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Abstract 
Logic programs offer many opportunities for 

parallelism. We present an abstract model that 
exploits the parallelism due to nondeterministic 
choices in a logic program. A working interpreter 
based on this model is described, along with 
variants of the basic model that are capable of 
exploiting other sources of parallelism. We 
conclude with a discussion of our plans for 
experimenting with the various models, plans which 
we hope will lead eventually to a multi-processor 
machine. 

I. Introduction 
Kowalski [3] assigned a procedural semantics to 

predicate calculus, so that logic could be used as 
a programming language. More specifically, logic 
ro~in~ refers to programming with Horn 
clauses. Prolog is a high-level applicative 
language based on logic programming. The language 
was originally implemented in Marseilles [9, 2] as 
a tool for building natural language front-ends. 
Since then the language has been implemented on a 
number of different computer systems (c.f. [6]) and 
has been used for research and application 
development, primarily outside the United States. 
Pure research using the language has been done in 
such diverse areas as plane geometry, learning, 
generalization, planning, symbolic calculus, 
natural language understanding, s p e e c h  
understanding, chess, query optimization, and 
robotics. Applications have included compilers, 
i n t e r p r e t e r s ,  d e b u g g e r s ,  d r u g  i n t e r a c t i o n  
prediction, architecture design aids, CAI, and 
small data bases. 
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The first compiler was written by Davi d 
Warren [II] for the DEC-10 and both the interpreted 
and the compiled code are comparable to LISP in 
terms of execution speed. The DECsystem-lO 
interpreter [6] uses a depth first search of the 
AND/OR tree defined by the program. There are a 
number of other, more "intelligent" interpreters. 
IC-Prolog [1] has control annotations to help guide 
the search by using certain runtime information. A 
selective backtracking interpreter [7, 8] keeps 
track of where values are created, so that if a 
value later causes a failure, the interpreter can 
backtrack directly to the source of the error. 
David Warren [12] has written an interpreter which 
dynamically reorders the order of goals to be 
executed. 

All of the above mentioned efforts aim at 
increasing the efficiency of logic programs 
executing on a computer with a single processor. 
In this paper we present a model for parallel 
interpretation of logic programs. Eventually we 
will design a multiple processor system to carry 
out this parallel interpretgtion, but here we 
confine our discussion to the issues of 
parallelism. 

The remainder of this paper is divided into six 
sections: 

Section 2 is a bare bones introduction to logic 
programs with some sample computations. This 
section is intended for readers who are not 
familiar with logic programming or the Prolog 
language, and may be skipped without loss of 
context. 

Section 3 outlines four types of parallelism 
possible with logic programs, and in section 4 we 
present the abstract model for parallel 
interpretation of logic programs. Our philosophy 
in this section is to give a model of parallel 
computation which is as simple as possible. For 
example, we do not address the problems of 
processor allocation nor of message structures. 

Section 5 discusses one concrete realization (in 
the form of an interpreter written in Prolog) of 
the abstract model. Some elaborations of the 
abstract model are given here. 

Section 6 presents some alternatives and 
extensions of the basic model. These alternatives 
exploit sources of parallelism that are ignored in 
the simple model of section 4. 
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Finally, section 7 outlines the form that our 
experiments will take, the statistics that we will 
gather and the results we hope to obtain. 

2. Logic Programming 
This section contains definitions, some simple 

logic computations, and a brief introduction to 
Prolog (using the syntax of DECsystem-10 Prolog). 
We only discuss the procedural semantics of Prolog; 
the declarative semantics can be found in [4]. 

A logic program consists entirely of a set of 
clauses. Clauses can be either implications (which 
are described later) or assertions. The following 
is a simple Prolog program which has two 
assertions: 

mother(peg,judy). 
mother(judy,kara). 

In this example the words "peg, judy, and kara" are 
constants and the word "mother" is a functor of two 
arguments. An ato___~m is a constant (an uninterpreted 
symbol) or an integer. Constants are denoted by 
strings which begin with a lower case letter. 
Variables are denoted by strings which begin with 
an upper case letter. A te~ is a variable or an 
atom or a functor of n-arguments, where each 
argument is itself a term. An example of a more 
complicated term is 

fee(Fie,foe(3,fum(2,Foo)}). 

Terms are the basic data structure provided in 
Prolog. 

