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Abstract. Continuations are used to define the flow of messages between low
level tasks in a parallel logic programming language. A combination of compiler and
runtime operations reduces message traffic by up to 50% when success continuations
are passed as parameters in messages that start new processes. Continuations are
also the key to fast task switching, a critical operation in this fine grain parallel
system. Data from sample programs shows the effectiveness of continuations in
reducing message traffic and the speed with which task switches are performed
on a typical host architecture.
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1. Introduction

The notion of a continuation is very well known in programming lan-
guage research. Abstract continuations have long been used in descrip-
tions of programming language semantics, and the concept was elevated
to first-class citizenship in languages such as Actors [1] and Scheme [3].

This paper describes how continuations have been applied to the
implementation of control structures for a parallel language. The lan-
guage, OPAL, is a logic programming language based on the AND/OR
process model [4]. In this model, programs are compiled into a set
of actor-like processes that communicate solely via messages. Contin-
uations are not first-class citizens in OPAL since programmers can-
not manipulate continuations to achieve different patterns of control.
Rather we use continuations as a formal framework for implemen-
tation techniques that have greatly improved performance. The use
of continuations has improved the implementation of OPAL in two
ways. Organizing message passing via continuations uncovered several
improvements in message passing patterns, improvements we are able
to exploit through a combination of runtime decisions and compiler
optimizations. Continuations also provide the key to a very efficient
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task switching technique that is well-suited to distributed memory
multiprocessors.

The first part of the paper is a brief overview of the OPAL lan-
guage and the underlying AND/OR process model. Following that is
a description of how continuations are used to improve control, with
some data from a few small benchmarks to confirm the intuition that
continuations achieve up to a 50% reduction in the number of messages.
Section 4 is on the implementation of continuations, explaining the rep-
resentation of messages and continuation IDs, with some measurements
of how fast a system can switch between processes when continuations
are used to control message passing. The final section is a summary
and discussion of future research.

2. OPAL and the AND/OR Model

The name OPAL is an acronym for Oregon PArallel Logic. OPAL is
a pure Horn clause language augmented with predicates for arithmetic
and simple operations such as testing to see if a term is an unbound
variable or finding the functor of a term. A few more complex oper-
ations, such as I/O, are implemented via a front-end host machine,
but they are “cavalier” operations and no attempt is made to serialize
programs through these constructs (for an example of a system that
delays side effect predicates until all preceding side effects have been
executed, see [7]). Other built-in operations that depend on side effects,
such as Prolog’s internal database, are not part of the language.

Figure 1 shows three simple OPAL programs. The first is an OR-
parallel program that searches for all even length paths in an acyclic
graph. The parallelism comes from multiple arcs leaving a node that
is being searched, and the overall effect is of a pipeline where shorter
paths are reported first. The second program is the familiar append
benchmark which shows how to concatenate lists in a logic program-
ming language. It is often used to demonstrate the conversion of tail
recursion into iteration, and we will use it to illustrate how continua-
tions achieve a similar effect in OPAL. The third example is part of a
program for symbolic differentiation and shows a combination of AND
and OR parallelism. The two recursive calls to d/31 in the body of the
rule that differentiates products can be done in parallel since X, the
only common variable, will be bound when the body is invoked.

The operational semantics of OPAL programs is defined by the
AND/OR Process Model. In this model, programs are executed by

1 In the logic programming literature the notation p/n denotes a procedure named
p with n arguments.
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Example 1: epath/2. The complete program has 16 arcs; only three are
shown here. There are 51 solutions to the top level goal in this highly
nondeterministic example.

goal <- epath(X,Y).

epath(A,C) <- arc(A,B) & arc(B,C).
epath(A,D) <- arc(A,B) & arc(B,C) & epath(C,D).

arc(0,1).
arc(0,2).
arc(0,4).

Example 2: append/3. This is the common list processing demo, which
is the same in OPAL as it is in Prolog. With this pattern of parameters
in the top level goal the program is deterministic.

goal <- append([a,b,c,d,e],[f,g,h],L).

append([],Y,Y).
append([A|X],Y,[A|Z]) <- append(X,Y,Z).

Example 3: some rules from a symbolic differentiation program.

d(U*V,X,P) <- functor(U,_,N) & product(N,U,V,X,P).

product(0,C,U,X,C*DU) <- C \== X & d(U,X,DU).
product(N,U,V,X,DV*U+DU*V) <- N > 0 & d(U,X,DU) & d(V,X,DV).

