

222

Abstract

Data-parallel computations with regular structure —
fixed data size and predictable control patterns —
can be implemented efficiently on SIMD architec-
tures. However many large applications have irreg-
ular structure, either data sets that vary in size as the
computation progresses or control structures that
select different subsets of the processors at each
stage of the computation. In this paper we describe a
stochastic biology simulation and some of the meth-
ods we used to improve its performance on the Mas-
Par MP-1104. We present a simple model for
evaluating the performance of a data parallel appli-
cation and use the model to improve the perfor-
mance of the simulator.

Keywords: data parallelism, performance models,
source level optimization, stochastic simulation,
computational ecology

1. Introduction

Scientific applications with uniform structure map very
well to SIMD architectures. Examples of such applications
include seismic modeling with a finite grid method [8], cir-
culation patterns in the ocean and atmosphere [5], and
molecular dynamics [4]. These programs typically have
fixed size data and calculations that are uniform over the
entire data set.

Many important scientific problems are not as regular.
The data may vary in size during the computation, or, as in
the case of a parallel search, data structures may not be
known in advance and must be mapped to the architecture
as they are created [6]. In addition, the calculations done at
each data point may be different, which means subsets of
processors are idle a significant amount of time.

In this paper we describe our experience with optimiz-
ing an irregular data-parallel application. The program is a
stochastic simulation of the buildup of mutations that lead
to the extinction of endangered species. It is a natural data-
parallel application since the same calculation, for example
combining the genes from individuals in the current gener-
ation to produce offspring for the next generation, is done
repeatedly over very large data sets. Because the simula-
tion is stochastic the program is also highly irregular: some
populations go extinct before others, and individuals that
survive to form the next generation must be evenly redis-
tributed among the processors simulating that population.

After a brief overview of the simulator to provide back-
ground information, we present a simple performance
model that characterizes the efficiency of a data-parallel
computation. We then show how the model can be used to
evaluate parts of the simulator and suggest changes in the
source program that improve efficiency and as a result
decrease the overall execution time. We also use the perfor-
mance model to analyze a trade-off between communica-
tion and computation in the load balancing step that
distributes individuals to processors.

2. The Mutational Meltdown Simulator

One of the factors that may contribute to the extinction
of small populations is the buildup of harmful mutations.
Field data collected from a variety of species indicates that
on average new offspring have one new mutation. In a
finite environment (on an island, for example), mutations
that are passed on to subsequent generations may eventu-
ally become

fixed

, that is they are present in every individ-
ual in the population. The phrase “mutational meltdown”
refers to the fact that at some critical point there will be a

Optimizing Irregular Computations on SIMD Machines: A Case Study

John S. Conery,

*

 Michael Lynch,

†

and Tommy Hovland

*

* Department of Computer and Information Science
† Ecology and Evolution Program, Department of Biology

University of Oregon
Eugene, OR 97403

email: conery@cs.uoregon.edu

Frontiers ‘95 (Proceedins of the Fifth Symposium on
The Frontiers of Massively Parallel Computing

)
MacLean, VA (Feb 6–9), 1995, pp. 222–230.

0-8186-6965-9/95 $04.00 © 1995 IEEE

223

sufficient number of fixed mutations to guarantee extinc-
tion within a few generations.

Simulations show the population goes through three
phases: a short initial phase in which new mutations are
introduced, a prolonged intermediate phase in which most
new mutations drop out but others become fixed at a steady
rate, and a short final meltdown phase in which the popula-
tion is quickly driven to extinction as a result of too many
mutations [7]. What this simulation shows is that mutations
alone are enough to cause the extinction of small, fixed-
size populations even if habitat and other environmental
conditions remain unchanged.

In order to measure the effect of mutation rate, initial
population size, and other parameters on the rate of extinc-
tion we developed a parallel simulator to run on MasPar
SIMD machines. In the simulator an individual is repre-
sented by a string of bits: a 1 at a particular site (or

locus

)
means the individual has a mutated gene at that locus. Ini-
tially all loci are set to 0. The relative health of an individ-
ual is a function of the total number of mutations it has
accumulated.

The main loop of the simulator creates a new genera-
tion from the current generation. We randomly select two
individuals, combine their genes to form the representation
of a new individual, add a random number of new muta-
tions, compute the health of the new individual, and, if it
survives, add it to the next generation. The most important
parameters that control the simulation are:

•

The carrying capacity, . This is the maximum num-
ber of individuals the environment can support. Values
in our simulations range from 2 to 512.

