
Parallel Interpretation of Logic Programs

John S. Conery*
Dennis F. Kibler

Department of Information and Computer Science
University of California, Irvine

Abstract
Logic programs offer many opportunities for

parallelism. We present an abstract model that
exploits the parallelism due to nondeterministic
choices in a logic program. A working interpreter
based on this model is described, along with
variants of the basic model that are capable of
exploiting other sources of parallelism. We
conclude with a discussion of our plans for
experimenting with the various models, plans which
we hope will lead eventually to a multi-processor
machine.

I. Introduction
Kowalski [3] assigned a procedural semantics to

predicate calculus, so that logic could be used as
a programming language. More specifically, logic
ro~in~ refers to programming with Horn
clauses. Prolog is a high-level applicative
language based on logic programming. The language
was originally implemented in Marseilles [9, 2] as
a tool for building natural language front-ends.
Since then the language has been implemented on a
number of different computer systems (c.f. [6]) and
has been used for research and application
development, primarily outside the United States.
Pure research using the language has been done in
such diverse areas as plane geometry, learning,
generalization, planning, symbolic calculus,
natural language understanding, s p e e c h
understanding, chess, query optimization, and
robotics. Applications have included compilers,
i n t e r p r e t e r s , d e b u g g e r s , d r u g i n t e r a c t i o n
prediction, architecture design aids, CAI, and
small data bases.

* Authors appear alphabetically

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of the
publication and its' date appear, and notice is given that copying is by
permission of the Association for Computing Machinery. To copy
otherwise, or to republish, requirOs a fee and/or specific permission.

© 1981 ACM 0-89791-060-5/81-10/0163 $00.75

The first compiler was written by Davi d
Warren [II] for the DEC-10 and both the interpreted
and the compiled code are comparable to LISP in
terms of execution speed. The DECsystem-lO
interpreter [6] uses a depth first search of the
AND/OR tree defined by the program. There are a
number of other, more "intelligent" interpreters.
IC-Prolog [1] has control annotations to help guide
the search by using certain runtime information. A
selective backtracking interpreter [7, 8] keeps
track of where values are created, so that if a
value later causes a failure, the interpreter can
backtrack directly to the source of the error.
David Warren [12] has written an interpreter which
dynamically reorders the order of goals to be
executed.

All of the above mentioned efforts aim at
increasing the efficiency of logic programs
executing on a computer with a single processor.
In this paper we present a model for parallel
interpretation of logic programs. Eventually we
will design a multiple processor system to carry
out this parallel interpretgtion, but here we
confine our discussion to the issues of
parallelism.

The remainder of this paper is divided into six
sections:

Section 2 is a bare bones introduction to logic
programs with some sample computations. This
section is intended for readers who are not
familiar with logic programming or the Prolog
language, and may be skipped without loss of
context.

Section 3 outlines four types of parallelism
possible with logic programs, and in section 4 we
present the abstract model for parallel
interpretation of logic programs. Our philosophy
in this section is to give a model of parallel
computation which is as simple as possible. For
example, we do not address the problems of
processor allocation nor of message structures.

Section 5 discusses one concrete realization (in
the form of an interpreter written in Prolog) of
the abstract model. Some elaborations of the
abstract model are given here.

Section 6 presents some alternatives and
extensions of the basic model. These alternatives
exploit sources of parallelism that are ignored in
the simple model of section 4.

163

Finally, section 7 outlines the form that our
experiments will take, the statistics that we will
gather and the results we hope to obtain.

2. Logic Programming
This section contains definitions, some simple

logic computations, and a brief introduction to
Prolog (using the syntax of DECsystem-10 Prolog).
We only discuss the procedural semantics of Prolog;
the declarative semantics can be found in [4].

A logic program consists entirely of a set of
clauses. Clauses can be either implications (which
are described later) or assertions. The following
is a simple Prolog program which has two
assertions:

mother(peg,judy).
mother(judy,kara).