Figure 1. Three OPAL Programs

collections of asynchronous objects that communicate solely via mes-
sages. There are two types of objects: AND processes and OR processes.
An AND process solves the set of goals in the body of a clause, and
an OR process coordinates the solution of a single goal with multiple
definitions.

Messages are used to start new processes for subgoals, report re-
sults, or perform control operations such as asking for another result
or canceling a subgoal. The four basic message types are:

− Start, which creates a new process.

− Succeed, which sends the result of a procedure call back to a calling
process.
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− Redo, sent by a parent to a descendant process when it needs
another solution.

− Fail, used to report the failure of a goal or goal statement.

A procedure call in Prolog corresponds to an OR process in OPAL.
When the system needs to solve a single goal, it creates an OR process
for the goal and sends a start message to the new process. When an
OR process successfully matches the call with the head of a clause, it
starts an AND process for the body and sends it a start message.

The redo message is the key to nondeterministic execution. When
a procedure has multiple solutions, the corresponding OR process will
generate more than one success message. These messages are buffered
at the OR process and sent back to the calling process on demand. The
first one is always returned immediately, since the start message serves
as a demand for the first solution, but the rest are saved and returned
one at a time in response to redo messages. The actual implementation
is more efficient than this because it bundles up multiple responses into
one machine level message, but at the level of the abstract model the
system operates on one result at a time.

The OPAL implementation is based on a byte-coded virtual machine
named the OPAL Machine (OM). The OPAL compiler generates OM
code for AND and OR processes from the clauses of the user program.
It creates a code block for an AND process from the body of each
nonunit clause in the program, and collects all the clause heads of
a procedure into the code block for an OR process. At runtime, an
instance of a process is represented by a state vector. When a process is
scheduled for execution, the machine will install frequently used parts
of the state vector in OM registers, branch to the code block, and
execute the instructions in the block.

The compiler automatically creates parallel goals wherever it can.
When a procedure is called, the resulting OR process will attempt to
unify the call with every clause head, and each successful match with
a nonunit clause leads to a new AND process. In AND-parallel goals,
the compiler uses information about the sharing and independence of
variables derived from an abstract interpreter to order the goals in a
data dependency graph which will control the order of execution at
run-time [12]. Two calls can be executed in parallel if they have no
unbound variables in common, i.e. OPAL exploits independent AND
parallelism.

In the basic AND/OR model, a process communicates only with
its parent or its immediate children. The processes and their commu-
nication channels define an AND/OR tree, as shown in Figure 2 for
the first few process steps in the execution of the even length path
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<- epath(X,Y),...

epath/2

arc(X,B) & arc(B,C) & epath(C,Y)arc(X,B) & arc(B,Y)

epath/2

arc/2 arc/2 arc/2 arc/2

AND process OR process

Figure 2. Message Passing in the AND/OR Model

program. Downward pointing arrows indicate start messages, and up-
ward pointing arrows are success messages. Redo messages are sent
backwards along success arcs, and fail messages flow backwards along
the start arcs. The AND process in charge of solving the top level goal
statement has created an OR process for epath/2. When a procedure
contains unit clauses, the OR process performs all the unifications and
reports the results of these unifications to its parent AND process; the
calls to arc/2 are examples of this situation. When a procedure has
nonunit clauses, the OR process starts an AND process for each body.
In the even path program, epath/2 is defined by two clauses, and the
OR process starts two descendant AND processes. It is possible for a
procedure to be defined by a combination of unit and nonunit clauses,
in which case the OR process would report the results from matching
the unit clauses at the same time it starts descendant AND processes.

Communication patterns in OM improve the basic model by al-
lowing a process to send a success message to an ancestor, bypassing
intervening steps that merely pass the result back up the process tree.
The actual message passing patterns used when OM executes the even
length path program are shown in Figure 3. The general rule is that
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<- epath(X,Y),...

epath/2

arc(X,B) & arc(B,Y)

epath/2

arc/2 arc/2 arc/2 arc/2

AND process OR process

arc(X,B) & arc(B,C) & epath(C,Y)

➊

➌

➋

Figure 3. Message Passing in OPAL

results of a procedure call are always sent directly to the AND process
that makes the procedure call. In the message marked (1) in the figure,
the leftmost OR process for arc/2 sends its results to its parent as
it would in the basic AND/OR model. The OR process marked (2)
sends its results to the top level goal because once this process has
succeeded, its parent is done. The OM message pattern requires two
fewer messages to get the result back to the top level. The message
labeled (3) shows that this pattern is recursive and that lower level
calls can send results all the way to the top of the process tree.