•

The reproductive rate, . This is the average number
of offspring each individual will create. Typical values
are 2, for species such as mammals, to 10,000, e.g. for
plants with a large number of seeds.

•

The mutation rate, . This is the expected number of
new mutations in each new individual.

When building a new generation the simulator gener-
ates new offspring, where is the size of the current
generation. The first to survive become the next genera-
tion. Eventually none of the offspring survive and the pop-
ulation is extinct.

On a MasPar system we use a fixed number of PEs,
known as a

PE group

, for each population. The size of the
group determines how many individuals are stored on each
PE. For example, with and a group size of 16
there will be 4 individuals on each PE. The PEs in a group
are contiguous to allow scan operations to count survivors
and perform other population-wide operations in log time.

The simulation experiments can be very time-consum-
ing. For each combination of parameters is it necessary to
simulate from 250 to 500 populations in order to measure

the mean and standard deviation of the number of genera-
tions to extinction. At the time we first started using the
MasPar, simulations for asexual reproduction, which are
much simpler than the simulations described here, were
taking over a week (wall clock time) on a SPARC-2 work-
station. The first parallel simulations ran on an MP-1101
about 15 times faster (CPU time) than the sequential ver-
sion. The latest versions of the program simulate sexual
reproduction and handle populations as large as 512 indi-
viduals. The largest simulation ran for several CPU-days
on an MP-2216. It simulated 60,000 generations of 64 pop-
ulations of size 128, creating over individuals.

Most steps in the simulation map very well to a SIMD
architecture. For example, the main loop is easily parallel-
ized: each PE in a group can select two members of the
current generation, perform the steps necessary to generate
a new individual, add a random number of new mutations,
count the mutations in the new individual, and determine
whether or not it survives. The sources of irregularity are
also readily apparent. For example, at the end of the loop
that creates the new generation the survivors will be scat-
tered among PEs within the group, and to make the cre-
ation of the following generation more efficient they need
to be redistributed evenly.

3. Performance Model for Irregular Data-
Parallel Computations

In a data-parallel computation a processing element
(PE) is either idle or it executes the instruction broadcast
by the control processor. The set of all PEs that execute a
given instruction is known as the

active set

. The

efficiency

of a computation is defined by the relative amount of time
processors are active. In a perfect program, all processors
are active at every step and the efficiency is 1.0. Efficiency
is important in program optimization because calculations
often require a fixed number of steps. If they can be reor-
dered so the active set is larger in key regions of the pro-
gram and more steps are executed in parallel, then the
overall execution time will be reduced.

The efficiency of a data-parallel computation is
expressed in terms of the size of the active set:

Here is the size of the active set during program interval
, expressed as the percentage of processors that are active;
 is the duration of interval ; and is the total execution

time. Note that if all processors are busy during every inter-
val (for all) the efficiency is 1.0 since the sum
of the lengths of each program interval should equal the

K

R

µ

n R× n
K

K 64=

10
9

E pi t i⋅
i

∑
 T⁄=

pi
i
t i i T

pi 1.0= i

224

total execution time. There are several other ways of
describing efficiency (e.g. [11]) but we prefer this descrip-
tion because it makes explicit the role of the active set and
the fact that it may change in size from one program inter-
val to the next.

As an example, consider a Poisson random number
generator, which is a function that returns an integer value
distributed around a mean (called). A common imple-
mentation is based on a simple loop that draws a uniform
random number between 0 and 1 and performs one multi-
plication and one comparison [10]. The return value is the
number of loop iterations.

In a data-parallel implementation we want each PE to
compute an independent random deviate. The straightfor-
ward implementation uses a parallel

while

 loop: each PE
independently draws its own random number and does a
local multiplication and comparison. As each PE exits the
loop the active set becomes smaller. During the

i

th

 iteration
the PEs that are still active are those that will return a value
of

i

 or greater. The probability that a PE will return a value
greater than or equal to

n

, denoted , gives us the
size of the active set on iteration

i

. Let be the time
required for one loop iteration. The efficiency of a parallel
Poisson generator is then

where is the largest deviate computed on any PE.
According to the table in Figure 1, for the prob-

ability of generating a 6 is .0006, or . In other
words, in 1667 calls to a Poisson generator we are likely to

see one 6. Thus on an MP 1104, with 4096 processors, it is
highly likely that one PE will execute the loop 6 times, and
the expected efficiency for the body of the Poisson function
would be . It is interesting to note that the effi-
ciency of the Poisson function will decrease with increas-
ing machine size since there is a higher probability that one
of the PEs will generate a large deviate.

