1.

Frontiers ‘95 (Proceedins of the Fifth Symposium on
The Frontiers of Massively Parallel Computjng
MacLean, W (Feb 6-9), 1995, pp. 222—-230.

Optimizing Irregular Computationson SIMD Machines: A Case Study

John S. ConeryMichael Lynch! and Tommy Hovland

* Department of Computer and Information Science
T Ecology and Evolution Program, Department of Biology

University of Oregon
Eugene, OR 97403

email: conery@cs.uoregon.edu

Abstract

Data-parallel computations with regular structure —
fixed data size and predictable control patterns —
can be implemented efficiently on SIMD architec-
tures. However many large applications have irreg-
ular structure, either data sets that vary in size as the
computation progresses or control structures that
select different subsets of the processors at each
stage of the computation. In this paper we describe a
stochastic biology simulation and some of the meth-
ods we used to improve its performance on the Mas-
Par MP-1104. We present a simple model for
evaluating the performance of a data parallel appli-
cation and use the model to improve the perfor-
mance of the simulator.

Keywords: data parallelism, performance models,
source level optimization, stochastic simulation,
computational ecology

Introduction

In this paper we describe our experience with optimiz-
ing an irregular data-parallel application. The program is a
stochastic simulation of the buildup of mutations that lead
to the extinction of endangered species. It is a natural data-
parallel application since the same calculation, xangple
combining the genes from individuals in the current gener
ation to produce offspring for the next generation, is done
repeatedly eer very large data sets. Because the simula-
tion is stochastic the program is also highly irregular: some
populations go extinct before others, and individuals that
survive to form the next generation must hemy redis-
tributed among the processors simulating that population.

After a brief wverview of the simulator to provide back-
ground information, we present a simple performance
model that characterizes thefi@geng of a data-parallel
computationWe then show how the model can be used to
evaluate parts of the simulator and suggest changes in the
source program that impre eficienoy and as a result
decrease theverall execution timeWe also use the perfor
mance model to analyze a trade-off between communica-
tion and computation in the load balancing step that

Scientifc applications with uniform structure maery distributes individuals to processors.
well to SIMD architectures. Examples of such applications
include seismic modeling with a finite grid metH8# cir-
culation patterns in the ocean and atmospligle and
molecular dynamicg4]. These programs typically v&a

fixed size data and calculations that are unifower ¢dhe
entire data set. of small populations is the buildup of harmful mutations.

Many important scientific problems are not aguier. Field data collected from a variety of species indicates that
The data may vary in size during the computation, or, as i®n &erage new offspring ke one new mutation. In a
the case of a parallel search, data structures may not Biite environment (on an island, for example), mutations
known in advance and must be mapped to the architecturéat are passed on to subsequent generations veayue
as they are creatéf]. In addition, the calculations done at ally becomefixed that is they are present inegy indvid-

each data point may be different, which means subsets ¢! in the population. The phrase “mutational mefttd
processors are idle a significant amount of time. refers to the fact that at some critical point there will be a

2. The Mutational Meltdown Simulator

One of the factors that may contribute to tRénetion

222
0-8186-6965-9/95 $04.00 © 1995 IEEE

sufficient number of fed mutations to guarantegtiac- the mean and standard deviation of the number of genera-
tion within a few generations. tions to extinction. At the time we first started using the

Simulations show the population goes through threeMasPay simulations for asexual reproduction, which are
phases: a short initial phase in which new mutations arenuch simpler than the simulations described here, were
introduced, a prolonged intermediate phase in which modiaking over a week (wall clock time) on a SPARC-2nk-
new mutations drop out but others beconxedi at a steady station. The first parallel simulations ran on an MP-1101
rate, and a short final meltdown phase in which the populaabout 15 times faster (CPU time) than the sequential v
tion is quickly drien to extinction as a result of too igan sion. The latest versions of the program simulateiae
mutationg7]. What this simulation shows is that mutations reproduction and handle populations as large as 512 indi-
alone are enough to cause the extinction of smaédfi viduals. The largest simulation ran forvesl CPU-days
size populationswen if habitat and other eimonmental on an MP-2216. It simulated 60,000 generations of 64 pop-
conditions remain unchanged. ulations of size 128, creating ovED® individuals.