To use a program, the user supplies a term or a 
list of terms, which are called goals. Some 
example queries and responses are: 

query response 

mother(peg,judy), yes. 
mother(peg,kara), no. 
mother(X,judy). X=peg. 
mother(X,Y). X=peg,Y=judy. 
mother(X,X), no. 

* mother(X,Y),female(Y), no. 
mother(X,Y),mother(X,kara). X=judy,Y=kara. 

To answer a query, the Prolog interpreter 
pattern-matches each goal of the query against the 
list of clauses in the program. This list of 
clauses is often referred to as the data base. The 
particular pattern matching algorithm used is 
unification. Unification accepts two terms, which 
may contain variables. Two terms can be unified if 
there is a substitution for the variables that 
makes the terms identical. For example, the two 
terms p(X,a) and p(b,Y) can be unified by the 
substitution {X/b,Y/a}, meaning substitute "b" for 
X and "a" for Y, to give the single term p(b,a). 
Unification is more general than most pattern 
matching algorithms since it allows pattern 
variables in both terms. The use of variables in 
Prolog is analogous to the use of dummy Variables 
in mathematics, in that the "scope" of a variable 
is simply the clause in which it appears. 

The standard Prolog interpreter solves a 
conjunction of goals by working from left to right, 
unifying each term with the data base. When a term 
unifies with some assertion in the data base, the 

substitution generated is applied to the remaining 
terms in the query. This continues until either no 
terms are left, indicating success, or until some 
term cannot be unified with any assertion in the 
data base, at which point backtracking (explained 
later) occurs. This process explains how queries 
up to query * are answered. 

To understand the answer to * requires an 
understanding of ............. Prolog can solve 
the first goal with substitution {X/peg,Y/judy}. 
However, there are no assertions for female, so the 
goal female(judy) fails. When Prolog fails to 
solve a goal, it backtracks, i.e. it tries to find 
a different solution to the most recently solved 
goal. Thus, in our example the goal mother(X,Y) is 
retried and the substitution {X/judy,Y/kara} is 
found. Now the goal female(kara) is attempted, and 
fails since there are still no assertions for 
female. For the third time Prolog tries to solve 
mother(X,Y). It is unable to find any solution and 
fails, responding "no". Notice that if the query 
were 

female(Y),mother(X,Y). 

then failure would have been immediate. 

Now let us extend our program by adding the 
clause 

female(X):-mother(X,Y). 

Our program now appears as 

mother(peg,judy). 
mother(judy,kara). 
female(X):-mother(X,Y). 

The third clause is an example of an implication. 
An implication has the form 

head:-body. 

where the head is a single term and the body is a 
(possibly empty) list of terms. Note that an 
implication with an empty body is an assertion. 
The terms in either the head or the body may 
contain variables. As mentioned before these 
variables may be viewed as being local to the 
clause. Using our new program, let us return to 
query * and redo the computation. We need to 
extend our understanding of the interpreter to 
allow for the processing of implications. 

To solve a goal list, the first goal is removed 
from the list and matched against the heads of 
clauses in the data base. Variables are renamed so 
no clauses have variables in common. If the goal 
matches an assertion, the action taken is as 
before. If the goal matches the head of an 
implication, the body of the implication replaces 
the head in the goal list, and the substitution 
generated by the match is applied to the new goal 
list. The interpreter repeats this cycle until the 
goal list is empty. Whenever a goal fails, 
backtracking occurs. If backtracking leads back to 
the first goal and there are no more alterna1:ives 
for solving that goals then the interpreter reports 
failure. 

Looking at this computation with respect to 
query *, we see that solving the first goal 
establishes t h e  substitution {X/peg,Y/judy}. These  
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/* Here are two ways of defining the grandfather relationship: 
/* I) X is the grandfather of Z if X is the father of some Y 
/* and Y is the father of Z. 
/* 2) X is the grandfather of Z if X is the father of some Y 
/* and Y is the mother of Z. 

gf(X,Z) :- f(X,Y), f(Y,Z). 
gf(X,Z) :- f(X,Y), m(Y,Z). 

/* these assertions define our database: 

f(curt,elaine). 
f(dan,pat). 
f(pat,john). 
m(elaine,john). 
m(marion,elaine). 

f(sam,larry). 
f(larry,den). 
f(larry,doug). 
m(peg,den). 
m(peg,doug). 