In this example the words "peg, judy, and kara" are
constants and the word "mother" is a functor of two
arguments. An ato___~m is a constant (an uninterpreted
symbol) or an integer. Constants are denoted by
strings which begin with a lower case letter.
Variables are denoted by strings which begin with
an upper case letter. A te~ is a variable or an
atom or a functor of n-arguments, where each
argument is itself a term. An example of a more
complicated term is

fee(Fie,foe(3,fum(2,Foo)}).

Terms are the basic data structure provided in
Prolog.

To use a program, the user supplies a term or a
list of terms, which are called goals. Some
example queries and responses are:

query response

mother(peg,judy), yes.
mother(peg,kara), no.
mother(X,judy). X=peg.
mother(X,Y). X=peg,Y=judy.
mother(X,X), no.

* mother(X,Y),female(Y), no.
mother(X,Y),mother(X,kara). X=judy,Y=kara.

To answer a query, the Prolog interpreter
pattern-matches each goal of the query against the
list of clauses in the program. This list of
clauses is often referred to as the data base. The
particular pattern matching algorithm used is
unification. Unification accepts two terms, which
may contain variables. Two terms can be unified if
there is a substitution for the variables that
makes the terms identical. For example, the two
terms p(X,a) and p(b,Y) can be unified by the
substitution {X/b,Y/a}, meaning substitute "b" for
X and "a" for Y, to give the single term p(b,a).
Unification is more general than most pattern
matching algorithms since it allows pattern
variables in both terms. The use of variables in
Prolog is analogous to the use of dummy Variables
in mathematics, in that the "scope" of a variable
is simply the clause in which it appears.

The standard Prolog interpreter solves a
conjunction of goals by working from left to right,
unifying each term with the data base. When a term
unifies with some assertion in the data base, the

substitution generated is applied to the remaining
terms in the query. This continues until either no
terms are left, indicating success, or until some
term cannot be unified with any assertion in the
data base, at which point backtracking (explained
later) occurs. This process explains how queries
up to query * are answered.

To understand the answer to * requires an
understanding of Prolog can solve
the first goal with substitution {X/peg,Y/judy}.
However, there are no assertions for female, so the
goal female(judy) fails. When Prolog fails to
solve a goal, it backtracks, i.e. it tries to find
a different solution to the most recently solved
goal. Thus, in our example the goal mother(X,Y) is
retried and the substitution {X/judy,Y/kara} is
found. Now the goal female(kara) is attempted, and
fails since there are still no assertions for
female. For the third time Prolog tries to solve
mother(X,Y). It is unable to find any solution and
fails, responding "no". Notice that if the query
were

female(Y),mother(X,Y).

then failure would have been immediate.

Now let us extend our program by adding the
clause

female(X):-mother(X,Y).

Our program now appears as

mother(peg,judy).
mother(judy,kara).
female(X):-mother(X,Y).

The third clause is an example of an implication.
An implication has the form

head:-body.

where the head is a single term and the body is a
(possibly empty) list of terms. Note that an
implication with an empty body is an assertion.
The terms in either the head or the body may
contain variables. As mentioned before these
variables may be viewed as being local to the
clause. Using our new program, let us return to
query * and redo the computation. We need to
extend our understanding of the interpreter to
allow for the processing of implications.

To solve a goal list, the first goal is removed
from the list and matched against the heads of
clauses in the data base. Variables are renamed so
no clauses have variables in common. If the goal
matches an assertion, the action taken is as
before. If the goal matches the head of an
implication, the body of the implication replaces
the head in the goal list, and the substitution
generated by the match is applied to the new goal
list. The interpreter repeats this cycle until the
goal list is empty. Whenever a goal fails,
backtracking occurs. If backtracking leads back to
the first goal and there are no more alterna1:ives
for solving that goals then the interpreter reports
failure.