In order to measure the effect of mutation rate, initial Most steps in the simulation map very well to a SIMD
population size, and other parameters on the ratetioe architecture. For example, the main loop is easily parallel-
tion we deeloped a parallel simulator to run on MasP ized: each PE in a group can select two members of the
SIMD machines. In the simulator an individual is repre- current generation, perform the steps necessary to generate
sented by a string of bits: a 1 at a particular sitdo@urg a new individual, add a random number of new mutations,
means the individual has a mutated gene at that locus. Ingcount the mutations in the new individual, and determine

tially all loci are set to 0. The relaé health of an ingid- whether or not it survies. The sources of irregularity are
ual is a function of the total number of mutations it hasalso readily apparent. For example, at the end of the loop
accumulated. that creates the new generation the sorg will be scat-

The main loop of the simulator creates a new generatered among PEs within the group, and to make the cre-
tion from the current generatioe randomly select tow ation of the following generation morefiefent they need
individuals, combine their genes to form the representatiorio be redistributed evenly.
of a new individual, add a random number of new muta-
tions, compute the health of the new individual, and, if it
survives, add it to the next generation. The most importan8, Performance Model for Irregular Data-

parameters that control the simulation are: Parallel Computations
* The carrying capacity . This is the maximum num-
ber of individuals the environment can suppdaiues In a data-parallel computation a processing element
in our simulations range from 2 to 512. (PE) is either idle or it>ecutes the instruction broadcast

e The reproductive rat®® . This is the average number PY the control processor. The set of all PEs thatete a
of offspring each individual will creat@ypical values given instruction is known as tlaetive set Theefficiency

are 2, for species such as mammals, to 10,000, e.g. fopf @ computation is defined by the relatamount of time
planté with a large number of seeds. B processors are ag#i. In a perfect program, all processors

¢ The mutation ratgt . This is the expected number of are acte at sery step and the_fafu_anqr s 1.0, Eﬁmency_
. . L is important in program optimization because calculations
new mutations in each new individual.

o)) often require a Xed number of steps. If they can be reor
When building a new generation the simulator gener yared so the ask set is larger indy regions of the pro-

atesn x R new offspring, where is the size of the currengy .5 and more steps areeeuted in parallel, then the
generation. The firs{ to suré become the next genera- arall execution time will be reduced.

tion. Eventually none of the offspring sureiand the pop-
ulation is extinct.

On a MasPar system we use xefi number of PEs,
known as &PE gioup, for each population. The size of the E = E’Z D D'E(T
group determines how many individuals are stored on each | L
PE. For example, witiK = 64 and a group size of 16
there will be 4 individuals on each PE. The PEs in a groupHere p; is the size of the aati set during program inteal
are contiguous to allow scan operations to countwonsi i, expressed as the percentage of processors that aeg acti
and perform other population-wide operations in log time. t, is the duration of interval ; andl s the totateution

The simulation experiments can be very time-consum+ime. Note that if all processors are busy duriverginter
ing. For each combination of parameters is it necessary teal (p; = 1.0 for alli) the eficiency is 1.0 since the sum
simulate from 250 to 500 populations in order to measuref the lengths of each program interval should equal the

The eficienoy of a data-parallel computation is
expressed in terms of the size of the active set:

223

cl 1 1 1 1 17
n p(x=n) p(x=n)
0
- 0 0.367879 1.000000
1 O O
1 0.367879 0.632120
2 [T O
" 3 [| 2 0.183940 0.264241
A o4 DI 3 0.061313 0.080301
5 O O 4 0.015328 0.018988
6 O O 5 0.003066 0.003660
7
oLl !:! 6 0.000511 0.000594
time O 7 0.000073 0.000083
Figure 1. Poisson random number generator: Ganttf g 0.000009 0.000010
chart for a call tgp_poi sson(1. 0) on eight PEs
and table of probabilities for = 1.0 9 0.000001 0.000001

total eecution time. There are \s@al other ways of see one 6. Thus on an MP 1104, with 4096 processors, it is

describing dfciengy (e.g.[11]) but we prefer this descrip- highly likely that one PE willxecute the loop 6 times, and

tion because it makes explicit the role of thevaciet and the expected &€iency for the body of the Poisson function

the fact that it may change in size from one program-interwould bel/6 = 0.17 . It is interesting to note that thi-ef

val to the next. cieng/ of the Poisson function will decrease with increas-
As an example, consider a Poisson random numbeng machine size since there is a higher probability that one

generatgrwhich is a function that returns an integalue of the PEs will generate a large deviate.

