
Monday, May 14, 2018

Shell Scripts

Today’s topics: random shell concepts left out of previous lectures,
collecting shell commands into a script

These topics are mostly optional — very useful things to know if you’re
going to continue writing scripts and programs — but worth looking at
now because they provide background for our next set of Python projects

Reading: PCfB Ch 6 (“Scripting with the Shell”)

- environment variables

- $PATH

- permissions

- conditional execution

- loops

�1 Bi 410/510 Spring 2018

Environment Variables

Each time you open a terminal window the system starts a new shell

The shell uses a set of environment variables to define various user
settings

A command to know: printenv (“print environment”)

• it prints a complete list of variables and their current values

• most of them are very obscure

Here are some that were printed on my desktop system:

$ printenv

SHELL=/bin/bash

TERM=xterm-256color

USER=conery

PWD=/Users/conery/Classes/410/units/6_scripts/
lectures

LANG=en_US.UTF-8

HOME=/Users/conery

�2 Bi 410/510 Spring 2018

echo

A shell command that doesn’t seem like it would be very helpful: echo

• all it does is print its command line argument

 $ echo hello

hello

$ echo 'stop repeating what I say'

stop repeating what I say

It is useful, however, if you want it to print the value of an environment
variable

$ echo $HOME

/Users/conery

$ echo $LANG

en_US.UTF-8

�3 Bi 410/510 Spring 2018

Important:

if X is an environment variable,
use $X to refer to its value

$PATH

A very important variable is $PATH

• it is a series of file paths, separated by colons

• tells the shell where to look to find executable files

Example (again from my desktop system, edited to show one directory per
line):

$ echo $PATH

/Users/conery/miniconda3/bin:

/Users/conery/SysAdmin/Scripts/python:

/Users/conery/SysAdmin/Scripts/sh:

/Users/conery/Applications/Bioinformatics:

/Users/conery/Applications/bin:

/usr/local/bin:

/usr/bin:

/bin:

/usr/sbin:

/sbin

�4 Bi 410/510 Spring 2018

miniconda was added to my path by the
conda installer

I set up my .bash_profile to include folders
where I keep my own programs and scripts

/usr, /usr/local, etc are standard locations in
a Unix system

The Shell Uses $PATH to Find Executables

When you type a shell command

• the shell uses the first word as the name of the program you want to
run

• it searches the directories in your execution path to find an
executable file with that name

• it launches the first program it finds

If no file is found it prints an error message

�5 Bi 410/510 Spring 2018

Exceptions: in modern shells (including bash) some of the
more common commands are built into the shell

ls  
cd  
printenv, …

Adding Directories to Your Path

If you want to add new folders to your execution path (e.g. after installing
some new software) the best place to do it is in .bash_profile (a hidden file
in your home folder)

• edit the file to modify the definition of PATH

• save the file

• the next time you start a shell the new settings will take effect

Here are some of the settings in my bash profile:

PATH=/usr/local/bin:$PATH

PATH=~/Applications/Bioinformatics:$PATH

PATH=~/SysAdmin/Scripts/python:$PATH

�6 Bi 410/510 Spring 2018

To make it easier to understand (and to update it in the future) I
have one addition per line

Each line adds a new folder to those currently in the path

IMPORTANT:

• the variable name (no dollar sign) is on the left

• the variable value (with dollar sign) is on the right

• no space on either side of the equal sign

Another New Command: which

A command named which will tell you where the shell finds an executable
command

Example:

$ which python

/Users/conery/miniconda3/bin/python

The output tells me that when I run python the shell will start the version I
installed with conda

To see all the different versions that are available:

$ which -a python

/Users/conery/miniconda3/bin/python

/usr/bin/python

�7 Bi 410/510 Spring 2018

The file in /usr/bin is the version of Python that comes
preinstalled with macOS

Permissions

Here is part of the output of the ls command when I asked it to show me
the contents of the sim folder:

$ ls -l sim

-rw-r--r-- 1 conery 329K Jan 9 2016 A_R1.fastq

-rw-r--r-- 1 conery 329K Jan 9 2016 A_R2.fastq

drwxr-xr-x 32 conery 1.0K Jan 9 2016 artwork/

drwxr-xr-x 4 conery 128B Jan 9 2016 clusters/

drwxr-xr-x 5 conery 160B Jan 13 11:42 log/

-rw-r--r-- 1 conery 1.8K Jan 9 2016 otus.fasta

-rw-r--r-- 1 conery 241B Jan 9 2016 sim.cfg

-rw-r--r-- 1 conery 1.0M Jan 9 2016 sim.db

The 10-character strings at the start of each line are permissions

• the first character is a d if the name the the name of a directory

• the next 3 characters define what I (as owner of the file) can do:  
r = read, w = write, x = execute

• the next 3 are the permissions for the members of my group, and the
last 3 are for everybody else

�8 Bi 410/510 Spring 2018

Permissions (cont’d)

Here are some of the versions of Python installed by Anaconda:

$ ls -l ~/miniconda3/bin/python*

lrwxr-xr-x 1 conery staff 9B Jan 19 10:39  
/Users/conery/miniconda3/bin/python@ -> python3.6

-rwxr-xr-x 1 conery staff 3.3M Jan 19 10:39  
/Users/conery/miniconda3/bin/python3.6*

-rwxr-xr-x 1 conery staff 135B Jan 19 10:39  
/Users/conery/miniconda3/bin/pythonw*

★ an x on a plain file (not a directory) means the file is an executable
program that can be run by a shell command

(An l at the front of a listing means the name is a “symbolic link”)

�9 Bi 410/510 Spring 2018

Turn Your Programs Into Executable Files

PCfB explains how to make your own executable programs that can be
run from the command line

Examples:

• collect a set of shell commands into a shell script

• turn a Python file into a new shell command, e.g. to run the 16S
analysis pipeline

Shell scripts are useful when you find you’re repeating the same steps
over and over and want to automate those steps

Example: each time we run the 16S pipeline (the set of programs that
produces the sim folder) we get subdirectories named clusters, map,
merged, etc

• suppose you want to save the FASTA files in the merged folder and
delete all the log files

You can put the shell commands that do those tasks in a file named
save_fasta.sh. Then each time you want to clean up a project folder
cd to that folder and run the command:

$ cd sim

$ save_fasta.sh

$ cd ~/meta/newproject

$ save_fasta.sh

�10 Bi 410/510 Spring 2018

Executable Script (cont’d)

Putting the commands in a file is simple. These are the four shell
commands that do the job:

mkdir fastas

mv merged/*.fasta fastas

rm merged/log.*

echo "*.fasta moved to ../fastas" > merged/readme.txt

Turning that file into an executable program means you can run it from any
directory

• you don’t have to remember which folder you put it in

• you don’t have to copy the file to each project directory you want to
clean up

There are three steps (described on the following slides) to making an
executable file:

1. change the file’s permissions so it is executable

2. add a “shebang” line

3. put the file in a folder that is in your execution path

�11 Bi 410/510 Spring 2018

1. Add Execute Permissions

Use a shell command named chmod (which stands for “change mode”, as
in “change read mode” or “change write mode”)

In the folder where you saved your file type this command:

chmod +x [filename]

Here is an example, using save_fastas.sh, showing its permissions
before and after the chmod command:

$ ls -l save_fastas.sh

-rw-r--r--@ 1 conery Feb 19 09:51 save_fastas.sh

$ chmod +x save_fastas.sh

$ ls -l save_fastas.sh

-rwxr-xr-x@ 1 conery Feb 19 09:51 save_fastas.sh*

�12 Bi 410/510 Spring 2018

2. Add a Shebang Line

The shell now knows save_fastas.sh is an executable file, but it
doesn’t know how to execute it

• is it a C program? FORTRAN? Python?

That’s where the “shebang” line comes in

Make this the very first line (no blank lines before it!) in your file:

#! /usr/bin/env bash

• the first two letters (no indentation!) are # (“shell comment”)  
and ! (“bang”)

• the rest of the line tells the OS to use bash to execute the remaining
lines in the file

Here is my program, complete with shebang line and a comment at the
start of the file:

$ cat save_fastas.sh

#! /usr/bin/env bash

shell script to save Fasta files...

mkdir fastas

...