Looking at this computation with respect to
query *, we see that solving the first goal
establishes t h e substitution {X/peg,Y/judy}. These

164

/* Here are two ways of defining the grandfather relationship:
/* I) X is the grandfather of Z if X is the father of some Y
/* and Y is the father of Z.
/* 2) X is the grandfather of Z if X is the father of some Y
/* and Y is the mother of Z.

gf(X,Z) :- f(X,Y), f(Y,Z).
gf(X,Z) :- f(X,Y), m(Y,Z).

/* these assertions define our database:

f(curt,elaine).
f(dan,pat).
f(pat,john).
m(elaine,john).
m(marion,elaine).

f(sam,larry).
f(larry,den).
f(larry,doug).
m(peg,den).
m(peg,doug).

/* here are some sample queries, annotated with the actions of the
/* DECsystem-10 interpreter

step goals to be solved matching unifying
clause substitution

[I] gf(sam,G) gf(X,Z) :- f(X,Y),f(Y,Z) {X/sam,Z/G}
[2] f(sam,Y),f(Y,G) f(sam,larry) {Y/larry}
[3] f(larry,G) f(larry,den) {G/den}
[4] <none>

* /
* /
* /
* /
* /

* /

* /
* /

/* The variable G in the original list was bound to "den", thus
/* the answer is "den" is a grandson of "sam".

/* This next query can be read as "is there any pair (A,B) such
/* that A is the grandfather of B?"

* /
* /

* /
* /

[I] gf(A,B) gf(X,Z) :- f(X,Y),f(Y,Z) {X/A,Z/B}
[2] f(A,Y),f(Y,B) f(curt,elaine) {A/curt,Y/elaine}
[3] f(elaine,B) <none>
[4] f(A,Y),f(Y,B) f(dan,pat) {A/dan,Y/pat}
[5] f(pat,B) f(pat,john) {B/john}

/* The answer is A = "dan" and B = "john"

/* NOTE: after Prolog produces an answer, the user may force it to
/* backtrack, and answer the query in another way. Thus,
/* backtracking would answer G = "doug" to our first query, and
/* generate all grandfather-grandson pairs in response to the last
/* query.

Figure 2-I: Example of a Prolog Program

* /

* /
* /
* /
* /
* /

bindings are transmitted to the rest of the body.
The new goal list is female(judy). This matches
the third clause of the data base with the first
argument bound to judy and the second argument
unbound. The goal list becomes mother(judy,Y')
where Y" is an arbitrary new variable name. Since
mother{judy,Y') unifies with a member of the data
base and there are no more goals remaining to be
solved, the interpreter returns X=judy.

A more complicated example of a Prolog program
is given in figure 2-1. Later we will show how our
parallel interpreter performs the same computation.

References [I], [3], [5], and [6] are other
descriptions of logic programming and va#ious
P Krolo~ iaterpre~er s.

3. Parallelism

The opportunities for parallelism based on logic
programs are manifold. To be specific, suppose we
had the task of solving the goal list
f(X,Y),g(Y),h(Z). By this we mean we must find
terms for X, Y and Z which will simultaneously
solve each of these goals. Suppose also that the
data base or logic program had fl clauses whose
head term began with f. Let gl and hl be defined
analogously. With this context let us define
several types of parallelism. We will rely on an
intuitive understanding of terms such as
processors, processes, and messages.

A single term may unify with the heads of many
clauses in the data base. By OR parallelism we
mean assigning a process to solve each body whose
head unifies with the term. For instance, OR
parallelism for the term f(X,Y) would lead to fl
concurrent processes. Note that this form of
parallelism replaces backtracking.

165

By AND parallelism we mean simultaneously
starting processes to solve each of the goals of
the body. For the example at hand, this means
starting three processes, one for f(X,Y), another
for g(Y), and a third for h(Z). Since all of these
goals eventually need to be solved, one might try
to start working on each goal as soon as possible.
However since the goals are interrelated, answers
to one goal may limit the number of choices for the
others. For example, each answer to f(X,Y) may
uniquely determine Y, while g(Y) may have a large
number of solutions. More generally, if it is
known that fl is small and gl is large it is best
to solve f before g. Conversely if gl is large and
fl small, one would want to solve g before f. Such
an approach for solving a conjunct of goals is
recommended by Warren [12]. Solving for the goals
h(Z) and g(Y) in parallel is reasonable, and is a
form of parallelism that we plan to incorporate in
our future interpreters based on the model of
section 4.

