© 2010-2011 by ACM. Original version in ACM Ubiquity. Reprinted here with permission.

doi:10.1093/comjnl/bxs068

Computation 1s Symbol Manipulation

JoHN S. CONERY

Computer and Information Science Department 1202 University of Oregon Eugene, OR 97403-1202
Corresponding author: conery@cs.uoregon.edu

Computation can be seen as symbol manipulation Indeed, a computation is a sequence of simple, well-

defined steps that can lead to the solution of a problem. The problem itself must be defined exactly

and unambiguously, and each step in the computation that solves the problem must be described
in very specific terms.

1. INTRODUCTION

For the last five years I have been teaching an introduction to
computer science for non-majors. As might be expected, one of
the first topics is “what is computation?”’. After reading Prof.
Denning’s article introducing this symposium on computation
[1], and considering earlier articles by both symposium editors,
I decided the definition in the textbook I wrote for the course
best captures my view of the essence of computation:

A computation is a sequence of simple, well-defined steps
that lead to the solution of a problem. The problem itself must
be defined exactly and unambiguously, and each step in the
computation that solves the problem must be described in very
specific terms. [2]

The keys to this definition, of course, are “problem” and
“step”. A more formal definition is that a problem, and its
solution, must be encoded in the form of symbols; a step is
a symbol manipulation that transforms one set of symbols into
anew set of symbols. In the rest of this paper, [ will use the term
state to refer to a collection of symbols, and transition to refer
to a step that maps an input state to an output state.

According to this definition, a computation is a discrete
process, a sequence of distinct transitions. A classic example
is the construction of a list of prime numbers using the Sieve
of Eratosthenes. One starts by writing a list of integers, starting
with two and ending with some upper limit. The list is the initial
state of the computation. The first step removes all multiples of
two-2, 4, 6, 8, etc. The next steps remove the multiples of three,
then multiples of five, and so on, until only prime numbers
remain. There are many ways to represent the integers and the
list structure in symbolic form. If the “technology" being used
is paper and pencil, numbers can be written as strings of digits,
and lists can be written as sequences of numbers separated by
commas. In a computer, the numbers are encoded in binary, and
one can use any of several different schemes for representing
lists as data structures.

This definition raises the question of whether a computation
necessarily involves multiple steps. It may appear to be
“cheating” to allow a computation to go from the initial state
to the final state in one step, but in fact that’s what happens in
functions that use memoization, where results of a computation
are stored in a table so they can be looked up the next time the
function is called. After using the sieve algorithm to compute
the list of primes less than some number n, the list is saved in
row n of a table. The next time we want the a list of prime less
than n the function looks in row 7 of the table to find the output.
This single step is a computation, just as much as the original
sifting operation was a computation; this second computation
simply maps an integer n to a list of primes less than n in a
single table look-up step.

A second question is about the size of a step. If we look
at how the sieve is implemented in a typical program, we
would see that what I described above as a single step—deleting
multiples of a given number—is actually a series of smaller
steps. A typical program will create a list of integers, and
iterate over the list to remove composite numbers. Each step
in the iteration removes one element from the list, and the
intermediate states can certainly be considered states of the
computation.

As computer scientists we recognize the grouping of several
individual sub-steps into a larger step as an example of
abstraction. Given a computation, it is almost always possible
to “look inside” a single state transition, and to describe it
as the result of a more detailed sub-computation that is itself
a sequence of state transitions. If we continue looking more
closely at the steps in the Sieve of Eratosthenes algorithm, the
decision of whether a number is composite is a sequence of
steps involving an application of the mod operator followed
by a test for the result equaling zero. Moving down to even
lower levels of detail when the algorithm is being run on a
computer, we can look at the sequence of steps at the machine

THE COMPUTER JOURNAL, Vol. 55 No. 7, 2012

2T0Z ‘62 dun uo 1s8nb Aq /610'sjeunopioxo” ju oy :dny wouy papeojumoq


http://comjnl.oxfordjournals.org/

COMPUTATION IS SYMBOL MANIPULATION 815

level, where the bit patterns in the CPU are passed to the
functional units that carry out integer division and comparison
with zero. We will eventually reach a point where it becomes
too difficult, or even impossible, to describe the operations
in terms of symbol manipulations, and simply conclude that
continuous operations-in the case of a computer, electronic
signals moving through a semiconductor VLSI chip-perform the
single state transition that carries out a primitive computation.
In practice, we only go to enough detail to convince
people that a step can be mechanized and performed by a
machine.

