
Monday, April 9, 2018

Unit 3: Introduction to Python

Reading:  
	 Ch 8 in PCfB 
	 Online resources (we’ll start a discussion on Canvas)

Topics:

• what is Python?

• how to run Python

• numbers, strings, variables

• getting input data from the command line

• first program: temperature converter

�1 Bi 410/510 Spring 2018

What is Python?

Python is a programming language

• a notation for describing what we want a computer to do

Python is an “imperative” language

• we need to have an algorithm, a plan for solving a problem

• write statements in Python that tell the machine which steps to
perform (“if this condition is true do that”, “repeat the following steps
until another condition is true”, …)

History

The language was defined by computer scientist Guido van Rossum

• first released to the public in 1991

• has been free (open source) since the first version

• latest version is 3.6

The language is named after Monty Python's Flying Circus (British comedy
group)

�2 Bi 410/510 Spring 2018

Python 2 vs Python 3

Version 3 of the language was released in 2008

• there are a lot of incompatibilities with Python 2, and many projects
have been slow to adapt (including many scientific libraries)

• Python 2 is still supported (until 2020)

PCfB uses Python 2 😞

For the most part this won’t be a problem but I’ll have to point out
differences as we encounter them…

�3 Bi 410/510 Spring 2018

How to Run Python

There are two ways to use Python, and both ways are similar to how we
use bash:

a) start an interactive session, type Python commands in a REPL
(read-execute-print loop)

b) put Python statements in a text file, tell Python to run the file

If you installed Python using Anaconda (our recommendation) then simply
type python in a terminal window to run Python

Type this command to verify you have Python installed:

$ python --version  
Python 3.6.3 :: Anaconda, Inc.

�4 Bi 410/510 Spring 2018

Mac users: if you use the version installed by Apple,
or download Python directly from python.org, start
Python with this command:

$ python3

http://python.org
http://python.org

Interactive Python

Just type python to start a new interactive session

• Python’s prompt is three greater-than signs

• type ^D (control-D) to stop the session and return to the shell

The simplest type of Python statement is an arithmetic expression

• type an equation and hit the return key

• Python evaluates the expression and prints the result

Examples

>>> 6 * 7  
42

>>> 2 * (3 + 4)  
14

>>> from math import pi  
>>> r = 2  
>>> pi * r * r  
12.566370614359172

�5 Bi 410/510 Spring 2018

Aside: IPython

Our instructions for installing Python recommended you install an
application named ipython

• the “i” stands for “interactive”

If you want to run Python interactively it’s best to use ipython:

$ ipython  
Python 3.6.3 |Anaconda, Inc.| (default, Dec 5 2017)  
IPython 6.2.1 -- An enhanced Interactive Python. Type '?'
for help.

In [1]:

�6 Bi 410/510 Spring 2018

IPython is a “wrapper” that adds some extra bells and
whistles for interactive sessions

Notice how it runs the same version of Python

We’ll have more on IPython later in the term — for
now it doesn’t matter which program you use in
interactive sessions.

IPython displays its own prompt

Python Programs

The other way to run Python is to put a series of Python statements in a
plain text file

• by convention file names end with .py

There is one big difference from interactive Python:

• when Python is executing a program from a file it does not print the
value of an expression

Instead we have to use a print statement

• write the word “print” followed by the value you want to see

• the value needs to be enclosed in parentheses

Examples

print(6 * 7)

print(pi * r**2)

�7 Bi 410/510 Spring 2018

2 vs 3: Python2 does not use parentheses in print statements.
You’ll see examples like this in the book:
	 print 6*7

 print pi*r**2

Python Programs (cont’d)

Here is a file named prog1.py:

To run the program start a terminal session, cd to the folder that contains
the program, and tell Python to run it:

$ python prog1.py  
42  
12.5663706144

�8 Bi 410/510 Spring 2018

Aside: Syntax Coloring

In the screenshot on the previous page you probably noticed that words
like print, from, and import were displayed with different colors