By stream parallelism we mean the eager
evaluation of structured data, which can be treated
as a stream. For example one might begin testing
for membership in a list while the list was being
constructed. Clark and McCabe [I] and van
Emden [I0] explore this form of parallelism.

By search parallelism we refer to the
possibility of partitioning the data base into
disjoint sets of c l a u s e s , permitting parallel
searching of the data base. It could be used to
initialize the OR parallelism. This would probably
be best for programs that contained a large number
of assertions, and might be necessary for large
data bases.

One problem with many physical implementations
of parallel computation is that the overhead in
setting-up the parallelism and the overhead
associated with communicating among the processes
may outweigh the advantages of the parallel
computation. In anticipation of this, we are
designing our model so that all processes will have
roughly the same amount of work to do.

4. The Model
In this section we present our abstract model

for parallel interpretation of logic programs: the
AND/0R model. The model is based on the concept of
independent processes that communicate via
messages. It is our long range goal to develop a
multi-processor machine such that these processes
can be executed in parallel.

There are two types of processes: AND processes
and OR processes. It is the basic task of an AND
process to produce a solution for a conjunction of
goals, whereas OR processes solve single goals. A
"snap-shot" of the relationship among processes
during the execution of a logic program would
reveal an AND/OR tree, with AND processes as the
descendants of OR processes, and vice versa.

There are three types of messages: success,
fai___!, and redo. Fail and success are always sent
from a descendant to a parent; redo is always sent
from a parent to a descendant. A success message
contains one possible substitution that satisfies
the goal(s) the process was created to solve. In
the basic model, a process that sends a success
message does no further work, but instead waits for
instructions from its parent. A fail message

indicates a final failure. A process sending this
message indicates that there is no possible
solution below it in the search space. After
sending a fail message, a process terminates
itself. A redo message is sent from a parent to a
previously successful descendant; in effect this
message says that the previous success message did
not help the parent solve its own goal(s), and a
different substitution is required.

In the following sections we describe AND and OR
processes in detail, the conditions under which the
messages are sent, and how each process reacts to
each type of message.

4.1. OR Processes

An OR process attempts t o solve its single goal
by I) finding every clause such that the head of
the clause can be unified with the goal to be
solved, then 2) applying the unifying substitutions
to the corresponding clause bodies, and finality 3)
starting up descendant AND processes to solve these
bodies.

If there are no clauses with matching heads, the
OR p r o c e s s fails immediately; it sends its p a r e n t a
fail message and terminates itself. An OR process
that creates descendants is in one of two modes:

waitin~ mode or ~atherin~ mode. An OR process is
in the waiting mode when its parent is waiting for
an answer. An OR process is in the gathering mode
when it has sent an answer to its parent and the
parent is using that answer; in this mode, any
further answers received from AND descendants are
saved. For example, a process that creates three
descendants is in waiting mode while those three
descendants solve their corresponding goal lists in
parallel. When a descendant sends back a success
message, the OR process sends its own parent a
success message and then goes into the gathering
mode. Now when answers are received from the other
two descendants, they are saved for future usej and
not (yet) sent to the parent.

The various messages and their effects on OR
processes are as follows (this is summarized in
figure 4-1):

Success messages:

- A process in the waiting mode uses the
bindings in this message to create a
success message for its own parent, sends
this message, and goes into gathering
mode.

- A gathering mode process creates a
success message, but instead of sending
this message to its parent, the process
adds the message to a list of messages
waiting to be sent.