/* here are some sample queries, annotated with the actions of the 
/* DECsystem-10 interpreter 

step goals to be solved matching unifying 
clause substitution 

[I] gf(sam,G) gf(X,Z) :- f(X,Y),f(Y,Z) {X/sam,Z/G} 
[2] f(sam,Y),f(Y,G) f(sam,larry) {Y/larry} 
[3] f(larry,G) f(larry,den) {G/den} 
[4] <none> 

* /  
* /  
* /  
* /  
* /  

* /  

* /  
* /  

/* The variable G in the original list was bound to "den", thus 
/* the answer is "den" is a grandson of "sam". 

/* This next query can be read as "is there any pair (A,B) such 
/* that A is the grandfather of B?" 

* /  
* /  

* /  
* /  

[I] gf(A,B) gf(X,Z) :- f(X,Y),f(Y,Z) {X/A,Z/B} 
[2] f(A,Y),f(Y,B) f(curt,elaine) {A/curt,Y/elaine} 
[3] f(elaine,B) <none> 
[4] f(A,Y),f(Y,B) f(dan,pat) {A/dan,Y/pat} 
[5] f(pat,B) f(pat,john) {B/john} 

/* The answer is A = "dan" and B = "john" 

/* NOTE: after Prolog produces an answer, the user may force it to 
/* backtrack, and answer the query in another way. Thus, 
/* backtracking would answer G = "doug" to our first query, and 
/* generate all grandfather-grandson pairs in response to the last 
/* query. 

Figure 2-I: Example of a Prolog Program 

* /  

* /  
* /  
* /  
* /  
* /  

bindings are transmitted to the rest of the body. 
The new goal list is female(judy). This matches 
the third clause of the data base with the first 
argument bound to judy and the second argument 
unbound. The goal list becomes mother(judy,Y') 
where Y" is an arbitrary new variable name. Since 
mother{judy,Y') unifies with a member of the data 
base and there are no more goals remaining to be 
solved, the interpreter returns X=judy. 

A more complicated example of a Prolog program 
is given in figure 2-1. Later we will show how our 
parallel interpreter performs the same computation. 

References [I], [3], [5], and [6] are other 
descriptions of logic programming and va#ious 
P Krolo~ iaterpre~er s. 

3. Parallelism 

The opportunities for parallelism based on logic 
programs are manifold. To be specific, suppose we 
had the task of solving the goal list 
f(X,Y),g(Y),h(Z). By this we mean we must find 
terms for X, Y and Z which will simultaneously 
solve each of these goals. Suppose also that the 
data base or logic program had fl clauses whose 
head term began with f. Let gl and hl be defined 
analogously. With this context let us define 
several types of parallelism. We will rely on an 
intuitive understanding of terms such as 
processors, processes, and messages. 

A single term may unify with the heads of many 
clauses in the data base. By OR parallelism we 
mean assigning a process to solve each body whose 
head unifies with the term. For instance, OR 
parallelism for the term f(X,Y) would lead to fl 
concurrent processes. Note that this form of 
parallelism replaces backtracking. 
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By AND parallelism we mean simultaneously 
starting processes to solve each of the goals of 
the body. For the example at hand, this means 
starting three processes, one for f(X,Y), another 
for g(Y), and a third for h(Z). Since all of these 
goals eventually need to be solved, one might try 
to start working on each goal as soon as possible. 
However since the goals are interrelated, answers 
to one goal may limit the number of choices for the 
others. For example, each answer to f(X,Y) may 
uniquely determine Y, while g(Y) may have a large 
number of solutions. More generally, if it is 
known that fl is small and gl is large it is best 
to solve f before g. Conversely if gl is large and 
fl small, one would want to solve g before f. Such 
an approach for solving a conjunct of goals is 
recommended by Warren [12]. Solving for the goals 
h(Z) and g(Y) in parallel is reasonable, and is a 
form of parallelism that we plan to incorporate in 
our future interpreters based on the model of 
section 4. 

By stream parallelism we mean the eager 
evaluation of structured data, which can be treated 
as a stream. For example one might begin testing 
for membership in a list while the list was being 
constructed. Clark and McCabe [I] and van 
Emden [I0] explore this form of parallelism. 

By search parallelism we refer to the 
possibility of partitioning the data base into 
disjoint sets of c l a u s e s ,  permitting parallel 
searching of the data base. It could be used to 
initialize the OR parallelism. This would probably 
be best for programs that contained a large number 
of assertions, and might be necessary for large 
data bases. 