These colors are produced by the text editor — they are not part of the
text file

• other programming editors (BBEdit, TextWrangler, Sublime Text, …)
do something similar

• you can change the editor’s “theme” to choose a color style you like
(or even make your own theme)

�9 Bi 410/510 Spring 2018

Arithmetic Expressions

The examples above showed that Python can evaluate arithmetic
expressions

• use a notation that is similar to what we see in math books

• the + and - keys stand for addition and subtraction

• use an asterisk * for multiplication

• use a slash / for division

• a double asterisk is used for exponentiation

Examples (from an ipython session):

In [1]: 6 * 7  
Out[1]: 42

In [2]: 2 + 3 * 5 - 1  
Out[2]: 16

In [3]: 5 ** 2  
Out[3]: 25

�10 Bi 410/510 Spring 2018

Precedence Rules

The second example on the previous page shows how Python applies
operators according to their precedence:

• exponentiation

• multiplication and division

• addition and subtraction

You can alter the order by using parentheses:

In [4]: 2 + 3 * 5 - 1  
Out[4]: 16

In [5]: (2 + 3) * (5 - 1)  
Out[5]: 20

�11 Bi 410/510 Spring 2018

Floats

Sometimes the result of an arithmetic  
operation is not an integer:

In [8]: 2 / 3  
Out[8]: 0.6666666666666666

In computer science we say these are floating point numbers
(aka "floats") instead of real numbers

• real numbers can have an infinite number of digits (e.g. ⅓ or π)

• numbers in a computer have to be truncated to a finite number of
digits (0.3333333333333333 or 3.141592653589793)

The term "floating point" refers to the technique used to store real
numbers in single "word" in memory (typically 64 bits per word)

Typing Floats

Type a decimal point if you want an expression to use floats:

In [9]: 6.0 * 7.0  
Out[9]: 42.0

�12 Bi 410/510 Spring 2018

2 vs 3: In Python2 the divide
operator creates an integer:
	 >>> 2 / 3  
 0

Combining Floats and Ints

An expression can have a combination of floating point numbers and
integers (aka “ints”)

• Python will convert ints to floats to evaluate the expression

• the result will be a float

In [10]: 6 * 7.0  
Out[10]: 42.0

In [11]: 2 / 3 * 27  
Out[11]: 18.0

�13 Bi 410/510 Spring 2018

Variables

In Python a variable is a name attached to a value

Define a variable using an assignment statement

• write the variable name, an equal sign, and an expression

• Python evaluates the expression, then attaches the value to the
variable

In [20]: x = 6 * 7

Note: in an interactive session there is no output 
from an assignment statement

After we define a variable we can use it in an expression:

In [21]: x * 2  
Out[21]: 84

If you want to know the value of a variable just type its name — a name by
itself is just a very simple expression with no operators:

In [22]: x  
Out[22]: 42

�14 Bi 410/510 Spring 2018

Variable Names

The rules for variable names:

• must start with a letter or an underscore

• can be as long as you want and may contain digits

• upper and lower case are allowed (and are significant)

In [2]: alpha = 0.4

In [3]: year_1_total = 125

In [4]: A_long_name_is_allowed_but_is_hard_to_read = 0

Conventions

Your variable names should begin with a lower case letter

Choose a name that is mnemonic — you (or other people who read your
program) should be able to understand what the variable is used for.

�15 Bi 410/510 Spring 2018

Part of a program’s “style” points —
think about the names you choose,
make sure you use “best practice”

Variables Are Transient

When you quit an interactive session all your variables are discarded

• the next time you start an interactive session you’ll begin with a
“clean slate” — no variables will be defined

The same is true of running a program stored in a file

• when Python executes the first statement no variables are defined

• it’s up to you to assign values (or maybe import them from a library)

Display a List of Defined Variables [ipython]

If you are using ipython you can type who or whos to see a list of names
defined for the current session