Redo messages:

- OR processes in the waiting mode will
never be sent redo messages. There are
three possible actions for a gathering OR
process: if there are any success
messages not yet sents one is selected
and sent to the parent; otherwise if
there are anY descendants still active
(i.e. not all have sent fail messages),

166

then they are all sent redo messages, and
the process goes into the waiting mode;
otherwise the process fails.

Fail messages:

- A gathering OR process simply notes the
fact that the descendant failed.

- An OR process in the waiting mode does
one of two things: if the descendant
that sent the message was the sole
remaining descendant, the process fails,
otherwise the process notes that fact
that the descendant failed.

4.2. AND Processes

This section is a description of the simplest
possible AND process, one that does not attempt to
exploit any parallelism in its goal list. In
section 6.2 we discuss extensions to the model that
achieve some AND parallelism. The simplest AND
processes solve their conjunctions in a manner that
is very similar to how a standard Prolog
interpreter solves a goal list: a solution to the
first goal is obtained; any variable bindings
generated by this solution are applied to the
remaining goals, and then the next goal is solved.
This continues until all goals from the original
list have been solved. If a goal cannot be solved,
the previous one must be solved in a different way
(so that a different set of variable bindings is
produced).

A solution to a single goal is obtained by
starting a descendant OR process to solve the goal.
Once the descendant h a s been started, the AND
process waits for a message (either success or
failure) from that descendant. When a success

message, which possibly contains a list of variable
bindings, is received, the bindings are applied to
the remaining goals, and a process is started for
the next goal. If a fail message is received, the
AND process must undo any bindings sent by the
previous descendant, and then send that descendant
a redo message.

If an AND process obtains solutions for each of
its goals, it sends a success message back to its
own parent process. At a later time, the parent
may request a different solution (via a redo
message). If it does, the AND process reacts as if
it had received a fail message from one of its
descendants: the bindings from the most r e c e n t
success message are undone, and the process that
sent that success message is sent a redo message.

A trivial AND process is one that was created to
solve an originally empty goal list, i.e. its
parent OR process matched an assertion, which is a
clause with an empty body. This corresponds to a
goal that always succeeds, and thus this process
can in~nediately send its parent a success; a
subsequent redo message causes a failure.

If an AND process receives a fail message from
the descendant that was created to solve the first
goal in the conjunction, the AND process itself
fails.

5. An Interpreter
We have written an interpreter based on the

AND/OR model that simulates the actions of AND and
OR processes as they work together on the solution
of a single logic program. The interpreter is
written in DECsystem-10 Prolog [6]. In this
section of the paper, we will describe some of the
interesting features of the interpreter, which
extends the basic model, and present as an example

Figure 4-1: The Effect of Messages on OR Processes

r/s f/
s/s ~I

at t i n g ~ r

<error>
f

<fail>

The letters r, f, and s stand for redo, fail, and success.
A label x/y on an arc means that when the OR process receives message x

it follows the transition and sends message y.

Notes: 1. If a gathering OR process has a waiting message, it is sent,
else if it has descendants, they are sent redos, else the
p r o c e s s fails.

2. If a waiting OR process receives a fail from its last remaining
descendant, it is itself a failure.

167

the history of various processes as the interpreter
solves the family tree problem presented in an
earlier section.

5.1. Trivial AND P r o c e s s e s

In the current implementation, an OR process
does not bother to start an AND descendant for a
clause if the clause is an assertion, i.e. if the
clause has a null body. Instead, the OR process
just uses any bindings created by the unification
of its goal with the head of the assertion to
create a success message. In this case the process
can immediately send a success message to its
parent and go into the gathering mode. Another
benefit in terms of performance is a reduction in
the number of processes created.