As another example, the Gantt chart in Figure 1 shows
eight PEs executing a call to the Poisson function, includ-
ing the time to set up the loop (labeled

c

 at the top of the
chart), six loop iterations (labeled

l

), and the program inter-
val where the return value is passed back (labeled

r

).
Including call and return intervals executed by each PE the
efficiency in this example is

Without the call and return intervals, during which every
processor is active, the efficiency is 0.25, which is closer to
the theoretical value of .17.

Because the Poisson random number generator is called
from the inner loop of the simulator — it determines the
number of mutations to add to offspring — we experi-
mented with a version of the simulator that precomputes a
table of Poisson deviates. When the simulator is initialized
each PE builds a table with several thousand deviates. At
runtime, each PE draws a random element from the table,
which is a constant time operation on each PE. In one sim-
ulation that involved the generation of over 100,000,000
individuals the total execution time on an MP-1104
decreased about 25%, from 1099 seconds to 832 seconds.

λ

p x n≥()
t

E p x i≥() t⋅
i 1=

m

∑

mt⁄= 1 m⁄≈

m
λ 1=

1 1667⁄

1 6⁄ 0.17=

E 1.0 1 0.75 2 0.25 2 +×+×+×(=

4 0.125 2×() 1.0 1×+) 14⁄ 0.357=

0

1

2

3

4

5

6

7

time ⇒

P
E

 #

Figure 1. Poisson random number generator: Gantt
chart for a call to p_poisson(1.0) on eight PEs
and table of probabilities for .λ 1.0=

c l l l l l l r
n p(x=n) p(x≥n)

0 0.367879 1.000000

1 0.367879 0.632120

2 0.183940 0.264241

3 0.061313 0.080301

4 0.015328 0.018988

5 0.003066 0.003660

6 0.000511 0.000594

7 0.000073 0.000083

8 0.000009 0.000010

9 0.000001 0.000001

225

4. Loop Fission

The heart of the mutational meltdown simulator is the pro-
cedure that builds the next generation:

n = nsur = 0;
for (i = 0; i < limit, nsur < k; i++) {

produce_offspring();
nm = p_poisson();
if (survivor(nm)) {

add_mutations(nm,n);
n += 1;

}
nsur = count_survivors(n);

}

The parallel

for

 loop iterates until the number of survi-
vors in the new generation (

nsur

) reaches the desired pop-
ulation size (

k

) or until the maximum number of offspring

have been generated. The latter test is needed because in
the final meltdown phase of the simulation there will be so
many mutations in the population that fewer than

k

 indi-
viduals will survive.

produce_offspring

 is executed in parallel on
each PE to generate a new individual. If with

nm

 new muta-
tions the new offspring would survive the mutations are
inserted into the representation of the new individual by the
call to

add_mutations

. Finally,

count_survivors

sums

n

, the number of survivors on each PE, to compute
the total number of survivors in the population.

In this section we describe a source level transforma-
tion, commonly known as

loop fission

 [12], that improves
the efficiency of this piece of code. The basic idea is to
break the single

for

 loop into two independent loops. This
transformation is often counterproductive in sequential
programs that are optimized by combining loops to reduce
loop overhead, but in a data-parallel program performance

0

1

2

3

4

5

6

7

P
E

 #

x p s a c x p s a c x p s a c x p s a c

Key: x = produce offspring, p = poisson, s = survivor?, a = add mutations, c = count survivors

0

1

2

3

4

5

6

7

P
E

 #

x p s c x p s c x p s c x p s c a

Figure 2. Gantt charts for original loop (top) and two loops after fission (bottom).

226

is improved if the operations within the loop that are exe-
cuted by a relatively small active set are postponed and
executed in a separate loop in a manner that increases the
size of the active set.

The call to

add_mutations

 is the key to the perfor-
mance of this part of the simulator. These calls are high-
lighted in the Gantt chart in Figure 2. Note that in each
loop iteration the number of PEs that executes the call to

add_mutations

 is fairly small. The size of the active
set depends on the probability that a PE creates an individ-
ual that will survive to the next generation. Early in the
simulation, when all offspring are healthy, this probability
is fairly high. But as the mutations build up in the popula-
tion the probability that any one individual will survive
drops and more loop iterations are required to construct the
new generation. Early in the middle phase of the simula-
tion the system is executing the

for

 loop the maximum
number of times.