The key to this more efficient message pattern in OM is the use of
continuations. When a procedure call is made, the AND process making
the call hands a success continuation to the new OR process. Each time
the OR process or one of its descendants generates a result, it invokes
the success continuation in order to pass the results back up the tree.
The mechanisms for passing continuations and the cases where more
efficient patterns are exploited will be discussed in detail in the next
section.
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3. Continuations in OPAL

There are two types of continuations in OPAL, success continuations
and failure continuations. Both are similar to continuations in Scheme
even though they are created implicitly and are not first class citizens.
Every procedure call in OPAL defines one success continuation and one
failure continuation. Both continuations are passed as hidden param-
eters in the procedure call, to be invoked when the called procedure
succeeds or fails. If the called procedure is nondeterministic (capable of
producing more than one set of outputs for any given input combina-
tion) then the success continuation will be invoked several times, once
for each result. The failure continuation is invoked only once, either if
the called procedure fails to produce any results or after it produces its
last result.

As an example, consider the following clause:

p(X,Z) <- q(X,Y) & r(Y,Z) & s(X,Y).

Suppose X is the input argument, Z is the output argument, and q/2
is nondeterministic, i.e. for any given value of X it may produce several
different bindings for Y. When the AND process for the body of this
clause calls q/2, it creates a success continuation that consists of the
remaining two goals and an environment in which X has the value passed
to p/2, Z is unbound, and Y is an input parameter. When q/2 or one
of its descendants succeeds after unifying its second argument with a
term t, it calls the success continuation with t as a parameter.

Since it is not known (and not knowable) in advance when and where
q/2 will succeed, the success continuation is passed as a parameter to
q/2 and will be invoked each time q/2 succeeds. For example, q/2 might
be defined as follows:

q(a,b).
q(X,Y) <- t(X,Y).

t(a,c).

Given this definition, the success continuation will be invoked twice.
One invocation occurs when the first clause for q/2 unifies its output
argument with b. The second clause for q/2 passes the success con-
tinuation on to t/2 and the continuation is invoked when t/2 unifies
its output argument with c. The mechanisms for forwarding success
continuations will be explained below. Note that the two invocations
of the success continuation can occur in any order; for example, the
success message that carries the binding Y=b may be hung up in traffic
so the message with Y=c is delivered first.
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Every procedure call also implicitly defines a failure continuation.
As described in [11] one of the distinguishing features of the OM virtual
machine is that instead of handling all failures the same way, OM exe-
cutes a specially constructed failure code sequence for each procedure
call. This code sequence implements a “semi-intelligent” backtrack-
ing scheme which is more efficient than Prolog’s simple chronological
backtracking. Consider again the clause

p(X,Z) <- q(X,Y) & r(Y,Z) & s(X,Y).

Since in this example bindings for Y are created by calls to q/2, any
procedure that “consumes” Y should request new bindings from q/2.
If s/2 fails, Prolog simply backtracks into r/2. In OPAL, however,
the compiler constructs a failure continuation for s/2. If s/2 fails, the
failure continuation is invoked to undo the binding for Y, cancel the
execution of r/2 if it is still running, and wait until q/2 or one of its
descendants invokes its success continuation with a new binding for Y.

A continuation ID (CID) is represented in OM by a pair (p, a) where
p is a process state vector and a is a code address. CIDs are passed as
parameters in messages and define how the operation represented by
the message will be handled. At a minimum each message has a TO
continuation that specifies the recipient of the message. To initiate a
message handling operation, the system extracts the TO continuation
ID (p, a) from the message, installs process p as the current process by
loading values from the state vector of p into OM machine registers,
and then branches to code location a (this operation is explained in
more detail in the next section). Other CIDs passed as parameters in a
message specify how to respond to the message. Up to two additional
CIDs can be supplied in each message.

In the remainder of this section we will define the formats of each
basic message type and then show how the system manipulates the
CID fields of messages in order to achieve the control patterns shown
in Figure 3.

3.1. Message Formats

The contents of the four main types of messages in OPAL are shown
in Figure 4. The first field in each message is a one-byte message type.