5.2. Eager Evaluation

In the description of the basic model, it was
stated that after an AND process sends a success
message to its parent, it goes into a suspended
state until the parent sends a redo message. This
mode of operation is similar to "lazy evaluation",
in that an AND process does not produce a result
unless it knows that the result is required by the
parent process. Another possibility, which has
been implemented in the current interpreter, is
that when an OR process receives a success message
from an AND descendant, it immediately sends that
descendant a redo message. We refer to this as
eaKer evaluation. This mode is similar to the
behavior of dataflow systems, where results are
computed as soon as input values are present.
Future versions of the interpreter will incorporate
simulations of physical processing elements (see
section 7), and we plan to experiment with the
effect of eager versus lazy evaluation on the use
of these processin~ elements. The expected benefit
of eager evaluation is that after the first answer
to the user's initial query is produced, additional
answers will be produced in a shorter time than the
time required when lazy evaluation is used.
However, when there are a finite number of
processing elements, eager evaluation may cause a
large amount of unnecessary processing, which means
valuable resources are being wasted; the net result
might very well be a slower response to all
queries.

5.3. Duplicate Answers

A third extension to the basic model that was
implemented in the interpreter is the filtering of
duplicate answers. Each OR process maintains a
list of answers that it has sent to its parent.
When a success message comes from a descendant, the
OR process uses the bindings in that message to
create a success message for its parent. If that
message is either in the list of messages waiting
to be sent, or in the list of messages already
sent, then it is ignored and the descendant is sent
a redo message.

By employing this filtering mechanism, a process
guarantees that its parent never repeats any
(presumably) useless computation, i.e. additional
answers are not sent to the parent until the parent
sends a redo message, and the parent presumably
doesn't send a redo message unless the previous
answers were unsatisfactory for some reason. It is
interesting to note that the overall effect of the
filtering is related to the intelligent

backtracking of Pereira and Porto [7], where a
backtrack point is skipped if it is known that it
cannot produce any further useful information.

5.4. An Example
Figure 5-I shows a "snap-shot" of the

configuration of processes just before the top
process is about to receive a success message. A
process is represented as a box, where the contents
of the box show the goal (for OR processes) or goal
list (for AND processes) that the process was given
to solve when it was created. The lines comlecting
boxes represent parent/descendant relationships. A
process ID is in braces next to the box.

The first process that is created is a process
to answer the user's query. Since users can query
the system with a list of goals, this first process
is an AND process. In our example, this is a list
with only one goal, and thus the AND process has
only one OR descendant, which is process {2}.
Process {2} can match its goal with the heads of
two clauses, so it starts up two AND processes, {3}
and {4}, which operate in parallel.

{3} and {4} each have a goal list with two
goals. They start {5} and {6} to solve the first
of their goals. {5) and {6} match the heads of six
assertions; one answer is sent back to the parent
and the other five answers are put on a waiting
list. {4} and {3} receive success messages, and
start {8} and {7}. At this point, {7} fails, but
{8} succeeds. {4} can send a success to {2} (since
both its goals are solved), but {3} must undo the
bindings for A and Y and send {5} a redo message.

When {2} receives the message from {4}, it sends
a success to {I} and goes into the gathering mode.
In the eager evaluation interpreter, {2} will also
send a redo to {4} at this time.

As is shown in the snap-shot, process {5}
responded to the redo message by removing an answer
from its waiting list and sending it to {3}. {3}
uses this substitution t o create a new descendant,
process {9}.

6. Variants of the Basic Model

In this section we will present two variants of
our basic abstract model. Each variant provides
for more opportunities for parallelism. We l~pe to
experiment with these and other extensions using
future versions of the interpreter.

6.1. Multiple Answers from OR Processes

Referring back to the example in figure 5-I,
notice that process {5} solved its single goal
immediately when that goal matched six assertions.
Under the basic model, one of these answers is sent
to the parent AND process, and the others are
placed in the waiting list and sent back one by one
in response to redo messages.