distributed around a mean (calldd). A common imple- As another example, the Gantt chart in Figure Ivsho

mentation is based on a simple loop that draws a uniforneight PEs eecuting a call to the Poisson function, includ-

random number between 0 and 1 and performs one multing the time to set up the loop (labeleat the top of the

plication and one comparis¢h0]. The return value is the chart), six loop iterations (labeléq and the program inter

number of loop iterations. val where the return value is passed back (labe)ed
In a data-parallel implementation we want each PE tdncluding call and return intervalsecuted by each PE the

compute an independent random deviate. The straightfoefficiency in this example is

ward implementation uses a paraiMli | e loop: each PE

independently draws its own random number and does a E=(1.0x1+075x2+025x2+

local multiplication and comparison. As each PE exits the 4(0.125x 2 +1.0x 1)/14 = 0.357

loop the actie set becomes smaller. During tHeiteration] .))

the PEs that are still agé are those that will return alue ~ Without the call and return intervals, during whicrery

of i or greater. The probability that a PE will returnadue ~ Processor is aat, the eficieng is 0.25, which is closer to

greater than or equal tg denotedp(x=n) , gies us the the theoretical value of .17.

size of the actie set on iteration. Let t be the time Because the Poisson random number generator is called
required for one loop iteration. Thefiefengy of a parallel ~ from the inner loop of the simulator — it determines the
Poisson generator is then number of mutations to add to offspring — weperi-

mented with a version of the simulator that precomputes a
m

O 0O table of Poisson deviates. When the simulator is initialized
E= DZ p(xzi) B¥mt = 1/m each PE builds a table withvegal thousand deviateat

< O .

i=1 runtime, each PE draws a random element from the table,

which is a constant time operation on each PE. In one sim-
p- ulation that inolved the generation ofver 100,000,000
individuals the total »ecution time on an MP-1104
gecreased about 25%, from 1099 seconds to 832 seconds.

wherem is the largest deviate computed on any PE.
According to the table in Figure 1, far= 1 the pro

ability of generating a 6 is .0006, 4 1667 . In other

words, in 1667 calls to a Poisson generator we are likely t

224

Key: x = produce offspring, p = poisson, s = survivor?,

a = add mutations, ¢ = count survioors

X p s acx p s acixp s acixp s ac
, OIIID N 00 0N ol 00 O
, DD oo e O O
, O D 0 O 0 OO0 0 O
., 3 DI OO OO O
£ 4 OO OO0 OO0 00 00 OO =2 O
G i w1 O O o e e A
¢ IIIm ON 00 O 00 O Comen
7 IO DN DN DN D O OO
NN N A A I A A I A A - I N N O |
X p s ciXx p s cCiXx p s cix p s cia
o O T T10 CI1 CIi0 Crem
|, D e e
» [O COn CO0n C e
. 3 MO T I T ifrjCrmm
SIS N e T e i O e o O s
5 [0 CI000 C O I T T
6 [T T11 0D CIin CImm
7 0 170 CJ10 C I

Figure 2. Gantt charts for original loop (top) and two loops after fission (bottom).

4. Loop Fission

hawe been generated. The latter test is needed because ir
the final meltdown phase of the simulation there will be so

The heart of the mutational meltdown simulator is the prO-n’]ary mutations in the popu]ation that fewer tHanndi-

cedure that builds the next generation:

n = nsur = 0;
for (i =0; i <limt, nsur <Kk; i++) {
produce_of fspring();
nm = p_poi sson();
if (survivor(nm) {
add_rmutati ons(nmn);
n += 1,
}
nsur = count _survivors(n);
}

The parallelf or loop iterates until the number of survi-
vors in the new generationgur) reaches the desired pop-
ulation size k) or until the maximum number offspring

225

viduals will survive.

produce_of fspring is executed in parallel on
each PE to generate a new individual. If withnew muta-
tions the new offspring would suwmé the mutations are
inserted into the representation of the new individual by the
call toadd_nut at i ons. Finally, count _survi vors
sumsn, the number of survors on each PE, to compute
the total number of survivors in the population.