Start messages (type S) contain two additional continuation IDs and
a set of arguments. The three shaded fields are the CIDs. The argument
field contains pointers to binding environments and other parameters
being passed to the new process. SUCC identifies the continuation to
invoke if the new process succeeds. For example, if the new process
is an OR process for a procedure such as arc/2 from Figure 1, it will
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Figure 4. OM Message Formats

collect the bindings from the successful matches with the goal and send
them in a success message to the success continuation. FAIL is the ID
of the continuation that receives a message when the new process fails.

Success messages (type A) contain only one additional CID, which
identifies a redo continuation. The redo continuation is the continuation
that should be invoked if the receiver of the success message ever needs
additional results. The argument field contains the results of the call,
for example a pointer to the set of bindings made to variables passed
as parameters in the procedure call.

Redo messages (type R) are simply signals to send another result.
The TO continuation here is a process that succeeded once before and
is now being asked to supply a new result. Conceivably a redo message
could contain success and fail continuation IDs, just as a start message
does, but in OPAL a process saves the success and fail continuations
handed to it when it was started and uses them to respond to redo
messages. Thus every success generated by a process goes to the same
continuation, as specified in the start message, and the failure of the
process is reported to the fail continuation whether the failure happens
immediately or after some number of successes.

Fail messages (type F) are also very simple. There is no need for
parameters or for a continuation that would respond to a failure; in
fact, in the current implementation a process deallocates itself when it
fails and there is nothing left to handle a response to a fail message.

3.2. Basic Control Patterns

When an AND process pi calls a procedure, it creates a new OR process
for the call and sends it a start message with success CID (pi, sc) and
failure CID (pi, fc). The code addresses sc and fc are unique locations
within the code block of the AND process.
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.. & p(X) & ..

p/1

q(a) & r(b)

q/1 r/1

.. & p(X) & ..
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P1

P0
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Figure 5. Basic Message Patterns in OPAL

Figure 5 shows the two basic control patterns generated when a
process p0 needs to solve goal p/1. It starts OR process p1 and sends
it a start message. Case (a) arises when the procedure is defined only
by unit clauses. If the OR process cannot match the passed parame-
ters with the compiled parameters for any clause head, it sends a fail
message to (p0, fc). If it succeeds in matching the heads of one or more
unit clauses, it sends the results to (p0, sc).

In Figure 5b, the OR process matches the head of a nonunit clause,
so it needs to create a new AND process p2 to solve the body of the
clause. The start message to p2 has success continuation ID (p0, sc)
and failure continuation ID (p1, fc) . Note that the fail continuation
is in the OR process p1. The reason is that in general there can be
many matching nonunit clauses and p2 will have one sibling for each
additional matching nonunit clause (for example the OR process for the
call to epath/2 in Figure 2 has two descendants, one for each clause
matching the call). p0 should be sent a fail message only after p2 and
all its siblings fail. The OR process keeps track of fail messages arriving
at (p1, fc) and invokes its own fail continuation, which has ID (p0, fc),
when all its descendants have failed.
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It is possible for a procedure to be defined by a combination of unit
and nonunit clauses. In these situations, the OR process reports suc-
cesses from the unit clauses at the same time it sets up AND processes
for the nonunit clauses. OPAL exploits true “don’t care” nondeter-
minism: results may be returned in any order, and the calling process
must be able to handle the results in the order they return. Note that
all results, whether they come from the OR process or from processes
lower in the tree, are all handled by the same success continuation,
identified by (p0, sc).

In order for this scheme to work, a slight adjustment needs to be
made to the basic AND/ OR model. In the abstract model, an OR
process is in charge of routing messages one at a time to the calling
AND process, and lower level AND processes return their successes to
the OR process for handling. For the control scheme outlined here, the
messages go directly to the calling AND process. Thus the queuing
mechanism that receives messages and extracts them one at a time on
demand must now be part of the AND process.

3.3. Last Call Optimization in OPAL

A crucial aspect of any high performance implementation of a symbolic
programming language is the conversion of tail recursion into iteration.
Warren showed how techniques used to optimize tail recursion in Prolog
can be generalized to the last call in any clause, not just those that are
immediately tail recursive [13]. The recent text by Kogge [9] provides a
a good introduction to last call optimization and other implementation
techniques for logic programs.

In an AND-parallel system such as OPAL, which can execute calls
in the body of a clause in parallel, there may be no “last call” and it
may not be possible to turn tail recursion into iteration. As an example,
consider the following clause:

p(X,Y,Z) <- q(X,Y) & r(X,Z).

