Bi 410/510: Introduction to Programming for Biologists
Spring 2018

Project 5: I/0

To complete this project you need to write five small Python programs that read and write data files. Put all
five programs in a single folder named io and compress the folder:

$ zip -r io.zip io

Upload io.zip to Canvas as your submission for Project 5.

Note: The examples for each program show the results of calculations. You do not have to print your results
in the same format — we’ll be looking for correct results and good style but not the same exact output format.

Data

For project 2 (Shell Commands) you worked with a folder named sim. You’ll need that folder again for
this project. We suggest either moving sim to the directory you're using for this project or downloading
sim.zip and making a fresh new copy.

You'll also need copies of two other files on Canvas, genetic_code.csv and amino_acids.py. Down-
load these files and save them in the same folder as your programs.

Program 1: Clusters

A subfolder of sim named clusters has a file named clusters.txt, which is a TSV file produced by a
program that analyzes DNA sequences and organizes them into clusters of similar sequences. The relevant
information for this project is in the first two columns of each line:

* Column 1 has a sequence ID, which is a long string that starts with a series of numbers and ends with
" size=" (you'll use the size in the next project, but ignore it for now).

* Column 2 has a string, either ' otu’ or ‘match’.

Write a program named clusters.py that reads a cluster description file and prints the sequence ID field
for every OTU, i.e. for every record that has ’ otu’ in the second column. This is what the first three lines
should look like for this data set:

$ python clusters.py sim/clusters/clusters.txt
715:51:674:768;1d=2007; size=36
810:412:436:962;1d=119;size=14
259:174:253:24,;1id=2281;size=11



Program 2: Cluster Size

Write a program named cluster_size.py that will read a cluster description file and compute some
statistics about cluster sizes.

Hint: see the lecture notes (10.html) for examples of code that extracts the cluster size from
the ID string on each line.

The program should print the number of clusters, the total number of sequences in all clusters, and the mean
cluster size. For example, suppose there are three clusters in a file:

30:321:33:30;1d=940;size=10 otu 74.8 % 715:51:74:768;1id=20
61:325:49:19;1d=295;size=7 otu 83.0 % 715:51:74:768;id=20
93:074:93:31;1d=200;size=5 otu 85.4 %« 715:51:74:768;id=20

The sizes are 10, 7, and 5, so the total number of sequences is 22 and the mean cluster size is 7.33.

This command shows how to run the program on the sim data and the result I got for clusters.txt:

$ python cluster_size.py sim/clusters/clusters.txt

number of clusters: 11
number of sequences in clusters: 99
mean cluster size: 9.0

Program 3: Translate

Write a program named translate.py that will translate a DNA sequence into an amino acid sequence.
The command line arguments are the name of a file with a genetic code and the DNA sequence to translate.

For the previous project you wrote a program that iterated over a DNA string and printed each codon. On
this project you want to look up each codon in a dictionary to find the corresponding amino acid letter and
then append that letter to your output string.

The dictionary that maps codon strings to amino acid letters should be defined by reading the genetic code
file you downloaded from Canvas (genetic_code.csv). The lecture notes (Dictionaries.html) show
how to do create this dictionary.

Here is an example with a valid input string, where all letters are in the “DNA alphabet” and the length of
the input is a multiple of 3:

$ python translate.py genetic_code.csv GATTACATG
DYM

This example shows how to handle other cases. There is a non-DNA letter in the second codon, and the
input has 10 letters. The output has question marks for both cases:

$ python translate.py genetic_code.csv GATXAAATGA
D?M?



Program 4: Codon Lists

Write a program named codon_lists.py. The command line argument is the name of a CSV file with a
genetic code, the same as in the previous project.

This program should create a dictionary named codons that maps an amino acid letter to a list of codons
for that amino acid. After you build the dictionary print it with a for statement that iterates over all the
keys in codons to print each list.

Here is an example of how to run the program and the first three lines of output you might see:

$ python codon_lists.py genetic_code.csv

A : ['GCT’, '"GCC’', "GCA', "GCG']

R [rcGT", 'CGC'", 'CGA', ’'CGG', "AGA', '"AGG']
N ["AAT'", "AAC']

Note that Python might print the lines in a different order, but the list associated with each letter should
always be the same.

Program 5: Molecular Weight

Write a program that computes the molecular weight of a protein. The command line argument passed to
the program will be an amino acid sequence. The output is just the sum of the weights of each amino acid.
Here’s an example:

$ python molecular_weight.py MLSVII
764.96

Molecular weights are defined in a dictionary named amino_acids. A Python file named amino_acids.py
has an assignment statement that creates this dictionary. Download the file from Canvas, and then either
copy and paste the definition into your program, or save the file in the same folder as your program and add
this statement to your program:

from amino_acids import =
Each item in the dictionary is a list of attributes for an amino acid. This example from an IPython session

shows how to import the dictionary definition and use the dictionary to look up the attributes of Alanine,
which has the symbol A:

In [1]: from amino_acids import =
In [2]: amino_acids[’'A’]
Out[2]: ['Alanine’, ’'Ala’, 'A’, 89.09]

The molecular weight is the last item in the list. To get the molecular weight of Alanine:

In [3]: amino_acids[’'A’][-1]
Out[3]: 89.09