In this section we describe a sourceeletransforma-
tion, commonly known akop fission[12], that improes
the eficiengy of this piece of code. The basic idea is to
break the singléor loop into two independent loopehis
transformation is often counterprodweti in sequential
programs that are optimized by combining loops to reduce
loop overhead, but in a data-parallel program performance

is improved if the operations within the loop that akee mize the size of the agé set when it is called. The solu-
cuted by a relately small actre set are postponed and tion is to transform the program so that instead of one loop
executed in a separate loop in a manner that increases tligere are two. During the first loop weseghe number of
size of the active set. mutations that should be added to each individual, and in
The call toadd_nut at i ons is the ley to the perfor the second loop we iterateay all local surwors and call
mance of this part of the simulator. These calls are highadd_mut at i ons:
lighted in the Gantt chart in Figure 2. Note that in each _ -0
loop iteration the number of PEs thakeeutes the call to n=nsur =% . ,
. L i _ for (i =0; i <limt, nsur <k; i++) {
add_rut at i ons is fairly small. The size of the aeti ; .
Iy o produce_of fspring();

set depends on the probability that a PE creates andndi nm = p_poi sson()
ual that will surwe to the next generation. Early in the : - .

) : . . . if (survivor(nm)
simulation, when all offspring are healttthis probability mc[n++] = nm
is fairly high. Bu_t_as the mutations _bw_ld_ up in t_he pop_ula— nsur = count _survivors(n):
tion the probability that any one individual will surei
drops and more loop iterations are required to construct the C_A-

. . _ _ for (i=0;

new generation. Early in the middle phase of the simula-
tion the system isxecuting thef or loop the maximum

i< n; i++)
add_nutations(ncl[i],i);

number of times. In this versiomt is an array on each PE that keeps track of
The size of the aatt set in the call to the mutation count for each local swai The Gantt chart
add_nut at i ons depends on three parameteis: , thefor the nev, optimized version is shown below the chart for

population sizeR , the reproduti rate; ands , the PE the original in Figure 2. The calls &xld_nut ati ons in
group size, which is the number of PEs dedicated to eacthe first loop hee been replaced by assignment statements
population. To build a new generation the simulator is (Which are instantaneous on this time scale) and one call to
required to create up 8§ x R new offspring. The maxi-add_nut at i ons in the second loop is didient to insert
mum number of loop iterations 6K x R)/G , i.e. the mutations into all survivors.

invocations of the loop body are spreagrdy among the Table 1 presents data thaerifies the performance

G PEs. If the program takes the maximum number of loogmprovement as a result of moving the call to
iterations to generate tiesurvivors that will form the ng ~ add_nut at i ons to a second loop. As was the case with
generation, on\erage the number of suveirs per loop the Poisson generator, the optimization pays increasing
iteration is K/ ((K x R)/G) = G/R . The percentage of dividends as the length of the simulation, which is prepor
PEs that are ast during calls tadd_rmut at i ons isthe tional toK x R, increases. As expected the improent is

number of surviors per iteration divided by the group size: most pronounced for the smaller valuesléR , i.e. when
the fewest processors are in the\actset in the calls to

(G/R) add_mut at i ons in the originaff or loop.

p:—-—-——:

G

Tl

Thus for higher values @& we expect to see worse perfor 5. Load Balancing Interval: Tradeoff
mance in the calls tadd_nut at i ons. Between Control and Communication
As a concrete example, wikh = 32 aRd= 100 the
simulator will create up to 3200 offspring as potential The communication channel used for point-to-point
members of the next generation. Suppose the group size ¢gmmunication in the MasPar is known as the router. It
16. That means there will be up to 200 iterations of theuses three iels of cross-bar switches to connect a PE to
loop (so 16 processors caxeeute the loop body a total of any other PE [2][9].
3200 times), out of which will emerge 32 swoiis. In the Table 2 shows the performance of the router using the
middle phase of the simulation, when all loop iterations ardVIPL primitiver f et ch. To collect this data we controlled
required to build the new generation, therage number the size of the adté set by selecting a different subset of
of survivors per iteration isn = 32/200= 0.16 The the PEs toxecute the f et ch procedure. The PEs in the
average size of the aet set is the number of swers per active set were not selected randomly; instead they were
iteration divided by the number of PEs in the group:distributed eenly across the machine, which had tHeaf
n/16 = 0.01, which is1/R . of distributing the contention for the first/kd of cross-bar
Sinceadd_nut at i ons is nontrivial — it needs to switches in the router. Each aetiPE selected another PE
coordinate with a garbage collection procedure to find fre@t random from which to fetch a specified amount of infor
loci in which to insert the mutations — we need to maxi-mation. The “message size” is listed in the left column of