Here X is an input parameter, Y and Z are outputs, and the calls to q/2
and r/2 can be executed in parallel. The AND process for the body
of this clause must be a synchronization barrier: it must wait until
both calls succeed before invoking its own success continuation, and
neither call is a “last call” that can send a success message directly to
an ancestor goal.

This section explains how the OPAL compiler generates parallel
goals with no last calls for clauses such as the above example, yet
is able to exploit tail recursion and last call optimization for append/3
and similar procedures.
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There are two separate aspects to last call optimization in a non-
deterministic language. The first is space optimization, in which the
space for a tail-recursive call overlays the space used in the previous
call so the procedure runs in constant space. The second is the control
optimization, implemented in OPAL by continuations, which avoids
returning to a procedure body after calling the last goal.

The distinction between control and space optimizations can be seen
in the following goal statement and clause:

... p(a,X) & s(X), ...

p(Y,Z) <- q(Y,W) & ... r(W,Z).

The last thing to do in a call to p/2 is to call r/2. The control opti-
mization is to have the code for r/2 branch directly to the program
point between the calls to p/2 and s/1 instead of returning to the
clause for p/2. The space optimization is to reclaim the environment
of p/2 before calling r/2. If this clause is tail recursive, i.e. the last call
is to p/2 itself and not r/2, the space optimization is what converts
recursion to iteration.

The control and space optimizations are independent in a nonde-
terministic program since there are situations where it may be possi-
ble to exploit the control optimization without reclaiming the space
used by the call. Consider the following goal statement and procedure
definition:



Continuation Control of Parallel Logic Programs 123

... p(X,Y) & r(Y,Z) ...

p(a,a).
p(W,Z) <- q(W,X) & ... p(Y,Z).

At first glance the second clause for p/2 defines an iterative loop. How-
ever, if q/2 is nondeterministic, the state of that call must be preserved
in order to allow backtracking or some other mechanism to extract the
additional results. In this case the recursive calls consume progressively
more space since they cannot reuse their parents’ environments. The
control optimization is still possible, though; when the base case of the
recursion is activated, control passes immediately to the call to r/2.

In order to exploit the space optimization, which turns p/2 into an
iterative procedure, Prolog programmers often use the cut operation to
ensure no unwanted “choice points” are on the stack. The recursive call
in this version of the clause (rewritten in Prolog syntax) is guaranteed
to run in constant space:

p(W,Z) :- q(W,X), ... !, p(Y,Z).

OPAL programs are able to exploit the control optimization that
results from last calls and tail recursion by having an AND process
forward its success continuation to the OR process for a last call. For
example, in

... p(X,Y) & s(Y) ...

p(X,Z) <- q(X,Y) & r(Y,Z).

the compiler will classify the call to r/2 as a last call. Instead of creating
a new success continuation for the call to r/2, the AND process for p/2
will forward the success continuation it was handed by the top level call.
When r/2 succeeds the result will be passed directly back to the top
level to be used in the call to s/1.

The OPAL compiler arranges the goals in the body of a clause in
a data dependency graph and then generates code that creates calls
according to the constraints defined by the graph [12]. The structure
of the data dependency graph is the key to whether or not a clause has
a last call: a procedure call in OPAL is a last call if and only if the call
is a single node on the last level of the data dependency graph for the
clause.

Figure 6 shows two example clauses and the corresponding data
dependency graphs. In the first example, the compiler has determined
(from examining the rest of the program to see how p/2 is called) that X
and Y will always be unbound when the procedure is called. The graph
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p(X,Y) <- q(X) & r(Y)

p(X,Z) <- q(X,Y) & r(Y,Z)

Figure 6. Data Dependency Graphs for Two Clauses

shows the two body goals are independent and can be solved in parallel
since they are at the same level in the graph. In the second example,
X will be an input term, and Z will be output. No matter what the
parameters are, the two body goals will always have unbound variable
Y in common, so they are not independent. In this graph, the compiler
has determined that q/2 will be called first, and after it has been solved
r/2 is called.

In the first procedure, there is no last call, and the relationship
between the AND process for this clause and its two OR descendants
will be the same as that shown in Figure 5a. The AND process set up
for the body of this procedure cannot pass its own success continuation
to either of the body goals because it must wait for both to be solved,
and it does not know which will succeed first.