One problem with many physical implementations 
of parallel computation is that the overhead in 
setting-up the parallelism and the overhead 
associated with communicating among the processes 
may outweigh the advantages of the parallel 
computation. In anticipation of this, we are 
designing our model so that all processes will have 
roughly the same amount of work to do. 

4.  The Model 
In this section we present our abstract model 

for parallel interpretation of logic programs: the 
AND/0R model. The model is based on the concept of 
independent processes that communicate via 
messages. It is our long range goal to develop a 
multi-processor machine such that these processes 
can be executed in parallel. 

There are two types of processes: AND processes 
and OR processes. It is the basic task of an AND 
process to produce a solution for a conjunction of 
goals, whereas OR processes solve single goals. A 
"snap-shot" of the relationship among processes 
during the execution of a logic program would 
reveal an AND/OR tree, with AND processes as the 
descendants of OR processes, and vice versa. 

There are three types of messages: success, 
fai___!, and redo. Fail and success are always sent 
from a descendant to a parent; redo is always sent 
from a parent to a descendant. A success message 
contains one possible substitution that satisfies 
the goal(s) the process was created to solve. In 
the basic model, a process that sends a success 
message does no further work, but instead waits for 
instructions from its parent. A fail message 

indicates a final failure. A process sending this 
message indicates that there is no possible 
solution below it in the search space. After 
sending a fail message, a process terminates 
itself. A redo message is sent from a parent to a 
previously successful descendant; in effect this 
message says that the previous success message did 
not help the parent solve its own goal(s), and a 
different substitution is required. 

In the following sections we describe AND and OR 
processes in detail, the conditions under which the 
messages are sent, and how each process reacts to 
each type of message. 

4.1. OR Processes 

An OR process attempts t o  solve its single goal 
by I) finding every clause such that the head of 
the clause can be unified with the goal to be 
solved, then 2) applying the unifying substitutions 
to the corresponding clause bodies, and finality 3) 
starting up descendant AND processes to solve these 
bodies. 

If there are no clauses with matching heads, the 
OR p r o c e s s  fails immediately; it sends  its p a r e n t  a 
fail message and terminates itself. An OR process 
that creates descendants is in one of two modes: 

waitin~ mode or ~atherin~ mode. An OR process is 
in the waiting mode when its parent is waiting for 
an answer. An OR process is in the gathering mode 
when it has sent an answer to its parent and the 
parent is using that answer; in this mode, any 
further answers received from AND descendants are 
saved. For example, a process that creates three 
descendants is in waiting mode while those three 
descendants solve their corresponding goal lists in 
parallel. When a descendant sends back a success 
message, the OR process sends its own parent a 
success message and then goes into the gathering 
mode. Now when answers are received from the other 
two descendants, they are saved for future usej and 
not (yet) sent to the parent. 

The various messages and their effects on OR 
processes are as follows (this is summarized in 
figure 4-1): 

Success messages: 

- A process in the waiting mode uses the 
bindings in this message to create a 
success message for its own parent, sends 
this message, and goes into gathering 
mode. 

- A gathering mode process creates a 
success message, but instead of sending 
this message to its parent, the process 
adds the message to a list of messages 
waiting to be sent. 

Redo messages: 

- OR processes in the waiting mode will 
never be sent redo messages. There are 
three possible actions for a gathering OR 
process: if there are any success 
messages not yet sents one is selected 
and sent to the parent; otherwise if 
there are anY descendants still active 
(i.e. not all have sent fail messages), 

166 



then they are all sent redo messages, and 
the process goes into the waiting mode; 
otherwise the process fails. 

Fail messages: 

- A gathering OR process simply notes the 
fact that the descendant failed. 

- An OR process in the waiting mode does 
one of two things: if the descendant 
that sent the message was the sole 
remaining descendant, the process fails, 
otherwise the process notes that fact 
that the descendant failed. 

4.2. AND Processes 

This section is a description of the simplest 
possible AND process, one that does not attempt to 
exploit any parallelism in its goal list. In 
section 6.2 we discuss extensions to the model that 
achieve some AND parallelism. The simplest AND 
processes solve their conjunctions in a manner that 
is very similar to how a standard Prolog 
interpreter solves a goal list: a solution to the 
first goal is obtained; any variable bindings 
generated by this solution are applied to the 
remaining goals, and then the next goal is solved. 
This continues until all goals from the original 
list have been solved. If a goal cannot be solved, 
the previous one must be solved in a different way 
(so that a different set of variable bindings is 
produced). 