The size of the active set in the call to

add_mutations

 depends on three parameters: , the
population size; , the reproductive rate; and , the PE
group size, which is the number of PEs dedicated to each
population. To build a new generation the simulator is
required to create up to new offspring. The maxi-
mum number of loop iterations is , i.e. the
invocations of the loop body are spread evenly among the

G

 PEs. If the program takes the maximum number of loop
iterations to generate the

K

 survivors that will form the new
generation, on average the number of survivors per loop
iteration is . The percentage of
PEs that are active during calls to

add_mutations

 is the
number of survivors per iteration divided by the group size:

Thus for higher values of R we expect to see worse perfor-
mance in the calls to add_mutations.

As a concrete example, with and the
simulator will create up to 3200 offspring as potential
members of the next generation. Suppose the group size is
16. That means there will be up to 200 iterations of the
loop (so 16 processors can execute the loop body a total of
3200 times), out of which will emerge 32 survivors. In the
middle phase of the simulation, when all loop iterations are
required to build the new generation, the average number
of survivors per iteration is . The
average size of the active set is the number of survivors per
iteration divided by the number of PEs in the group:

, which is .
Since add_mutations is nontrivial — it needs to

coordinate with a garbage collection procedure to find free
loci in which to insert the mutations — we need to maxi-

mize the size of the active set when it is called. The solu-
tion is to transform the program so that instead of one loop
there are two. During the first loop we save the number of
mutations that should be added to each individual, and in
the second loop we iterate over all local survivors and call
add_mutations:

n = nsur = 0;
for (i = 0; i < limit, nsur < k; i++) {

produce_offspring();
nm = p_poisson();
if (survivor(nm))

mc[n++] = nm;
nsur = count_survivors(n);

}
for (i=0; i < n; i++)

add_mutations(mc[i],i);

In this version mc is an array on each PE that keeps track of
the mutation count for each local survivor. The Gantt chart
for the new, optimized version is shown below the chart for
the original in Figure 2. The calls to add_mutations in
the first loop have been replaced by assignment statements
(which are instantaneous on this time scale) and one call to
add_mutations in the second loop is sufficient to insert
mutations into all survivors.

Table 1 presents data that verifies the performance
improvement as a result of moving the call to
add_mutations to a second loop. As was the case with
the Poisson generator, the optimization pays increasing
dividends as the length of the simulation, which is propor-
tional to , increases. As expected the improvement is
most pronounced for the smaller values of , i.e. when
the fewest processors are in the active set in the calls to
add_mutations in the original for loop.

5. Load Balancing Interval: Tradeoff
Between Control and Communication

The communication channel used for point-to-point
communication in the MasPar is known as the router. It
uses three levels of cross-bar switches to connect a PE to
any other PE [2][9].

Table 2 shows the performance of the router using the
MPL primitive rfetch. To collect this data we controlled
the size of the active set by selecting a different subset of
the PEs to execute the rfetch procedure. The PEs in the
active set were not selected randomly; instead they were
distributed evenly across the machine, which had the effect
of distributing the contention for the first level of cross-bar
switches in the router. Each active PE selected another PE
at random from which to fetch a specified amount of infor-
mation. The “message size” is listed in the left column of

K
R G

K R×
K R×() G⁄

K K R×() G⁄()⁄ G R⁄=

p
G R⁄()

G
---------------- 1

R
---= =

K 32= R 100=

n 32 200⁄ 0.16= =

n 16⁄ 0.01= 1 R⁄

K R×
1 R⁄

227

the table, and the percentage of PEs that were active is
given in the top row.

The left half of Table 2 shows the latency, or amount of
time required to transfer the data. As expected the time
goes up almost linearly with the message size. The corre-
spondence is not exactly linear with a slope of 1.0 because
the connection pattern was random and timings may vary
because of higher or lower collision rates. Note also that
the time increases linearly as more PEs are active, which is
also to be expected since the number of active PEs affects
the contention in the cross-bar switches. Note that even
though latency is worse with increasing message size and
active set size, the bandwidth, shown in the right half of the
table, improves with larger messages and to a lesser degree
with increasing active set size.

Given the data on communication latency it is apparent
that one way to improve overall performance would be to
reduce the size of the active set during router operations.
With fewer PEs using the router the length of a program
interval that calls router procedures will be shorter. How-
ever this approach is in conflict with the program transfor-
mation described in the previous section, which has the
goal of maximizing the size of the active set. In this section
we describe a part of the mutational meltdown simulator
where we were faced with a trade-off between these two
conflicting goals.