To recap, a computation is a sequence of state transitions,
where a state is defined by a set of symbols. It does not matter
if the transition is the result of several, more detailed, symbol
manipulations, or a single transition performed by an analog
device or some other system best described as continuous. The
size of a step also does not matter. A step might change only
one symbol, or it could replace all or part of the input state with
a completely new set of symbols. It could be as small as a bit-
level operation done inside an electronic computer, or a more
abstract rewriting operation involving letters, digits and other
symbols.

2. AGENTS, ALGORITHMS AND COMPUTATIONS

One aspect of computation that was not addressed above is the
role of the “agent” carrying out the computation. Clearly there
must be some structure to the computation, otherwise one could
claim any collection of random symbols constituted a state, and
any two unrelated states could form a computation. By calling a
sequence of states a “‘computation” one is implying that there is
some reason to correlate the states, and there is some process at
work to map all or part of the symbols of one state into symbols
in the next state.

In computer science the state transitions are defined by
algorithms. In considering the relationship between algorithms
and computations, the classic view is that an algorithm is a static
description of what will eventually become a computation, and
computations are dynamic sequences of observed states defined
by an algorithm (e.g., Dijkstra, 1976 [3]). The computations
that result from the execution of an algorithm are what give
us the sense that computations are sequences of states, rather
than a single “leap of faith” from an input state to an output
state. Algorithms allow us to break a complex problem into
smaller parts, and the working of an algorithm gives us
confidence that the computation is progressing inexorably
toward a final solution. The correctness of the algorithm is
an argument or proof that it always leads to the proper final
solution.

To return to the example of a computation that produces a
list of prime numbers, the steps in the Sieve of Eratosthenes
algorithm are simple enough that we can prove the final result
is correct. The algorithm leads to a systematic construction of a

list of prime numbers, and we are convinced no prime number
less than n has been left out of the list, and that every number
in the final list is prime. The memoized version that looks up
the answer in a table is convincing, but only because we have
confidence in the computation that produced the table entry in
the first place.

One of the questions raised by Denning [1] is whether a
continuous physical process could be considered a computation.
According to the definition of computation presented above,
there is no reason why a continuous device could not be the
agent behind a computation. Any process that maps an input
state to an output state, where each state is a collection of
symbols, can be considered a computation. In fact, we can go
one step further, and claim that every computation carried out by
aphysical system, whether it is an electronic computer, a human
brain, or any other device, is ultimately the result of continuous
operations. As we look lower in the levels of abstraction, and
decompose the individual steps of a computation into simpler
and simpler sub-steps, we eventually reach a point where the
most primitive operations are best described as the result of
continuous processes. We rarely go this far, however, because
at some point the steps are simple enough that we trust they are
correct steps specified by an algorithm. We think of a computer
as a discrete device because we are only concerned that bit
patterns change in a well-understood manner, and (unless we’re
computer engineers designing the circuits) we don’t bother
trying to describe the inner working of the continuous device
that is ultimately responsible for the computation. The important
point is that the computation is defined by the sequence of
symbolic states, not the nature of the agent that carries out the
computation.

If we want to use the metaphor of computation to describe
natural processes, such as DNA translation, we can allow for
other agents besides computers or humans who are following
the steps of an algorithm to be the sources of the states in
a computation. To put it another way, while it may be the
case that the execution of an algorithm defines a computation,
the converse is not necessarily true: not all computations are
defined by an algorithm. As a computation, DNA translation
is a mapping from strings of letters representing nucleotides
into strings of letters representing amino acids. In this case,
a biochemical process is the agent responsible for the state
transitions.

It’s interesting to note that this computation also has levels
of abstraction. The high level mapping from gene sequence to
protein sequence has intermediate steps that can themselves
be described as symbol manipulations. A sequence of DNA
is transcribed (copied) into a messenger RNA sequence, and
then a series of operations transform the mRNA by adding
a “cap” and a “tail” and splicing out unused portions of
the gene (see for example Hunter, 1985 [4]). At the lowest
level, a continuous physical process is responsible for the
discrete states we use to describe the complete process of gene
expression.

THE COMPUTER JOURNAL, Vol. 55 No. 7, 2012

2T0Z ‘62 dun uo 1s8nb Aq /610'sjeunopioxo” ju oy :dny wouy papeojumoq


http://comjnl.oxfordjournals.org/

816 J.S. CONERY

3. INDEFINITE COMPUTATIONS

Interactive computations [5], which involve human agents, are
another example where state transitions are not always the result
of an algorithm. In these systems, actions by human users are
encoded symbolically (for example, the x and y coordinates
of a pointer when it is clicked, the names of a character and
modifiers when a key on a keyboard is pressed, digitized voice
commands) and injected into the computation, where they can
be acted upon by algorithms.