A solution to a single goal is obtained by 
starting a descendant OR process to solve the goal. 
Once the descendant h a s  been started, the AND 
process waits for a message (either success or 
failure) from that descendant. When a success 

message, which possibly contains a list of variable 
bindings, is received, the bindings are applied to 
the remaining goals, and a process is started for 
the next goal. If a fail message is received, the 
AND process must undo any bindings sent by the 
previous descendant, and then send that descendant 
a redo message. 

If an AND process obtains solutions for each of 
its goals, it sends a success message back to its 
own parent process. At a later time, the parent 
may request a different solution (via a redo 
message). If it does, the AND process reacts as if 
it had received a fail message from one of its 
descendants: the bindings from the most r e c e n t  
success message are undone, and the process that 
sent that success message is sent a redo message. 

A trivial AND process is one that was created to 
solve an originally empty goal list, i.e. its 
parent OR process matched an assertion, which is a 
clause with an empty body. This corresponds to a 
goal that always succeeds, and thus this process 
can in~nediately send its parent a success; a 
subsequent redo message causes a failure. 

If an AND process receives a fail message from 
the descendant that was created to solve the first 
goal in the conjunction, the AND process itself 
fails. 

5. An Interpreter 
We have written an interpreter based on the 

AND/OR model that simulates the actions of AND and 
OR processes as they work together on the solution 
of a single logic program. The interpreter is 
written in DECsystem-10 Prolog [6]. In this 
section of the paper, we will describe some of the 
interesting features of the interpreter, which 
extends the basic model, and present as an example 

Figure 4-1: The Effect of Messages on OR Processes 

r/s f/ 
s/s ~I 

at t i n g ~ r  

<error> 
f 

<fail> 

The letters r, f, and s stand for redo, fail, and success. 
A label x/y on an arc means that when the OR process receives message x 

it follows the transition and sends message y. 

Notes: 1. If a gathering OR process has a waiting message, it is sent, 
else if it has descendants, they are sent redos, else the 
p r o c e s s  fails. 

2. If a waiting OR process receives a fail from its last remaining 
descendant, it is itself a failure. 
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the history of various processes as the interpreter 
solves the family tree problem presented in an 
earlier section. 

5.1. Trivial AND P r o c e s s e s  

In the current implementation, an OR process 
does not bother to start an AND descendant for a 
clause if the clause is an assertion, i.e. if the 
clause has a null body. Instead, the OR process 
just uses any bindings created by the unification 
of its goal with the head of the assertion to 
create a success message. In this case the process 
can immediately send a success message to its 
parent and go into the gathering mode. Another 
benefit in terms of performance is a reduction in 
the number of processes created. 

5.2. Eager Evaluation 

In the description of the basic model, it was 
stated that after an AND process sends a success 
message to its parent, it goes into a suspended 
state until the parent sends a redo message. This 
mode of operation is similar to "lazy evaluation", 
in that an AND process does not produce a result 
unless it knows that the result is required by the 
parent process. Another possibility, which has 
been implemented in the current interpreter, is 
that when an OR process receives a success message 
from an AND descendant, it immediately sends that 
descendant a redo message. We refer to this as 
eaKer evaluation. This mode is similar to the 
behavior of dataflow systems, where results are 
computed as soon as input values are present. 
Future versions of the interpreter will incorporate 
simulations of physical processing elements (see 
section 7), and we plan to experiment with the 
effect of eager versus lazy evaluation on the use 
of these processin~ elements. The expected benefit 
of eager evaluation is that after the first answer 
to the user's initial query is produced, additional 
answers will be produced in a shorter time than the 
time required when lazy evaluation is used. 
However, when there are a finite number of 
processing elements, eager evaluation may cause a 
large amount of unnecessary processing, which means 
valuable resources are being wasted; the net result 
might very well be a slower response to all 
queries. 