The second procedure in Figure 6 does have a last call, since r/2 is
the only goal on the last level of the data dependency graph. Once r/2
is solved, the entire clause is solved, so the success continuation passed
to p/2 can be passed on to r/2. Figure 7 shows the AND/OR tree that
will result. Note that the OR process for r/2 passes its results directly
back to the top level AND process.

In order to implement the last call optimization, the start message
sent to the OR process for a last call uses a different set of continuations
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Figure 7. Last Call Optimization in OPAL

than other calls made by an AND process. Suppose, as in Figure 7, an
AND process p2 is sending a start message to a new OR process for
a call to r/2. Part of the state vector for p2 are the two continuation
IDs (p0, sc0) and (p1, fc1) given to it by its parent. As defined in the
previous section, if the new OR process is not a last call, the success and
failure CIDs in the start message are (p2, sc) and (p2, fc), respectively,
and p2 will handle the success messages from the call to r/2. However,
if the new OR process is a last call, the two CIDs passed to r/2 are
(p0, sc) and (p2, fc). In other words, the OR process for a last call
and all its descendants will send their results back to p2’s ancestor p0

instead of to p2 itself.
When the compiler decides that a goal can be solved with the last

call control optimization, it generates a start_last_or instruction
instead of a start_or instruction. Both virtual instructions trap to
the kernel to create a new process and send it a start message; they
just differ in the value of the success CID put into the start message.

Note that fail messages from the new OR process for r/2 will come
back to AND process p2. To implement the space saving dimension of
last call optimization, with immediate garbage collection of previous
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Table I. Basic Control vs. Continuation Control

color epath append

basic cont basic cont basic cont

#procedures 876 876 375 375 54 54

#messages 2647 2137 1584 974 214 108

#instructions 53170 51719 18522 15977 1600 858

goals, p2 would have to send (p1, fc1), or better yet (p0, fc0), as the
failure CID to the new OR process. However, in order to do this p2

would have to be sure there were no more successes possible from q/2.
In Prolog this is a simple decision, since control frames are allocated
from a stack and it is easy to see if there are any choice points on the
stack. In OPAL, however, we would have to tag success messages with
information that indicates whether or not more results are possible;
this is the subject of a current project.

3.4. Measurements

To measure the effects of continuation-based control patterns, we counted
the number of messages generated by two versions of the OPAL ma-
chine, one with the straightforward control regime defined by the ab-
stract model and the other with the optimized control strategy enabled
by using continuations. The results are shown in Table I.

The three programs used to collect the data were a map coloring
program (72 solutions), the program that searched for even length
paths in a graph (51 solutions), and a program that made 26 recursive
calls to the deterministic append procedure. We recorded the number
of procedure calls, the number of messages generated, and the total
number of virtual machine instructions executed for each program.
Two numbers shown for each program are the values recorded using
the basic control strategy and the continuation based control.

As expected, the total number of procedure calls is unchanged since
the same process tree is created for each program. However, the number
of messages goes down. Map coloring is a highly nondeterministic pro-
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gram, and the main AND process does not allow last call optimization.
The small improvement in the number of messages is a result of the fact
that OR processes do not handle success messages. In the even path
program, one clause in the procedure epath/2 is tail recursive, and the
reduction in messages is more pronounced since the tail recursive calls
end up sending their results directly to the top level goal. append is
completely deterministic. The AND/OR graph for this program is a
single long branch with two nodes (one for the OR process and one for
the AND process for the body) for each call to append/3. As expected,
the number of messages is cut in half since the result is returned straight
to the top level without bubbling back up the tree. If we could tag
success messages to show no more results are possible, and achieve
constant-space iteration, the number of messages would be cut in half
again since fail messages would not have to bubble back up the tree.

4. Implementation

The use of continuations in message passing not only enables more
efficient control strategies, it is the key to highly efficient task switching
in OPAL. In this section we will describe how continuation IDs are
represented and how the system kernel uses these IDs to effect a task
switch. Timing data from a simulator that builds and traverses random
AND/OR trees is presented in the final section.

4.1. Representations

From the beginning, one of the main goals for OM was an efficient
implementation of parallel logic programs for scalable (i.e. distributed
memory) parallel processors. In a parallel system, the AND/OR tree
of process states will be spread across the local memories of the nodes
in the system. In Section 3 we defined a continuation ID to be a pair
(p, a) where p is a process ID and a is a code address. An efficient
representation of a CID thus depends on representations of p and a in
a distributed memory.

