
Monday, April 2, 2018

Bi 410/510:  
Introduction to Programming for Biologists

Course Overview and Goals

- basic information

- course goals

- grading scheme

- what to expect

�1

Course Information

[this information, and more, is in the syllabus on Canvas]

Instructor John Conery conery@uoregon.edu

GTF David Wyrick dwyrick@uoregon.edu

Lectures Mon, Wed 4:00 — 5:20, 185 Lillis

Lab Fri 2:00 — 3:50, 129 Huestis

Textbook Practical Computing for Biologists, by Haddock and Dunn 
http://practicalcomputing.org

�2

Canvas announcements?

Why Do Biologists Need Computers?

An example: Bradshaw / Holzapfel Lab at UO

They study Wyeomyia smithii, a small mosquito that lives exclusively in
pitcher plants on the east coast of the US and Canada

Why do mosquitoes in the south bite (like other species of mosquito) but
those in the north don’t?

• hypothesis: a genetic mutation
occurred at some point as
populations moved north at the
end of the last Ice Age

�3

20% bite

0% bite

images from scientificamerican.com and Rudy Boroczak

http://scientificamerican.com
http://scientificamerican.com

Data. Lots and Lots of Data.

They set up experiments to collect mRNA (expressed genes) from biters
and non-biters

• these experiments generate huge data sets — hundreds of Gigabytes of
raw data

• highly sophisticated algorithms analyze the data, look for differences in
expressed genes

�4

Computational Workflow

The image on the previous page showed the steps in the RNA-seq
protocol — “wet lab” processes that extract and sequence mRNA

The result is a data set with millions of small fragments that are the starting
point for a computational workflow — “dry lab” processes that assemble
the data into full-length mRNAs and look for differences between
populations

�5

CIS 454 project: evaluate different
“transcript assemblers”, develop
computational pipeline for
differential expression analysis

What Computing Skills Does a Biologist Need?

The computer programs used in the workflow are very sophisticated

• trinity, oases, velvet, DEseq2, BLAST, …..

• free, open source software, download from GitHub or other repositories

• created by teams of computer scientists and biologists, using advanced
algorithms and years of development

A modern biologist does not need knowledge of advanced algorithms and
data structures or sophisticated programming skills to implement them

But they do need to

• download, install, run an application on their own computer (or get an
account on a supercomputer where the application is already installed)

• know how to run the programs — they work on Linux, macOS, and
(usually) Windows, but require scientists to know how to use a command
line interface

• use a text editor or write a script to pull out data for further analysis —
either for another complex application, or a statistics application like R or
Matlab

�6

META 16s rRNA Pipeline

The computational workflow we’ll use for several projects this term is from
the META Center here at UO

• start with sequence fragments of 16S rRNA genes from a sample (e.g.
zebrafish intestine)

• goal: what bacteria are present, what are their relative abundance?

�7

reads

1. import

assemble_
pairs.py

2. assemble

L1_.._R1.fastq
L1_.._R1.fastq

data/

L1_.._R1.fastq
merged.N.fasta

panda/

uniq

remove_
duplicates.py

3. dereplicate

import_
reads.py

L1_.._R1.fastq
unique.N.fasta

uniq/

panda

form_otus.py

4. OTUs

etc…

(pandaseq) (cd-hit-dup)

Python programs run bioinformatics applications, extract
data to hand off to the next step in the pipeline:

assemble_pairs.py ⇨ pandaseq

remove_duplicates.py ⇨ cd-hit-dup

etc

META 16s rRNA Pipeline (cont’d)

Several of our projects will be based on this pipeline

• shell commands to move files around, remove temporary files, etc

• Python programs that read and process data

• Python scripts that run bioinformatics applications

Use Your Own Data

Attention grad students (or undergrads who work in a lab):

• you can use your own computational pipeline instead of the META 16S
pipeline

• make an appointment, we’ll talk about ways you can use your data and
applications

�8

Our Goals for Bi 410/510

Learn to use a command line interface

• alternative to GUI such as Finder (Mac) or File Browser (Windows)

• widely used to run scientific applications

• required for remote connections to supercomputers

Collect commands into a script

• automate sequences of operations

• a simple form of programming

Introduction to Python

• popular programming language widely used by scientists

• manage data files, data analysis, visualization, more

• an excellent scripting language for more complex workflows

Advanced topic(s) TBD: databases, statistics, visualization

• there are Python libraries for each of these topics

�9

Grading Scheme

Course grades will be based on points earned during the term

• programming projects

• milestone exams

• in-class exercises

Programming Projects (8 projects, total of 80 points)

• group projects allowed (small groups of 2-3 people)

• self-paced, do them at any time

• 10 points per project

• revise and resubmit until you earn full credit

Milestone Exams (8 exams, total of 150 points)

• short quizzes taken during Friday lab sessions

• take an exam any time after completing the associated project

• not group projects

• open notes / open book

• retake exam to improve your score (max score used to compute grades)

In-Class Exercises (20 points)

• random throughout the term

• more information at the start of each exercise

�10

Grades (Bi 410)

Notes

• milestone exams will have scores from 1 to 20

• a “passing” score on programming projects: 10 points if the program
works, even if it has style issues

• we’ll have lots of examples in lectures of what is required to earn the full
20 points

✴ it is possible to earn an A without doing any in-class exercises (but there
is little margin for error)

Total Comment

90 D complete all group projects, no milestones or participation

110 C−

125 C all projects, minimum score on exams, some participation

140 C+

160 B−

175 B all projects, pass all exams, full participation

190 B+

210 A−

220 A all projects, good style on exams, full participation✷

�11

Bi 510: one additional project or written assignment, different
point scale (I’ll be sending e-mail with more information).

What to Expect

You will be frustrated often

• very, very frustrated

“Learn to fail like a computer scientist”

• recognize where the problems are

• try experiments to isolate, fix the problem

Learn by doing

• you will not learn to program by reading about programs

• you must do the projects

• when a program is finally working, learn from your mistakes: know why it
failed, why the changes you make fixed the problems

• start early, don't put things off

Get Organized!

• start a “lab notebook”

• create a “snippets” files with code examples

• keep track of what works, what doesn’t

• have your notebook handy during projects and exams

�12

In-Class Exercise for Apr 4

Our first in-class exercise:

• read a paper by Ben Marwick from the University of Washington:

“How computers broke science — and what we can do to fix it”

• the paper was published on a website called The Conversation, find it at

http://theconversation.com/how-computers-broke-science-
and-what-we-can-do-to-fix-it-49938

At the beginning of class on Wednesday I’ll ask a question based the
article

• break into small (2-4 people) groups to discuss the question

• turn in your answer, either on paper or by e-mail (include all group
member names)

�13