5.3. Duplicate Answers 

A third extension to the basic model that was 
implemented in the interpreter is the filtering of 
duplicate answers. Each OR process maintains a 
list of answers that it has sent to its parent. 
When a success message comes from a descendant, the 
OR process uses the bindings in that message to 
create a success message for its parent. If that 
message is either in the list of messages waiting 
to be sent, or in the list of messages already 
sent, then it is ignored and the descendant is sent 
a redo message. 

By employing this filtering mechanism, a process 
guarantees that its parent never repeats any 
(presumably) useless computation, i.e. additional 
answers are not sent to the parent until the parent 
sends a redo message, and the parent presumably 
doesn't send a redo message unless the previous 
answers were unsatisfactory for some reason. It is 
interesting to note that the overall effect of the 
filtering is related to the intelligent 

backtracking of Pereira and Porto [7], where a 
backtrack point is skipped if it is known that it 
cannot produce any further useful information. 

5.4. An Example 
Figure 5-I shows a "snap-shot" of the 

configuration of processes just before the top 
process is about to receive a success message. A 
process is represented as a box, where the contents 
of the box show the goal (for OR processes) or goal 
list (for AND processes) that the process was given 
to solve when it was created. The lines comlecting 
boxes represent parent/descendant relationships. A 
process ID is in braces next to the box. 

The first process that is created is a process 
to answer the user's query. Since users can query 
the system with a list of goals, this first process 
is an AND process. In our example, this is a list 
with only one goal, and thus the AND process has 
only one OR descendant, which is process {2}. 
Process {2} can match its goal with the heads of 
two clauses, so it starts up two AND processes, {3} 
and {4}, which operate in parallel. 

{3} and {4} each have a goal list with two 
goals. They start {5} and {6} to solve the first 
of their goals. {5) and {6} match the heads of six 
assertions; one answer is sent back to the parent 
and the other five answers are put on a waiting 
list. {4} and {3} receive success messages, and 
start {8} and {7}. At this point, {7} fails, but 
{8} succeeds. {4} can send a success to {2} (since 
both its goals are solved), but {3} must undo the 
bindings for A and Y and send {5} a redo message. 

When {2} receives the message from {4}, it sends 
a success to {I} and goes into the gathering mode. 
In the eager evaluation interpreter, {2} will also 
send a redo to {4} at this time. 

As is shown in the snap-shot, process {5} 
responded to the redo message by removing an answer 
from its waiting list and sending it to {3}. {3} 
uses this substitution t o  create a new descendant, 
process {9}. 

6. Variants of the Basic Model 

In this section we will present two variants of 
our basic abstract model. Each variant provides 
for more opportunities for parallelism. We l~pe to 
experiment with these and other extensions using 
future versions of the interpreter. 

6.1. Multiple Answers from OR Processes 

Referring back to the example in figure 5-I, 
notice that process {5} solved its single goal 
immediately when that goal matched six assertions. 
Under the basic model, one of these answers is sent 
to the parent AND process, and the others are 
placed in the waiting list and sent back one by one 
in response to redo messages. 

One extension of the basic model would be to 
have the OR process send back all answers that it 
computes in such situations. The parent AND 
process would then set up descendant OR processes 
for each answer in the list, where these new OR 
descendants would operate in parallel. Referring 
again to the figure, process {5} would send a list 
of six answers to {3}; {3} would then set up six 
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g f ( A , B )  {11 

! 
gf(A,B) {2} 

f(A,Y), f(Y,B) | {3} f(A,Y), m(Y,B)| {4} 

" <failed> 

f(elaine,B) ] {71 

f ( A , Y )  [{5} 

sent 
{A/curt,Y/elaine} 
{A/sam,Y/larry} 

waiting 
{A/larry,Y/doug} 

f(larry,B) 

sent 
{B/doug} 
waiting 
{B/den} 

{9} f(A,Y) I{6 

sent 
{A/curt,Y/elaine} 

waiting 
{A/sam,Y/larry} 

Figure 5-I: Snap-Shot of Processes 

sent 
{B/john} 
waiting 
<none> 

{81 

processes (including those marked {71 and {9} in 
the figure) all at the same time, to operate in 
parallel; the net result would be that process {9} 

would produce its part of the correct answer at 
roughly the same time {81 computes its answer. 