One assumption we made was that every node would have the same
copy of the compiled user program, so the code address a can simply be
the offset from the beginning of the code space. This allows us to create
a CID with the address of the procedure that will handle the message
without worrying where the code for a resides on the processor that
will receive the message – it is at the same location in the receiving
node as it is in the transmitting node. For example, when an AND
process wants to solve a procedure p/n, it would send a start message
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containing a TO CID of the form ( , a) where a is the address of the
first instruction in the procedure. The code address will be valid no
matter which node eventually executes the procedure.

The process ID p is more complicated. A key to the representation
is that once a process begins executing it does not move around in the
system. When a process is first created, its state vector is a “seed” that
is little more than the location of the first instruction in the code for
the process. The first instruction in the code block for a process causes
the seed to “sprout” and be expanded into a full process state. The
task allocation mechanisms are all allowed to send seeds to other nodes
in order to balance the load, but none can relocate a full process state
vector.

Since a process does not move, the system can use the local heap
address of the state vector in the representation of the process ID.
Currently a process ID is a two-word record containing the ID of the
processor that “owns” the process, the status of the process (seed,
active, terminated, etc.), and the local address of the state vector.

The control information in a CID is thus a tuple <<I,HA>,C> where
I is the ID of the processor that will handle the message, HA is the heap
address of the state vector of the receiving process in the local memory
of processor I, and C is a constant used to compute the code address
of a block of instructions that will be executed in order to handle the
message.

4.2. Task Switching

During the execution of a user program, the registers of the OM virtual
machine contain information about one process, known as the “current
process.” When the last OM instruction in the current process causes
a task switch, the system traps to the underlying kernel. The kernel
loads a new process state into the virtual machine registers and then
returns control to the virtual machine level.

When a process sends a message, a virtual machine instruction ex-
ecutes a trap which invokes the kernel. The kernel examines the TO
continuation ID in the message. If the PID field of the continuation ID
equals the processor’s ID, the message is inserted into the local mes-
sage queue, otherwise the message is handed over to the interprocessor
message router.

The three registers updated during a task switch are M, P and PC.
The message register M holds a pointer to the message that activated
the current process. The process register P holds a pointer to the state
vector of the current process. PC is the usual program counter register,
containing the code address of the next virtual machine instruction to
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execute. For registers such as M and P that point to complex structures,
the notation R[X] refers to field X of the structure pointed to by register
R.

The three steps executed by the kernel to perform a task switch are:

M := next_message;
P := M[to[HA]];

PC := P[code] + M[type];

The call to next_message removes a message from the local message
queue; if the queue is empty, it waits until a message arrives from
another node. The second step sets the P register to the ID of the
process specified in the TO CID. The third step uses P to find the
address of the first virtual instruction in the code block for the process.

The first four instructions in each process are “port instructions”
that are always arranged in the same order. The third step above causes
the virtual machine to branch to the port that will handle the given
message type. The port instruction will carry out the final step of using
the C field of the TO CID to branch to the code for the program point
that will handle the message. For example, the and_success_port
instruction is a multi-way branch instruction that uses a combination
of the C field and the state vector to branch to the success continuation
code for the procedure that was just solved.

4.3. Measurements

The steps outlined in the previous section are compiled into very few
host machine instructions, almost all of which are simple indexed loads,
so task switching should be very efficient. To measure the efficiency of
the representations and the task switching code, we wrote a simple
program that grows a random AND/OR tree. Parameters of the sim-
ulation are the branching factor for each type of node, the maximum
depth of the tree, and the probability (which decreases with depth)
that an OR node will become the root of the next round of expansion.
The simulator was used to exercise the heap-based memory manager
as well as the message handling and task switching logic.

When run on an HP 9000/835 workstation, the simulator processed
between 75,000 and 98,000 messages per second. Included in this figure
is the time to allocate and deallocate the nodes of the tree, do “pro-
cess updates” to figure out where and how to expand the next node,
and generate messages to carry out the next expansion. We could not
measure the actual distribution of CPU time between task switching,
process updates, message queue operations, and memory management
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since the procedures were too small for accurate measurement by sta-
tistical profiling tools that sample the host machine program counter at
periodic intervals. We estimate that roughly 1/10th of the time spent
in the simulator is used by the task switcher.