One extension of the basic model would be to
have the OR process send back all answers that it
computes in such situations. The parent AND
process would then set up descendant OR processes
for each answer in the list, where these new OR
descendants would operate in parallel. Referring
again to the figure, process {5} would send a list
of six answers to {3}; {3} would then set up six

168

g f (A , B) {11

!
gf(A,B) {2}

f(A,Y), f(Y,B) | {3} f(A,Y), m(Y,B)| {4}

" <failed>

f(elaine,B)] {71

f (A , Y) [{5}

sent
{A/curt,Y/elaine}
{A/sam,Y/larry}

waiting
{A/larry,Y/doug}

f(larry,B)

sent
{B/doug}
waiting
{B/den}

{9} f(A,Y) I{6

sent
{A/curt,Y/elaine}

waiting
{A/sam,Y/larry}

Figure 5-I: Snap-Shot of Processes

sent
{B/john}
waiting
<none>

{81

processes (including those marked {71 and {9} in
the figure) all at the same time, to operate in
parallel; the net result would be that process {9}

would produce its part of the correct answer at
roughly the same time {81 computes its answer.

6.2. AND Node Parallelism
In the basic model, AND processes produce

answers to their conjunctions using the same
methods employed by standard Prolog interpreters,
using backtracking to produce alternate answers.
Another extension to the basic model involves
increasing the "level of sophistication" of the
methods used by AND nodes. One approach is to
adapt some of the methods of Warren [12], Pereira
and Porto [7, 8], and Clark and McCabe [I]; another
is to attempt to exploit parallelism within AND
processes. The latter is'a difficult issue, one we
have not explored in great detail.

AND parallelism was defined previously, in
section 3. In that section, we indicated that
goals in a conjunction of the form

p(X),q(Y).

could be solved in pa ra l l e l , since they have no
variables in common. Note that if the process to
solve p(X) sends a set pl of success messages, and
the process for q(Y) sends a set ql, then the AND
process must send its own parent every element from
the product of pl and ql.

For clauses of the form

gf(X,Z) :- f(X,Y), f(Y,Z).

the situation is more complicated. As others have
pointed out, if the query is "gf(X,a)", then the
body to be solved is

f(X,Y), f(Y,a).

and it makes sense to solve the second goal first,
since the binding of one variable in that term
limits the search space somewhat. The IC-Prolog
interpreter [I] allows one to annotate clauses, so
that different orderings of subgoals are chosen
depending on the pattern of variable bindings in
the head of the matched clause. We hope to design
methods of analyzing such patterns dynamically, so
that an AND process can intelligently order its
subgoals, allowing it to determine which of them
can be solved in parallel, and which must be solved
before others.

7. Future R es earch
The next step in our research is to build

simulators for the models of parallel computation
that we have defined. Simulation is the first step
towards gaining an understanding of the various
tradeoffs among the different parallel models of
computation.

We have yet to address ourselves to three
serious problems. We must define a means for
allocation of processors (PEs) to processes. We

169

must define metrics for comparing parallel
interpreters. We must develop debugging techniques
for programmers. Below we sketch our current
thoughts on these problems.

7.1. Processor Allocation
Currently we are debating between a dispatcher

and a management model of processor distribution.
In the dispatcher model, one special process has
the job of collecting and distributing free PEs.
In the management model each process is given a
number of PEs which it can allocate among its
descendants as it sees fit. When a process fails,
its PEs are returned to its parent for
reallocation.

Since logic programs are inherently
non-deterministic, and we are postulating an
asynchronous search, the constraint that a program
produce the same answer each time it is run is too
strong. We define the answer set as the collection
of answers one gets by repeatedly applying the same
program to the same problem. Two answer sets are
equivalent if they are equal as sets, independent
of order of elements. We say an answer set A
contains an answer set B if each element of B is an
element of A. A parallel interpreter is monotonic
if after the addition of PEs the new answer sets
contain the old answer sets. We have not yet
addressed the issue of guaranteeing monotonicity
within our model as it depends on processor
allocation.

7.2. Metrics for Comparing Parallel Interpreters
Some of the metrics that we plan to gather

statistics on are:

I. Size and number of messages sent during
the solution of a problem.

2. Measure the ratio of idle time to
processing time for each PE. When there
are more processes than PEs, we need to
measure the amount of time processes are
"blocked" versus "ready" in each PE.