6.2. AND Node Parallelism 
In the basic model, AND processes produce 

answers to their conjunctions using the same 
methods employed by standard Prolog interpreters, 
using backtracking to produce alternate answers. 
Another extension to the basic model involves 
increasing the "level of sophistication" of the 
methods used by AND nodes. One approach is to 
adapt some of the methods of Warren [12], Pereira 
and Porto [7, 8], and Clark and McCabe [I]; another 
is to attempt to exploit parallelism within AND 
processes. The latter is'a difficult issue, one we 
have not explored in great detail. 

AND parallelism was defined previously, in 
section 3. In that section, we indicated that 
goals in a conjunction of the form 

p(X),q(Y). 

could be solved in pa ra l l e l ,  since they have no 
variables in common. Note that if the process to 
solve p(X) sends a set pl of success messages, and 
the process for q(Y) sends a set ql, then the AND 
process must send its own parent every element from 
the product of pl and ql. 

For clauses of the form 

gf(X,Z) :- f(X,Y), f(Y,Z). 

the situation is more complicated. As others have 
pointed out, if the query is "gf(X,a)", then the 
body to be solved is 

f(X,Y), f(Y,a). 

and it makes sense to solve the second goal first, 
since the binding of one variable in that term 
limits the search space somewhat. The IC-Prolog 
interpreter [I] allows one to annotate clauses, so 
that different orderings of subgoals are chosen 
depending on the pattern of variable bindings in 
the head of the matched clause. We hope to design 
methods of analyzing such patterns dynamically, so 
that an AND process can intelligently order its 
subgoals, allowing it to determine which of them 
can be solved in parallel, and which must be solved 
before others. 

7. Future R es earch  
The next step in our research is to build 

simulators for the models of parallel computation 
that we have defined. Simulation is the first step 
towards gaining an understanding of the various 
tradeoffs among the different parallel models of 
computation. 

We have yet to address ourselves to three 
serious problems. We must define a means for 
allocation of processors (PEs) to processes. We 
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must define metrics for comparing parallel 
interpreters. We must develop debugging techniques 
for programmers. Below we sketch our current 
thoughts on these problems. 

7.1. Processor Allocation 
Currently we are debating between a dispatcher 

and a management model of processor distribution. 
In the dispatcher model, one special process has 
the job of collecting and distributing free PEs. 
In the management model each process is given a 
number of PEs which it can allocate among its 
descendants as it sees fit. When a process fails, 
its PEs are returned to its parent for 
reallocation. 

Since logic programs are inherently 
non-deterministic, and we are postulating an 
asynchronous search, the constraint that a program 
produce the same answer each time it is run is too 
strong. We define the answer set as the collection 
of answers one gets by repeatedly applying the same 
program to the same problem. Two answer sets are 
equivalent if they are equal as sets, independent 
of order of elements. We say an answer set A 
contains an answer set B if each element of B is an 
element of A. A parallel interpreter is monotonic 
if after the addition of PEs the new answer sets 
contain the old answer sets. We have not yet 
addressed the issue of guaranteeing monotonicity 
within our model as it depends on processor 
allocation. 

7.2. Metrics for Comparing Parallel Interpreters 
Some of the metrics that we plan to gather 

statistics on are: 

I. Size and number of messages sent during 
the solution of a problem. 

2. Measure the ratio of idle time to 
processing time for each PE. When there 
are more processes than PEs, we need to 
measure the amount of time processes are 
"blocked" versus "ready" in each PE. 

3. For each PE, the costs for preparing, 
routing, and receiving messages. 

4. Cost for data base search for each 
processor. 

It will also be possible to measure the number 
of unifications attempted, and the number of 
successful unifications, during the solution of a 
problem by t he  various "intelligent" single 
processor interpreters, and compare them with the 
same statistics for the parallel interpreters. 

7 . 3 .  Programmer Aids 
As  can be s een  by s e c t i o n  5 ,  i t  i s  d i f f i c u l t  to 

e x p l a i n  i n  a s e q u e n t i a l  manner an a s y n c h r o n o u s ,  
parallel computation. Software engineering has 
determined that the most difficult programming bugs 
to find and remove are those that related to 
control. Although programming in logic will allow 
the programmer to identify wrong implications or 
assertions, it will not help him find missing 
implications or assertions. 

By setting the number of allocatable processors 
to one, the programmer can gain some confidence in 
his program. By guaranteeing that the parallel 
processing interpreter's answer stream will always 
include those answers produced by a single 
processor, we give the programmer confidence in the 
parallel computation without requiring that he 
understand the details of process creation or 

processor allocation. 
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