Bi 410/510: Introduction to Programming for Biologists
Spring 2018

Project 6: Scripts

To complete this project you need to answer one written question and write three small Python programs
that interact with the host operating system. Write the answer to Project 1 in a plain text file, put that file
and the Python programs in in a single folder named scripts, and compress the folder:

$ zip -r scripts.zip scripts

Upload scripts.zip to Canvas as your submission for Project 6.

Note: The examples for each program below show messages printed by the programs as they run. You do
not have to print your results in the same format — we’ll be looking for correct results and good style but not
the same exact output format.

Data

Most of the programs for this project work with the sim folder you used with Unit 2 (Shell Commands).
Copy the zip file (or download a new copy from Canvas) to the folder where you work on this project.

Unzip the folder each time you test a script. Some of your programs will change the contents of the sim
folder. To restore the folder to its original state before you run your script again, or before you start working
on the next project, delete the current folder and replace it with a new copy.

You can do both of these operations by typing two shell commands on a single line:

$ rm —-rf sim; unzip sim.zip

Program 1: mystery

A Python program named mystery.py is shown at the top of the next page. Explain what the program will
do if we run it in the sim folder with this command:

$ python mystery.py sim.cfg

Write your answer in a plain text file named mystery.txt and include it in the zip file with your programs.

Note: You can answer the question by typing in the program and running it, but we suggest you try to
answer it by reading and understanding the code.



from sys import argv
import os.path
import shutil

fn = argv([1l]

if not os.path.isfile(fn):
print ("no such file:’, £n)
exit ()

head, tail = os.path.split (fn)
base, ext = os.path.splitext (tail)

newfn = base + ’'.orig’ + ext
if os.path.isfile (newfn):
print (' copy exists’)

exit ()

shutil.copyfile (fn, newfn)

Figure 1: The Mystery Program

Program 2: temps

Write a program named temps.py that will convert temperature values from Fahrenheit to Celsius or vice
versa.

Use argparse to get the temperature value and to figure out which scale to convert from. The user should
specify either celsius or fahrenheit using --scale, and specify the temperature value with —-temp.

Examples:

$ python temps.py —--scale fahrenheit —--temp 32
0.0

$ python temps.py —--scale fahrenheit —--temp 212
100.0

$ python temps.py —--scale celsius —--temp 0
32.0

$ python temps.py —-—-scale celsius —--temp 100
212.0

Grading: Any program that uses argparse to get the command line values and produces the correct output
will earn 3 points. For full credit set up the argument parser so that (a) Fahrenheit is the default scale, (b)
the only possible values for the ——scale option are fahrenheit and celsius, and (c) the temperature
is a required input.



Here are some examples of how a full-credit program would work:

$ python temps.py —--temp 100
37.8

$ python temps.py --scale kelvin —--temp 212
usage: temps.py [-h] [-—-scale {fahrenheit,celsius}] --temp TEMP
temps.py: error: argument —--scale: invalid choice: ’'kelvin’ (choose from ’fahrenheit’,

$ python temps.py —-—-scale fahrenheit
usage: temps.py [-h] [-—-scale {fahrenheit,celsius}] —--temp TEMP
temps.py: error: the following arguments are required: —--temp

Program 3: delete_empty

Write a program named delete_empty.py that will delete any empty files (files with size = 0) from a
folder.

The program should print a message with the name of a file that will be deleted. Three files in the unig
folder in sim are empty, so this is what you should see when you pass that file name to the program:

$ python delete_empty.py sim/unig

removing sim/unig/unique.l.fasta2.clstr
removing sim/unig/unique.3.fasta2.clstr
removing sim/uniq/unique.2.fasta2.clstr

Note: Since there is only one command line argument you do not need to use argparse for this project
(but you can if you want).

Hint: We strongly suggest you test your program and make sure it’s printing all the correct file names. When
you see the names you expect add the call to os . remove that actually deletes the files.

Program 4: move_logs

Write a program that searches a directory in the sim folder to find log files (files with names that start with
“log”) and move them to a folder named 1og (this program automates two of the operations you did for the
project in Unit 2).

You can assume your program will always be run in the same directory that contains sim. The program
should first see if there is a folder named sim/1log, and if not, create it. Then it should look in the folder
specified on the command line, and any files with names that start “log” should be moved to sim/1o0g. Hint:
use the glob function to get a list of all files with names that match 1og. *.

If your program prints a message as each file is moved this is what you will see if you tell it to move all the
log files in the merged folder:

$ python move_logs.py merged
moving sim/merged/log.l.txt
moving sim/merged/log.2.txt
moving sim/merged/log.3.txt

Using argparse is optional for this project, and we again strongly recommend testing your program thor-
oughly before adding the call to the function that actually moves the files.

'ce.



