
Monday, April 16, 2018

How to Write a Program

Writing a program is hard. For simple programs like the temperature
converter we can just sit down at the computer, open a text editor, create
a new document, and start typing. Most programs, however, require a
little planning.

The process we recommend for Bi 410/510 involves three steps:

• write a specification of what the program should do

• write a design document that outlines how the program will work

• write the program, stopping often to test each new addition, using
IPython to experiment as necessary

This document illustrates the process with a program that computes the
GC content of a DNA sequence.

�1 Bi 410/510 Winter 2018

Project Spec

The first step is to figure out what the program will do

(later the design document will describe how the problem will be
solved)

Specify what sorts of inputs the program expects and what it will produce
as its outputs.

If possible write a set of examples that show how the program will be run
and what the expected output will be.

Example: the spec for the “plural” program is to read one word from the
command line and to print the plural form. The spec should show
examples of the kinds of words the program should handle.

$ python plural.py duck  
ducks

$ python plural.py fish  
fishes

�2 Bi 410/510 Winter 2018

Specification for the GC content program

The program will be named gc_content.py

The input sequence will come from the command line, the output should
be a percentage (a number between 0 and 100)

Examples of what we expect when the program is working:

$ python gc_content.py GATTACA  
28.57 %

$ python gc_content.py AAAACCCCTTTTGGGG  
50.0 %

$ python gc_content.py CCCCCCCCCC  
100.0 %

$ python gc_content.py AAAAAAAAAA  
0.0 %

�3 Bi 410/510 Winter 2018

Expert Advice: it’s a good idea to plan in advance for
extreme cases — these are a good source of bugs

Design Document

The document does not have to be long or formal

Often it’s just a simple “to do list” or outline of the major parts of the
program

Design of the GC content program

• Read the string from argv[1], save it in a variable

• Use the count method to count the number of G’s and C’s

• Assume the rest of the letters are A’s and T’s.

• Compute P = (#G’s + #C’s) / length of dna

• P is the relative frequency of G or C — we need to multiply it by 100 to
turn it into a percentage

�4 Bi 410/510 Winter 2018

Expert Advice: Avoid the “blank canvas” syndrome.

If you open a text editor to start coding you’ll be faced with
too many choices. A design document helps you get
started.

As you gain more experience you might just open up a text
editor and start typing a program as simple as this one.

Until then, write a short “design sketch”, be as thorough as
possible, anticipate any problems you might encounter

Sandbox

For this project the key is making sure we can count letters using the
count method

It would be a good idea to experiment with the count method, try it out on
some test data, and debug the expression that computes GC content

In [1]: s = 'GATTACA'

In [2]: len(s)  
Out[2]: 7

In [3]: s.count('G')  
Out[3]: 1

In [4]: s.count('C')  
Out[4]: 1

In [7]: 2/7  
Out[7]: 0.2857142857142857

In [8]: (s.count('G') + s.count('C')) / len(s)  
Out[8]: 0.2857142857142857

�5 Bi 410/510 Winter 2018

Code

Given that design document it’s very easy to write the final program:

Compute the GC content of a strand of DNA

John Conery
Jan 22 2018
Usage: python gc_content.py S

from sys import argv

dna = argv[1]

ng = dna.count('G')
nc = dna.count('C')

pct = (ng + nc) / len(dna)

print(round(pct * 100, 2), ‘%’)

�6 Bi 410/510 Winter 2018

Note the comments at the top of
the program, including author
name(s) and “usage string”

Expert Advice: Make a program template — a file that
has the header comments and import statement that
are likely going to be in all your programs.

The first step in the coding process is to make a copy of
the template, revise it to fit the new project.

Iteration

You don’t have to complete all three steps (spec, design, code) in that
order

In fact we recommend an “iterative” design process

• write the spec, maybe for a preliminary version that leaves out things
you know will be in the final version

• write a design / to-do list for the preliminary version

• implement and test parts of the preliminary version — you might
uncover problems or cases you didn’t anticipate

• update the spec and design as you go

Examples: adding more cases to the plural program, or modifying the GC
content program to handle inputs that contain N or other letters

The ultimate goal: keep a record of what you did so that you (or someone
else) can come back to the project in the future.

�7 Bi 410/510 Winter 2018

Template

Most programs follow a familiar pattern: import argv, get values from
argv, print results.

We’ve put together a template that you can download and use if you want

Type this command to see the contents of the template:

$ curl pages.uoregon.edu/conery/Bi410/template.py

Use “redirection” to save the template:

$ curl pages.uoregon.edu/conery/Bi410/template.py > prog.py

�8 Bi 410/510 Winter 2018