In [8]: who  
A_long_name_is_allowed_but_is_hard_to_read  
alpha x year_1_total

In [9]: whos  
Variable Type Info 

A_long_name_is_allowed_but_is_hard_to_read int 0 
alpha float 0.4 
x int 42 
year_1_total int 125

�16 Bi 410/510 Spring 2018

Variables Can Be Modified

In Python variables can change their values over time

• FYI: some languages also have symbols that keep the same value all
the time (“constants”)

Example

In [1]: n = 5

In [2]: n * 10  
Out[2]: 50

In [3]: n = 10

In [4]: n * 10  
Out[4]: 100

�17 Bi 410/510 Spring 2018

Assign a new value to n

Same expression, different result

A Common Construct

We often talk about updating or incrementing a variable

• we want to assign a new value based on the current value

A very common construct (in almost all languages, not just Python):

x = x + 1

It seems illogical, but all it means is “evaluate x + 1 using the current value
of x and then set x to the result.”

Another Assignment Operator

This construct is so common Python has a special assignment operator
we can use:

x += y

means “update the value of x by adding y”

In [10]: x = 10

In [11]: x += 1

In [12]: x * 2  
Out[12]: 22

�18 Bi 410/510 Spring 2018

Strings

Programs deal with text as well as numbers

• in Python a piece of text is called a string

When you define a string enclose the text in single or double quotes:

In [1]: name = 'Fred'

In [2]: prolog = "It was a dark and stormy night..."

In [3]: start_codon = "ATG"

In [4]: mood = '😀 '

In [5]: uh_oh = 'I am \U0001F61F'

In [6]: whos

Variable Type Data/Info  

mood str 😀  
name str Fred  
prolog str It was a dark and stormy night... 
start_codon str ATG  
uh_oh str I am 😟

�19 Bi 410/510 Spring 2018

Note how the value does not include the quotes —
they’re just used to delimit the text when you define
the string

\u or \U introduces a
Unicode escape sequence

Our First Program

Let’s use what we’ve seen so far to write our first Python program

We want to write a program that converts temperature from Fahrenheit to
Celsius using the equation

• define a variable named f with the value we want to convert (e.g. 50)

• use arithmetic expressions to compute the result

• use a print statement to print the output message

Example (assuming f is set to 50):

$ python cels.py

50 F = 10.0 C

�20 Bi 410/510 Spring 2018

C =
5

9
⇥ (F � 32)

Sandbox

Before we start writing the program it’s worth taking some time to make
sure we can do the calculation in Python

Start an interactive session (either python or ipython) and define a
variable named f with some temperature value

• choose a value where you know the answer, e.g. 77℉ = 25℃

In [1]: f = 77

Now try typing some expressions to see how Python does the
calculations.

• Hint: start with small parts, then combine those into the final
expression

In [2]: f - 32  
Out[2]: 45

In [3]: 5/9  
Out[3]: 0.5555555555555556

In [4]: 5/9 * f - 32  
Out[4]: 10.777777777777779

In [5]: 5/9 * (f - 32)  
Out[5]: 25.0

�21 Bi 410/510 Spring 2018

☠ A bug! What did
Python do here?

This is right — subtract
32, then multiply by 5/9

Expert Tip: Use ipython for Interactive Experiments

What I showed on the previous page is an example of a very compelling
reason for why Python is so popular.

🔷 Take advantage of Python’s ability to work interactively by setting up
“interactive experiments” to test code, then put it in your program.

Once you have figured out what you need add it to your program, or even
copy and paste from the interactive session into your program file.

�22 Bi 410/510 Spring 2018

If you ever find yourself asking “what happens if …” or
“is … legal in Python?” set up an interactive experiment
and try it out

cels.v1.py

Here is the first version of the program — just assign values to f and c
and print the results

�23 Bi 410/510 Spring 2018

Notes:

print is a function (in Python 3)

pass it any number of items, Python will print
them all, separated by spaces

this call is passed a float, a string, another
float, and another string

See cels.v1.py on Canvas

Operations with Strings

We can write expressions where the data and variables are strings.