226

Table 1: Improvement as a Result of Loop Fission Optimization

Execution Time (sec)
K R K xR p=1/R Improvement
Original Optimized

2 2 4 .50 8.61 8.54 1.1%

8 2 16 .50 14.06 13.53 3.8%
16 2 32 .50 17.78 16.68 6.1%
32 2 64 .50 31.65 29.15 7.9%

2 100 200 .01 54.07 53.22 1.6%

8 100 800 .01 105.50 98.21 6.9%
16 100 1600 .01 275.41 245.89 10.7%
32 100 3200 .01 643.27 466.16 27.5%

the table, and the percentage of PEs that wergeati of 8 there will be 6 individuals on each PE. In building up
given in the top row. the new generation the swal of any individual is a ran-
The left half ofTable 2 shows the latepmr amount of dom eent, and thus it is possible that by the time 48 ne
time required to transfer the data. As expected the timéndividuals hae been generated they will not be disitdul
goes up almost linearly with the message size. The corresvenly within the group. Since later steps will be much
spondence is not exactly linear with a slope of 1.0 becausmore eficient if all PEs hee the same number of intiu-
the connection pattern was random and timings naay v als — a fact predicted by our performance model amd v
because of higher or lower collision rates. Note also thafied by experiments — it is important to use a load
the time increases linearly as more PEs argaatihich is balancing algorithm to distribute swers in the new gen-
also to be expected since the number of/adBEs dbcts eration.
the contention in the cross-bar switches. Note thahe The load balancing method we use is knowrscen-
though latency is worse with increasing message size andirected load balancinfll]. Periodically we check to see if
active set size, the bandwidth, shown in the right half of thearny PEs hae excess individuals and if other PEsdnapen
table, imprees with larger messages and to a lessgredge slots for individuals; this check is implemented byotw
with increasing active set size. scan operations (parallel prefix sums) which take time pro-
Given the data on communication latency it is apparenportional to log of the group size. If the check determines
that one way to impre overall performance would be to that it is time to redistribute the new generation, the data
reduce the size of the aaiset during router operations. transfer operation is wioked. It uses the router to r®
With fewer PEs using the router the length of a prograndata in parallel from PEs with excess individuals to PEs
interval that calls router procedures will be shorterwHo that have open slots for individuals.
ewer this approach is in conflict with the program transfor ~ The performance trade-off is in the fact that the com-
mation described in the previous section, which has thenunication step will be morefafient if we do load balanc-
goal ofmaximizingthe size of the aatt set. In this section ing after eery iteration of the loop that createswne
we describe a part of the mutational meltdown simulatoiindividuals, since fewer individuals will be transferredt b
where we were faced with a trade-off between thege twthe control @erhead will be minimized if we perform the
conflicting goals. check less often and allow more excess individualsitd b
Recall from the previous section thatey lstep in the up on the PEs. For example, assume weayd transfer
construction of the next generation is a procedure that sumiadividuals as soon as the check procedure detects an
the number of survors across all PEs in the group in order imbalance. If we check with peridd = 1 , i.e. after each
to compute the total size of the new generation. This procezall to the procedure that creates new individuals, then the
dure is also responsible for load balancing, to make suredds are that few individuals will be transferred. On the
that the new individuals are spreagtely among the PEs. other hand, suppose there is room on each Pé&feriour
For example, with a population size of 48 and a group sizextra individuals. Then it is possible to do a checkrg

227

Table 2: Router Performance on Random Communication

% Ag‘g’g L atency (sec) Bandwidth (M Bytes/sec)
ﬁ;’r}/st]?esrre 20% 40% 60% 80% 100% || 20% 40% 60% 80% 100%
16 0.001 0.001 0.003 0.004 0002 178 169 181 136 5.2
64 0.002 0.003 0.009 0.006 0007 249 300 311 326 B65
256 0.007 0.012 0.017 0.028 0086 294 349 372 364 402
1024 0.024 0.044 0.073 0.097 0114 343 383 346 B46 6.8
4096 0.096 0.193 0.27(0.366 0.414 348 348 373 867 K05

fourth time we create new offspring® (= 4), which and make a function of boiand the size of theuffer.

