequence up to 150bp before the
reliability of the data start to drop off

• each sequence in the data set is called a read

�4 Bi 410/510 Spring 2018

FASTQ

The most common data format for short sequence reads is called FASTQ

“FASTA with quality scores”

Instead of two lines per sequence we have four:

• sequence description (line starts with @)

• sequence letters

• a line that starts with + (may have further information)

• quality letters

Example (first two sequences in A_R1.fastq):

@ART:0:0:810:412:436:984 1:N:0:0

TACGTAGGTGGCAAGCGTTGTCCGGAATAATTGGGCGTAAAGC...

+

CC=GGGCGGGGGGJJGGJCJJJJJGJJG$JJJGJ=JGJJGJCJ...

@ART:0:0:2358:123:2061:196 1:N:0:0

TACGGAGGGTGCGAGCGTTAATCGGAATAACTGGGCGTAAAGG...

+

CC=GGGCGGGGGGJJGGJCJJJJJGJJG$JJJGJ=JGJJGJCJ...

�5 Bi 410/510 Spring 2018

Quality Scores

The quality characters tell us how confident the sequencer is that a letter
is correct

• lots of things can go wrong during the sequencing process

• we want to filter out sequences that may have sequencing errors

The character at location i in the quality line is related to the probability the
character i in the sequence line is correct

Scores range from 0 to 41

• see the Wikipedia entry for FASTQ to see how to convert these
integers into probabilities

Instead of using numbers we can use 41 consecutive characters starting
with ! (ASCII code 33).

Character: 
! " # $ % ... @ A B C D E F G H I J

ASCII: 
33 34 35 36 37 64 65 66 67 68 69 70 71 72 73 74

Quality Score: 
0 1 2 3 4 ... 31 32 33 34 35 36 37 38 39 40 41

�6 Bi 410/510 Spring 2018

Paired End Reads

We can sequence an entire V4 region if we used paired end reads

• use restriction enzymes to cut out the V4 region (around 250 bp)

• sequence each strand of DNA (one in the forward direction, one in the
reverse direction)

We’ll end up with two data files:

X_R1.fastq  
X_R2.fastq

where X is typically the sample name

�7 Bi 410/510 Spring 2018

Analysis Pipeline

As part of the META project I helped develop a set of scripts to manage
the data analysis

• we use SQLite databases to keep track of the results of each step

For our class project we’ll use an artificial data set created to test the
accuracy of the pipeline (and skip the database)

�8 Bi 410/510 Spring 2018

DB

assemble_
pairs.py

2. assemble

L1_.._R1.fastq
L1_.._R1.fastq

data/

remove_
duplicates.py

3. dereplicate1. import

import_
reads.py form_otus.py

4. OTUs

pandaseq cd-hit-dup swarm

assemble_
pairs.py

2. assemble

L1_.._R1.fastq
A_R1.fastq

data/

remove_
duplicates.py

3. dereplicate

form_otus.py

4. OTUs

vsearch vsearch swarm

0. artificial data

generate_
reads.py

art

Pipeline Scripts

To generate the data in the sim folder I ran a Python script named
generate_reads.py

• tell it how many samples to make (we have three: A, B and C), how
many species to put in each sample, and the expected abundances

Then cd to the resulting directory and:

$ assemble_pairs.py --datadir . --dbname sim.db

$ remove_duplicates.py --load_seqs --dbname sim.db

$ form_otus.py --dbname sim.db

$ map_otus.py --dbname sim.db

�9 Bi 410/510 Spring 2018

Script Options

Each of these scripts has several different command line options

Example:

$ form_otus.py --help

usage: form_otus.py [-h] -d DB [--force] [--preview] 
 [--workspace dir] [--singletons] [--application APP]

Create de novo OTUs.

optional arguments:

 --help show this help message and exit

 --dbname DB name of project database

 --force replace existing data

 --preview preview shell commands

 --workspace dir working directory

 --singletons include singletons

 --application APP clustering application

$ form_otus.py --app foo

form_otus.py: error: argument --application:  
invalid choice: 'foo' (choose from 'usearch',
'vsearch', 'swarm')

�10 Bi 410/510 Spring 2018