Recall from the previous section that a key step in the
construction of the next generation is a procedure that sums
the number of survivors across all PEs in the group in order
to compute the total size of the new generation. This proce-
dure is also responsible for load balancing, to make sure
that the new individuals are spread evenly among the PEs.
For example, with a population size of 48 and a group size

of 8 there will be 6 individuals on each PE. In building up
the new generation the survival of any individual is a ran-
dom event, and thus it is possible that by the time 48 new
individuals have been generated they will not be distributed
evenly within the group. Since later steps will be much
more efficient if all PEs have the same number of individu-
als — a fact predicted by our performance model and veri-
fied by experiments — it is important to use a load
balancing algorithm to distribute survivors in the new gen-
eration.

The load balancing method we use is known as scan-
directed load balancing [1]. Periodically we check to see if
any PEs have excess individuals and if other PEs have open
slots for individuals; this check is implemented by two
scan operations (parallel prefix sums) which take time pro-
portional to log2 of the group size. If the check determines
that it is time to redistribute the new generation, the data
transfer operation is invoked. It uses the router to move
data in parallel from PEs with excess individuals to PEs
that have open slots for individuals.

The performance trade-off is in the fact that the com-
munication step will be more efficient if we do load balanc-
ing after every iteration of the loop that creates new
individuals, since fewer individuals will be transferred, but
the control overhead will be minimized if we perform the
check less often and allow more excess individuals to build
up on the PEs. For example, assume we always transfer
individuals as soon as the check procedure detects an
imbalance. If we check with period , i.e. after each
call to the procedure that creates new individuals, then the
odds are that few individuals will be transferred. On the
other hand, suppose there is room on each PE to buffer four
extra individuals. Then it is possible to do a check every

P 1=

Table 1: Improvement as a Result of Loop Fission Optimization

K
Execution Time (sec)

Improvement
Original Optimized

2 2 4 .50 8.61 8.54 1.1%

8 2 16 .50 14.06 13.53 3.8%

16 2 32 .50 17.78 16.68 6.1%

32 2 64 .50 31.65 29.15 7.9%

2 100 200 .01 54.07 53.22 1.6%

8 100 800 .01 105.50 98.21 6.9%

16 100 1600 .01 275.41 245.89 10.7%

32 100 3200 .01 643.27 466.16 27.5%

R K R× p 1 R⁄=

228

fourth time we create new offspring (), which
reduces the amount of time spent in the check procedure.
However, the number of PEs with excess individuals will
now be higher, the active set in router operations will be
larger, and the router operation itself will take longer.

Gantt charts that illustrate the two alternatives are
shown in Figure 3. In the chart on the left, the program
checks for load imbalance after every iteration of the loop
that generates new offspring. Few PEs have excess individ-
uals or empty slots, so the length of the data transfer steps
(highlighted) are relatively short. In the chart on the right
the program checks every fourth iteration. Now more PEs
participate in the data transfer and the communication step
is longer. Note that in general the total time spent in trans-
ferring data should remain constant — there are fewer
communication steps but those steps are now longer
because more PEs are active — but the overall time should
be lower because there are fewer calls to the procedure that
checks for imbalance.

In the mutational meltdown simulator, the analysis of
the average number of survivors per iteration makes it clear
there is little to be gained by minimizing the size of the
active set for router operations during load balancing. With
an average of survivors per iteration the active set will
already be very small and there will be very few survivors
moved by load balancing every iteration. The data in Table
3 confirms this prediction. The active set size is close to

 when and changes very little with increasing
, while the time spent checking for imbalance does go

down with increasing . Since the active set size was so
small to begin with there is little change with and
there is no loss in performance from increased traffic on the
router with higher .

The observation that there are so few survivors per loop
iteration suggests we might be able to lengthen the period

and make a function of both R and the size of the buffer.
To be safe we will need a two-stage check for imbalance:
an initial, inexpensive check to see if any PE has created
enough survivors to fill its buffer, plus a more complete
check that totals the number of excess individuals and
empty slots across all PEs. This modification is the subject
of a current project

6. Summary and Discussion

Describing the performance of parallel program in
terms of the percentage of processors that are active is not
new; for example, Stone uses figures similar to the Gantt
charts in this paper do describe the efficiency of array pro-
cessors in a discussion of the inherent limits of speedups of
programs with sequential components [11]. In this paper
we presented the formula in a form that emphasizes the
relationship between the length of a program region and
the size of the active set for that region to show how the
size of the active set contributes to overall program perfor-
mance.