reduces the amount of time spent in the check procedurdo be safe we will need a two-stage check for imbalance:

However the number of PEs with excess individuals will an initial, inexpensive check to see if any PE has created

now be higher, the aste set in router operations will be enough surwiors to fill its luffer, plus a more complete

larger, and the router operation itself will take longer. check that totals the number of excess individuals and
Gantt charts that illustrate the two altermesi are empty slots across all PEs. This modification is the subject

shaowvn in Figure 3. In the chart on the left, the programof a current project

checks for load imbalance aftaregy iteration of the loop

that generates new offspring. Few PEgehexcess indid-

uals or empty slots, so the length of the data transfer ste®. Summary and Discussion

(highlighted) are relately short. In the chart on the right

the program checksvery fourth iteration. Now more PEs Describing the performance of parallel program in

participate in the data transfer and the communication stefgrms of the percentage of processors that areeastinot

is longer. Note that in general the total time spent in transew; for example, Stone uses figures similar to the Gantt

ferring data should remain constant — there amefe charts in this paper do describe thiecegncy of array pro-

communication steps but those steps are now longe#€ssors in a discussion of the inherent limits of speedups of

because more PEs are aeti— but the verall time should ~ pPrograms with sequential componeftd]. In this paper

be lower because there are fewer calls to the procedure th&€ presented the formula in a form that emphasizes the

checks for imbalance. relationship between the length of a program region and
In the mutational meltdown simulator, the analysis ofthe size of the acte set for that region to show how the

the average number of sumors per iteration makes it clear Size of the actie set contributes toverall program perfer

there is little to be gained by minimizing the size of themance.

active set for router operations during load balandikigh We used this performance model to analyze a critical

an aerage ofl/R surviors per iteration the avé set will ~ part of an ecology simulation. This analysis lead to a “loop

already be very small and there will be very few siang fission” transformation that need a ley procedure call out

moved by load balancingvery iteration. The data ifiable ~ Of one loop and into a separate loop. The use of separate

3 confirms this prediction. The agi set size is close to |00ps is more dicient because the aetiset is larger when

1/R whenP = 1 and changes very little with increasing the operation is called in the second loop; in the original

P, while the time spent checking for imbalance does goversion only a small percentage of processors wereeacti

down with increasing® . Since the aatiset size was so When the procedure was called.

small to begin with there is little change wkh= 4 and We also analyzed the agti set size for a part of the

there is no loss in performance from increasefi¢rah the ~ Simulator that requires a load balancing operation. On the

router with highelP . surface it appeared there would be conflicting goals in this
The observation that there are so few swms per loop ~ portion of the simulator: on the one hand router perfor

iteration suggests we might be able to lengthen the periohance imprues if the actie set is small, since there will

228

Key: p = produce offspring, ¢ = check for imbalance, x = transfer excess individuals

pcxpcxpcxpcxpcx

o [ICWT] M W]
1 OO O MM 0.
2 [MO MO T
. 3 IO O.
m 4 [II OIET 00 03
5 [OO 0O 00 £
6 [T [T1 O £
7 I TreT]

time O

ppprc x p
EEEEE B
EEEEE B

time O

Figure 3. Checking for load imbalance. Left: P = 1; Right: P = 4.

Table 3: Check Period vs. Active Set Sizein Load Balancing

P=1 P=2 P=4
R=2 #checks 184 146 73
check time 0.107 0.078 0.033
xfer time 0.336 0.492 0.455
active set .050 .060 .105
R =10 #checks 1296 735 433
check time 0.828 0.430 0.214
xfer time 2.284 2.292 2.107
active set .040 .047 .057
R = 100 #checks 11482 5453 3815
check time 8.549 3.992 2.667
xfer time 11.788 8.566 8.491
active set .013 .023 .030