A question raised in the literature on interactive computing
is whether computations can be non-terminating. In the
classic view, where computations are defined by algorithms,
computations are always finite, because algorithms must
terminate in order to ensure their outputs are well-defined.
Common examples used to explain the need for an interactive
model that would include non-terminating computations are
applications with graphical user interfaces, operating systems,
and networks of web-based services.

I prefer to think of interactive computations as indefinite
instead of infinite or non-terminating. Indefinite computations
are also controlled by algorithms, and these algorithms do
include conditions for terminating. Interactive applications have
“quit” commands that close files and release other resources.
Operating systems have commands that shut down the system,
telling it to flush buffers, signal applications and daemons to
exit, etc. A web server includes code that will cause it to
exit gracefully, finishing up any pending requests before it
can be restarted with a new configuration. What keeps these
computations going indefinitely is the fact that they are set up
to process inputs until a halt or exit command is seen. In a
hybrid system, where a state includes symbols generated by
algorithms, humans, remote systems, and other sources, the
computation continues as long as there are requests. All that
is required of the algorithms in such a system is that they map,
in finite operations, a portion of one state of the computation to
a portion of a successor state.

Another example of an indefinite computation is an
implementation of the Sieve of Eratosthenes in a lazy functional
language such as Haskell (see Hudak, et al., 2007 [6D'.
Interestingly, the sieve function in such a language typically
does not have a terminating condition. At first glance, the code
looks like the definition of a nonterminating process, and if
the code was to be evaluated by a strict (non-lazy) interpreter
it would be caught in an infinite loop before it generated

ISeveral different techniques for generating prime numbers, including
a lazy implementation of the Sieve of Eratosthenes, are described at
http://www.haskell.org/haskellwiki/Prime_numbers

any output. But when the code is evaluated by the Haskell
interpreter, it generates output on demand. The interpreter will
set up process to carry out the computation of the list of primes,
then suspend until a user or some other part of computation
asks for an element from the list. When a request is made,
the algorithm activates, computes the requested item, and then
suspends again, just as an operating system or other interactive
computation suspends until it receives another request.

4. CONCLUSION

To summarize, a computation is a discrete process, a sequence
of states that are defined by symbols. The transition from one
state to another is the result of some process or collection of
processes, where a process could be an algorithm being executed
on a single computer, a human interacting with an application
running on a computer, another computer at a remote site on the
Internet, or physical or biological systems that have states that
can be represented symbolically.

ABOUT THE AUTHOR

John S. Conery is a Professor of Computer and Information
Science and a member of the Center for Ecology and
Evolutionary Biology at the University of Oregon.

REFERENCES

[1] Denning, P. J. (2012) What is computation?: Editor’s
introduction. Comput. J., this issue.

[2] Conery, J. S. (2010)Explorations in Computing. CRC Press.

[3] Dijkstra, E. W. (1976)A Discipline of Programming. Prentice
Hall, Inc.

[4] Hunter, L. (1985) Artificial Intelligence and Molecular
Biology. MIT Press. Available online at http://www.aaai.org/
AlTopics/pmwiki/pmwiki.php/AlTopics/Artificiallntelligence
AndMolecularBiology.

[5] Goldin, D. Q., Smolka, S. A., and Wegner, P. (2006)Interactive
Computation: The New Paradigm. Springer.

[6] Hudak, P, Hughes, J., Jones, S. P., and Wadler, P. (2007) A history
of haskell: Being lazy with class. HOPL Ill: Proceedings of the
Third ACM SIGPLAN Conference on History of Programming
Languages, New York, NY, USA. ACM.

THE COMPUTER JOURNAL, Vol. 55 No. 7, 2012

2T0Z ‘62 dun uo 1s8nb Aq /610'sjeunopioxo” ju oy :dny wouy papeojumoq


http://www.haskell.org/haskellwiki/Primeprotect LY1	extunderscore numbers
http://www.aaai.org/AITopics/pmwiki/pmwiki.php/AITopics/ArtificialIntelligenceAndMolecularBiology
http://www.aaai.org/AITopics/pmwiki/pmwiki.php/AITopics/ArtificialIntelligenceAndMolecularBiology
http://www.aaai.org/AITopics/pmwiki/pmwiki.php/AITopics/ArtificialIntelligenceAndMolecularBiology
http://comjnl.oxfordjournals.org/

	1 Introduction
	2 Agents, Algorithms and Computations
	3 Indefinite Computations
	4 Conclusion