�13 Bi 410/510 Spring 2018

3. Move the File to a Location in Your Path

Earler we saw this command, which displays the names of the directories
in your execution path:

$ echo $PATH

/Users/conery/miniconda3/bin:

/Users/conery/SysAdmin/Scripts/python:

/Users/conery/SysAdmin/Scripts/sh:

/Users/conery/Applications/Bioinformatics:

/Users/conery/Applications/bin:

Simply choose one of these folders and move your new script there

Since save_fastas.sh is a shell script I put it in the folder with my other
shell scripts:

$ mv save_fastas.sh ~/SysAdmin/Scripts/sh

�14 Bi 410/510 Spring 2018

Turn Your Python Programs Into Executables

The same three steps can be used to run a Python program

Example: I have a Python program named lorem.py (each time it runs it
prints the familiar “lorem ipsum” text)

$ lorem.py

Lorem ipsum dolor sit amet, consectetur adipisicing
elit, sed do eiusmod…

I can run this program from anywhere

• I don’t have to remember which folder I put it in

• I don’t have to cd to that folder and type “python lorem.py”

I went through the same three steps to make this program executable:

1. I used chmod to add execute permissions

2. I added a “shebang” line [see next page]

3. the file is in ~/SysAdmin/Scripts/python

�15 Bi 410/510 Spring 2018

The “Lorem Ipsum” Script

The shebang line on a Python script tells the OS that the rest of the file
contains Python statements

$ cat ../python/lorem.py

#! /usr/bin/env python3

print("""Lorem ipsum dolor sit amet, consectetur ...

... laborum.""")

Notes:

• I could use “python” instead of “python3” if I’m sure the default
Python on my system is Python 3.x

• the triple quotes are a Python construct that allows us to make very
long strings that span several lines.

�16 Bi 410/510 Spring 2018

Optional Topic: Conditional Execution in Shell Scripts

Bash and other Unix shells have if commands

• test some condition (“does a file exist? did I connect from a remote
machine? is this file empty?)

• execute certain commands only if the condition is true

An example from my “bashrc” file (executed every time a new shell starts):

if [-n "$SSH_CONNECTION"]

then

 HOSTCOLOR=35

else

 HOSTCOLOR=34

fi

The Boolean expression is true if that environment variable is defined

Unlike Python, Bash doesn’t use indentation to define bodies of if
statements — mark the boundaries with then, else, and fi

�17 Bi 410/510 Spring 2018

Refer to online documentation (or better, find a book)
to learn about the sorts of tests you can perform

Optional Topic: Iteration in Shell Scripts

Shells also have a type of for command for repeating groups of statements

The basic syntax is

for x in names

do

 commands…

done

Here names refers to a set of strings (often file names, but can be
anything)

for commands can be typed in an interactive session — the shell notices
you are typing a command that spans several lines and changes the
prompt until you type done to end the command

Example: the sim folder has 6 FASTQ files (A_R1, A_R2, B_R1, etc). This
loop makes three new folders (A, B, and C) and moves pairs of FASTQ files
to the folder with that name:

$ for x in A B C

> do

> mkdir $x

> mv $x*.fastq $x

> done

�18 Bi 410/510 Spring 2018

Note: x is the name of the loop
control variable, $x is the value of
the variable

Shell Script vs Python Script

One of the main goals for this course is developing skills to automate
analysis pipelines

• run applications (preprocess FASTQ files, find unique sequences,
form clusters, map to reference, …)

• general “housekeeping” (remove log files, rearrange data, …)

• write programs to analyze data and plot results

Most of these these things can be done with shell scripts (but some may
require conditionals and iterations)

Conversely, since Python is also a scripting language (a Python program
can run another program) we can automate tasks with Python

Rule of thumb:

if a task is complex enough to require conditional execution or iteration
write a Python program

Our next topic this term: using Python as a scripting language

�19 Bi 410/510 Spring 2018