229

be less contention, but on the other hand, according to thgrants from the Data-Parallel Research Init&t{DEC,

performance model, it is best toviealarge actie sets for MasPay and Thinking Machines), the Murdock Charitable

key operations. By looking closer at this situationwho Trust, the Oregodvanced Computing Institute, and the

ever it became clear that the agtiset was alreadyewy National Science Foundation (BSR 8911038 and BSR

small during load balancing steps and that the bestgjrate 9024977). We are also very grateful to Profrond

for this part of the simulator was to postpone communicaSteihaug and Jan Henriksen of Para//AB, the supercom-

tion as long as possible. puter center at the Institutt for Informatikk, Weisity of
While decreasing the size of the metset during router Bergen, Norvay, for their support and the generous use of

operations did not pay dividends in this application, it maytheir 16,384-processor MP-2216 for our longer simulation

be worth considering in other applications, particularly if experiments.

the communication pattern is not random. If there are “hot

spots” in the PE array that are sources or destinations of

information, contention in the router will slow down com- References

munication. In extreme cases, for example where each PE

needs to fetch 4KB from just one PE, it takes the routefl] Biagioni, E. S. and Prins, J. F. Scan-directed load bal-

over 20 seconds to transmit the data to all 4K processors of ~ancing for mesh-connected highly parallel computers.

an MP 1104. Applications where hot spots arevaitible In Unstructured Scientific Computation on Scalable

should consider source transformations that decrease the MultiprocessorsMIT Press, 1992.

size of the active set for router operations. [2] Blank,T. The MasPar MP-1 architectu@OMPCON
The loop fission transformation has yea to be useful Feb. 1990.

in other applications we ke developed, including one that [3] Conery J. S. et al. A parallel algorithm for calculating
would fall into the category of a highly regular SIMD the free energy in DNA. To appearRnoceedings of

application. An MPL program that calculates the potential the Hawaii International Conference on System Sci-
enegy in DNA molecules uses a 1-to-1 mapping of atoms encegMaui, Jan. 3-6), 1995.

to PEs[3]. A loop that sends atom descriptions around a[4] Giles, R. and Tamayo, P. A parallel scalable approach

virtual ring in order to build information about bonds to short-range molecular dynamics on the CNP®C.
between atoms has very much the same structure as the g.51aple High Performance Computing Conference
loop in the ecology simulation that builds the next genera- 1995 pp. 240-245.

tion: at each iteration only a small subset of the PEs will b(TS] Hatcher, P. J., Quinn, M. J., et al. Architecture-inde-
active since only a few atoms form bonds with the atom pendent’ sc.:ie.r;tific pr(')grém.;ning i.n Dataparallel-C:

that is currently passing by on the virtual ring. Operations Three case studieSupercomputing ‘9pp. 208-217.

that were inside the loop became much mdieieht when)
[6] Karypis, G. and Kimar V. Unstructured tree search on

they were moved to a second loop. _
Descriptions of both of our programs — the mutational ~ >/MD parallel computers: A summary of results.
Supercomputing ‘92op. 453-462.

meltdavn simulator and the potential energy calculation —) .
will be part of a new public domain textbookvetoped by [7] Lynch, M., Conery, J.S., and Birger, R. Mutational
the Computational Science Education Project (CSEP). meltdowns in sexual populatiorvolution(accepted

CSEP maintains aypertet server at Oak Ridge National for publication).

Labs. Readers will be able to use Mosaic or othigvwW [8] Myczkowski, J. and Steele, G. Seismic modeling at 14
browsers to read descriptions of the programsyrdoad gigaflops on the Connection Machifgipercomput-

the code, oren ecute the code remotely andaddoad ing ‘91, pp. 316—-325.

the results. The URL for the CSEP projechtist p: // [9] Nickolls, J. R. The design of the MasPar MP-1: A cost
csepl. phy. ornl.gov/csep. htm . effective massively parallel comput&OMPCON

Feb. 1990, pp. 25-28.

[10]Press, W. H. et aNumerical Recipes in C: The Art of
7. Acknowledgments Scientific ComputingCambridge University Press,

The original mutational meltdown simulator was writ- 1988.

ten in C by Michael Lynch. The first parallel simulatasy [11]1Stone, H. SHigh Performance Computérchitecture

deweloped in MPL by John Conery. The current simulator (30 €d). Addison-Wesley, 1993.

is the result of useful suggestions and hard work bjidda [12]Zima, H. and Chapman, Bupercompilers for Paral-
Butcher Jeff Holmes, Tommy Hovland, and Sam Jones. lel and Vector Computer&CM Press, 1991.

The mutational meltdown project has been supported by

230