We can draw two conclusions from the figure of almost 100,000 mes-
sages per second. First, at roughly 10 microseconds per node expansion
step, the continuation based control is quite efficient. If 1/10th of the
time in each simulated step is devoted to task switching, it takes on
the order of 1 microsecond to remove a message from the queue and
update the M, P and PC registers.

Second, this simulator provides a reasonable estimate of the over-
head incurred by executing programs according to the AND/OR pro-
cess model. With the current implementation using two processes per
procedure call in the append benchmark, we have an upper bound of
50,000 LIPS, which is over two times slower than SICStus Prolog on this
machine. A big improvement will be seen if we can cut the number of
messages down to one per call through the use of redo continuations,
both because there will be fewer messages and because the program
will take less space and may even execute entirely in cache. Further
improvements will come from compiler and runtime optimizations that
increase the granularity of tasks or new, more innovative, message
passing patterns.

Measurements of actual programs show that in some nondetermin-
istic programs OPAL is fairly close to SICStus in execution times on
a single processor. The best so far is a program that computes the
opening bid for a hand in Bridge; this program is only 1.6 times slower.
Other nondeterministic programs are from four to five times slower, and
deterministic programs such as naive reverse and quicksort are around
ten times slower. A more detailed discussion of these measurements
and of where we expect to improve OM can be found in [5].

5. Summary and Discussion

This paper has presented an application of continuations in the devel-
opment of efficient control structures for parallel logic programs that
have an Actors style operational semantics. By viewing process states
as continuations and passing two continuation IDs – one for success and
one for failure – to each new process, message passing can be reduced
by up to 50%.

Our use of continuations is similar in spirit to the Mach 3.0 kernel
of Draves, et al [6]. Their goal was to redesign the implementation
of certain kernel operations without modifying the specifications of
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the procedures; from the user’s point of view, nothing changed but
performance. Our goal was the same, since we wanted to implement
the basic operational semantics of the AND/OR process model using
fewer messages and more efficient task switches.

A continuation is usually defined to be a function plus an environ-
ment, an object that can be activated in order to resume execution in
a known state. This definition applies to OPAL continuations as well,
even though we did not discuss in this paper the environment portion
of OPAL continuations or the mechanism for passing parameters to
continuations. A message contains all the binding information needed
in the resumption of the clause, in the form of a set of closed frames.
The handling of these frames is discussed in detail in [5].

Since the continuations represent independent functions, and their
environments are captured completely in the closed frames, it is possible
to invoke a continuation more than once. For example, if an OR process
unifies its call with the heads of n unit clauses, it will eventually invoke
its success continuation n times. In OPAL, all n solutions are sent
on to the calling AND process in one message, but the AND process
uses them one at a time. Conceptually, we could fork n independent
invocations of the success continuation to run in parallel. This is in
fact what happens in a pure OR parallel system such as Aurora [10] or
Muse [2], which build a “cactus stack” of bindings in a shared memory
space; an interior node with n branches is the stack frame for a call with
n successful matches. Kalé’s Reduce-OR process model is an example
of a process oriented system, similar to the AND/OR model, that can
operate on all results simultaneously [8]. Kalé calls this form of AND
parallelism “consumer instance parallelism”, reflecting the fact that one
invocation of the continuation (the consumer) is made for each result
sent.

We have experimented with implementing consumer instance par-
allelism in OPAL, but there are limited situations when it can be
applied without major changes to the underlying model. If an AND
process forks two or more OR processes at the same time, it becomes
the success continuation for all of the processes and their descendants.
Before the AND process can start goals in the next level of the data
dependency graph, however, it must receive solutions from each branch,
and the results may arrive in any order. We cannot simply make a copy
of the AND process when a result arrives, because the result must be
matched with results from sibling goals. Kalé’s system implements a
join operation that is able to create multiple instances of the success
continuation each time a new result arrives on one of the input channels.

Our immediate plans are to implement more intelligent redo contin-
uations. Currently the redo continuation in a success message is the ID
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of the process that creates the result. By tagging success messages with
a field that indicates no more results are possible, we should be able
to avoid sending redo messages to processes that cannot generate any
more successes. As described earlier, in purely deterministic programs
this new optimization will cut the number of message in half again, for
a total savings of 75% over the basic AND/OR model.

It is clear that viewing sending and receiving processes as continua-
tions has been the key conceptual framework that led to the improve-
ments so far. We hope that as we gain experience with more and larger
user programs we will be able to uncover additional optimizations.
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