The + symbol tells Python to attach one string to another:

In [7]: name  
Out[7]: 'Fred'

In [8]: fullname = 'Weasley' + ', ' + name

In [9]: fullname  
Out[9]: 'Weasley, Fred’

The * symbol tells Python to repeat a string a specified number of times:

In [10]: s = 'no!'

In [11]: s * 3  
Out[11]: 'no!no!no!'

�24 Bi 410/510 Spring 2018

Important concept: The meaning of an operator (+, -, *, etc)
depends on the types of the operands in the expression

Substrings

If s refers to a string, the notation s[i] stands for "the character at
location i in s”

• pronounced “s sub i”

• based on mathematical notation: si

Important: the first character is at location 0

In [13]: first = 'Hermione'

In [14]: last = 'Granger'

In [15]: first[0]  
Out[15]: 'H'

In [16]: last[3]  
Out[16]: 'n'

In [17]: first[0] + last[0]  
Out[17]: 'HG'

In [18]: last + ', ' + first[0]  
Out[18]: 'Granger, H'

�25 Bi 410/510 Spring 2018

Functions

An expression can also contain function names

• examples are sin, cos, sqrt (square root) from math

• there are also string functions like len (length) and split (used to
break a string into smaller pieces)

Some terminology:

• when we use a function we say we call the function, or that an
expression contains a function call

• the function is passed one or more arguments

• the arguments are written in parentheses after the name of the
function

• functions return results which are used by the rest of the expression

�26 Bi 410/510 Spring 2018

Examples of Function Calls

(1) Pass a floating point number to int, it will return an integer (by
truncating)

In [24]: int(3.75)  
Out[24]: 3

(2) round is similar but “rounds off” to the nearest integer:

In [25]: round(3.75)  
Out[25]: 4

(3) pow takes two arguments, n and m, and returns the value of nm:

In [26]: pow(2,8)  
Out[26]: 256

(4) len returns the number of characters in a string (note that spaces and
punctuation are counted as characters):

In [28]: fullname  
Out[28]: 'Weasley, Fred'

In [29]: len(fullname)  
Out[29]: 13

�27 Bi 410/510 Spring 2018

When a function has two
or more arguments they
are separated by a comma

Functions Return Values

These examples emphasize the fact that when we call a function it returns
a value that we can use just like other values:

In [1]: s = 'One fish, two fish, red fish, blue fish'

In [2]: x = 12

In [3]: y = 7

In [4]: n = len(s)

In [6]: z = max(x,y)

In [7]: whos

Variable Type Data/Info  

n int 39  
s str One fish, two fish, red fish, ... 
x int 12  
y int 7  
z int 12

In [8]: len(s) * max(x,y)  
Out[8]: 468

�28 Bi 410/510 Spring 2018

Cleaning Up cels.py

Let’s use round to clean up the output of cels.py

This is what we want to see when we convert 70℉ to Celsius:

$ python cels.py  
70 F = 21.1 C

We can do this by calling round with two arguments. If we pass a second
argument it used as the number of digits after the decimal place:

In [1]: c = (5/9) * (70-32)

In [2]: c  
Out[2]: 21.11111111111111

In [3]: round(c)  
Out[3]: 21

In [4]: round(c,1)  
Out[4]: 21.1

In [5]: round(c,4)  
Out[5]: 21.1111

�29 Bi 410/510 Spring 2018

Note again that I’m using an
interactive session to make sure
I know how round works before
I put it in my program…

Challenge: Download
cels.v1.py, modify it so the
output temperature is printed
with 1 decimal point

Libraries

The functions used in examples so far (round, len, max, etc) are built-in
functions

Other functions need to be imported from a library using an import
statement

In [1]: sqrt(9)  
NameError: name 'sqrt' is not defined

In [2]: from math import sqrt

In [3]: sqrt(9)  
Out[3]: 3.0

In [4]: from random import randint, normalvariate

In [5]: randint(1,10)  
Out[5]: 2

In [6]: normalvariate(100, 15)  
Out[6]: 108.43290270761828

Some libraries also have useful variables as well as functions:

In [10]: from math import pi, cos

In [11]: pi  
Out[11]: 3.141592653589793

In [12]: cos(2*pi)  
Out[12]: 1.0

�30 Bi 410/510 Spring 2018

Libraries (cont’d)

When you installed Python you got several dozen libraries

For the projects in this class if you need a library function we’ll give you all
the information you need

• the name of the library

• the name of the function

• examples of how to call the function

You are welcome to browse the online documentation to see if there are
other functions you might find useful

There are also tons of “third-party” libraries. Some that you got when you
installed conda and that we’ll use later in the term are:

pandas		 	 functions for creating and using “data frames”  
	 	 	 	 (2D tables similar to spreadsheet tables)

numpy, scipy	 numerical processing, including statistics

matplotlib	 	 functions for data visualization, comparable to R

�31 Bi 410/510 Spring 2018

Command Line Arguments

The next topic is going to help us make more useful programs

The idea is to be able to get values from the command line when we run
a Python program

For example, it would be nice if we could specify the value of the
temperature to convert when we run cels.py instead of having to edit the
program each time

$ python cels.py 50  
50.0 F = 10.0 C

$ python cels.py 70  
70.0 F = 21.1 C

$ python cels.py 100  
100.0 F = 37.8 C

$ python cels.py 32  
32.0 F = 0.0 C

$ python cels.py 0  
0.0 F = -17.8 C

�32 Bi 410/510 Spring 2018

argv

To get values from the command line we need a variable named argv that
is defined in the sys library

• “argv” is short for “argument vector”

• in Python it’s a list — we’ll learn more about lists next week, but for
now we just need to know how to access the command line
arguments

Add this import statement to the front of the program:

from sys import argv

Now we can use the notation argv[i] to refer to “command line
argument number i”

• if a program wants to access the command line arguments it refers to
them as argv[1], argv[2], etc

cels.py Command Line

Our cels.py program will have one argument

• the expression argv[1] refers to the Fahrenheit temperature
specified by the user on the command line

�33 Bi 410/510 Spring 2018

argv is a List of Strings

An important detail: all the items in argv are strings

When we start the program with

$ cels.py 50

the OS stores the string '50' in argv[1]

Know the Difference Between a Number and a String of Digits

• a number is an abstract quantity from math

• a string is a sequence of characters; we use a string of digits to refer
to the name of a number

In [1]: s = '50'

In [2]: t = 50

In [3]: whos  
Variable Type Data/Info  

s str 50  
t int 50

�34 Bi 410/510 Spring 2018

Type Conversion

For cels.py to use the command line argument as a temperature value it
has to convert it to a float

In Python the names of types — int, float, str — are also the names of
functions

call int(x) to convert x into an integer

call float(x) to convert x to a float

call str(x) to create a string from the name of x

In [4]: int(13.7)  
Out[4]: 13

In [5]: float(13)  
Out[5]: 13.0

In [6]: str(13)  
Out[6]: '13'

In [7]: float('50')  
Out[7]: 50.0

In [8]: int('50')  
Out[8]: 50

�35 Bi 410/510 Spring 2018

Final Version: cels.py

Here is the new version of the Celsius program (see cels.py on Canvas)

On line 5 replace

f = 50

with

f = float(argv[1])

�36 Bi 410/510 Spring 2018

Style Notes

We didn’t have to save the value of argv[1] in the variable f

For that matter we didn’t have to save the result of the expression in c

This program could be written as a simple “one-liner”:

print(round((5/9) * (float(argv[1])-32), 1))

(1) Assignments Simplify Expressions

Creating variables f and c makes the print statement much easier to read

This is generally a matter of taste, and the tradeoff is adding extra lines
and figuring out good names for the variables.

(2) Avoid argv in Expressions

This rule is more strict: avoid references to argv in the main part of the
program

Always start by saving values from argv in variables

�37 Bi 410/510 Spring 2018