3. For each PE, the costs for preparing,
routing, and receiving messages.

4. Cost for data base search for each
processor.

It will also be possible to measure the number
of unifications attempted, and the number of
successful unifications, during the solution of a
problem by t he various "intelligent" single
processor interpreters, and compare them with the
same statistics for the parallel interpreters.

7 . 3 . Programmer Aids
As can be s een by s e c t i o n 5 , i t i s d i f f i c u l t to

e x p l a i n i n a s e q u e n t i a l manner an a s y n c h r o n o u s ,
parallel computation. Software engineering has
determined that the most difficult programming bugs
to find and remove are those that related to
control. Although programming in logic will allow
the programmer to identify wrong implications or
assertions, it will not help him find missing
implications or assertions.

By setting the number of allocatable processors
to one, the programmer can gain some confidence in
his program. By guaranteeing that the parallel
processing interpreter's answer stream will always
include those answers produced by a single
processor, we give the programmer confidence in the
parallel computation without requiring that he
understand the details of process creation or

processor allocation.

Acknowledgements
We would l i k e to t ha nk the anonymous r e f e r e e s

for many helpful criticisms of an earlier version
of this paper. For comments on later versions, we
are indebted to our friends and colleagues, Steve
Fickas, Jim Neighbors, Paul Morris, and Steve

willson.

Portions of the research presented in this paper
were supported by grant N66001-80-C-0377, from the
Naval Oceans Systems Center, in San Diego,

California.

R e f e r e n c e s
1. C l a rk , K. L . , and G. McCabe. The Con t ro l
Facilities of IC-Prolog. In D. Michie, Ed., Expert
Systems in the Micro Electronic Age, Edinburgh
University Press, 1979.
2. Colmerauer, A. Les Grammaire de Metamorplhose.
Univ. d'Aix-Marseille, Groupe de IA, 1975.
3. Kowalski, R. A. Predicate Logic as a
Programming Language. Proc. IFIPS 74, 1974.

4. Kowalski, R. A. Logic for Problem S.ooAy~ngo
Elsevier - North Holland, New York, 1979.
5. Kowalski, R. A. Logic as a Computer Language.
Proc. Infotech State of the Art Conference
"Software Development: Management", June, 1980.

6. Pereira, L. M., F. C. N. Pereira, and D. H.
D. Warren. User's Guide to DECsystem-10 Prolog.
Dept. of Artificial Intelligence, Univ. of
Edinburgh , September , 1978. v e r s i o n 1.32
7. P e r e i r a , L. P. and A. P o r t o . I n t e l l i g e n t
B a c k t r a c k i n g and S i d e t r a c k i n g i n Horn Clause
Programs - the Theory , Repor t 2 / 7 9 , Depar tamento
de I n f o r m a t i c a , U n i v e r s i d a d e Nova de L i s b o a ,
Oc tobe r , 1979.
8. Pereira, L. P. and A. Porto. An Interpreter of
Logic Programs Using Selective Backtracking.
Report 3/80, Departamento de Informatica,
Universidade Nova de Lisboa, July, 1980.
9. Roussel, P. Manuel de Reference et
d'Utilisation. Univ. d'Aix-Marseille, Groupe de
IA, 1975.
10. van Emden, M. H. and G. J. de Lucena.
Predicate Logic as a Language for Parallel
Programming. In K. L. Clark and S. A. Tarnlund,
Ed., ~ Programming, Academic Press, New York,
1981.
11. Warren, D. H. D., L. M. Pereira, and F. C.
N. Pereira. Prolog - The Language and its
Implementation Compared with LISP. ACM SIGPLAN
Notices ~2, 8 (1977), 109-115.
12. D. H. D. Warren. Efficient Processing .of
Interactive Relational Database Queries Expressed
in Logic. Dept. of Artificial Intelligence, Univ.
of Edinburgh, September, 1981. Paper 156

170