We used this performance model to analyze a critical
part of an ecology simulation. This analysis lead to a “loop
fission” transformation that moved a key procedure call out
of one loop and into a separate loop. The use of separate
loops is more efficient because the active set is larger when
the operation is called in the second loop; in the original
version only a small percentage of processors were active
when the procedure was called.

We also analyzed the active set size for a part of the
simulator that requires a load balancing operation. On the
surface it appeared there would be conflicting goals in this
portion of the simulator: on the one hand router perfor-
mance improves if the active set is small, since there will

P 4=

1 R⁄

1 R⁄ P 1=
P

P
P 4=

P

p

Table 2: Router Performance on Random Communication

Latency (sec) Bandwidth (MBytes/sec)

20% 40% 60% 80% 100% 20% 40% 60% 80% 100%

16 0.001 0.001 0.002 0.004 0.002 17.8 16.9 18.1 13.6 25.2

64 0.002 0.003 0.005 0.006 0.007 22.9 30.0 31.1 32.6 36.5

256 0.007 0.012 0.017 0.023 0.026 29.4 34.9 37.2 36.4 40.2

1024 0.024 0.044 0.073 0.097 0.114 34.3 38.3 34.6 34.6 36.8

4096 0.096 0.193 0.270 0.366 0.414 34.8 34.8 37.3 36.7 40.5

% Active
PEs

bytes
transferred

229

time ⇒

0

1

2

3

4

5

6

7

P
E

 #
p c x p c x p c x p c x

Key: p = produce offspring, c = check for imbalance, x = transfer excess individuals

p p p p c xp c x p

time ⇒

Figure 3. Checking for load imbalance. Left: P = 1; Right: P = 4.

Table 3: Check Period vs. Active Set Size in Load Balancing

#checks 184 146 73

check time 0.107 0.078 0.033

xfer time 0.336 0.492 0.455

active set .050 .060 .105

#checks 1296 735 433

check time 0.828 0.430 0.214

xfer time 2.284 2.292 2.107

active set .040 .047 .057

#checks 11482 5453 3815

check time 8.549 3.992 2.667

xfer time 11.788 8.566 8.491

active set .013 .023 .030

P 1= P 2= P 4=

R 2=

R 10=

R 100=

230

be less contention, but on the other hand, according to the
performance model, it is best to have large active sets for
key operations. By looking closer at this situation, how-
ever, it became clear that the active set was already very
small during load balancing steps and that the best strategy
for this part of the simulator was to postpone communica-
tion as long as possible.

While decreasing the size of the active set during router
operations did not pay dividends in this application, it may
be worth considering in other applications, particularly if
the communication pattern is not random. If there are “hot
spots” in the PE array that are sources or destinations of
information, contention in the router will slow down com-
munication. In extreme cases, for example where each PE
needs to fetch 4KB from just one PE, it takes the router
over 20 seconds to transmit the data to all 4K processors of
an MP 1104. Applications where hot spots are unavoidable
should consider source transformations that decrease the
size of the active set for router operations.

The loop fission transformation has proven to be useful
in other applications we have developed, including one that
would fall into the category of a highly regular SIMD
application. An MPL program that calculates the potential
energy in DNA molecules uses a 1-to-1 mapping of atoms
to PEs [3]. A loop that sends atom descriptions around a
virtual ring in order to build information about bonds
between atoms has very much the same structure as the
loop in the ecology simulation that builds the next genera-
tion: at each iteration only a small subset of the PEs will be
active since only a few atoms form bonds with the atom
that is currently passing by on the virtual ring. Operations
that were inside the loop became much more efficient when
they were moved to a second loop.

Descriptions of both of our programs — the mutational
meltdown simulator and the potential energy calculation —
will be part of a new public domain textbook developed by
the Computational Science Education Project (CSEP).
CSEP maintains a hypertext server at Oak Ridge National
Labs. Readers will be able to use Mosaic or other WWW
browsers to read descriptions of the programs, download
the code, or even execute the code remotely and download
the results. The URL for the CSEP project is http://
csep1.phy.ornl.gov/csep.html.

7. Acknowledgments

The original mutational meltdown simulator was writ-
ten in C by Michael Lynch. The first parallel simulator was
developed in MPL by John Conery. The current simulator
is the result of useful suggestions and hard work by David
Butcher, Jeff Holmes, Tommy Hovland, and Sam Jones.
The mutational meltdown project has been supported by

grants from the Data-Parallel Research Initiative (DEC,
MasPar, and Thinking Machines), the Murdock Charitable
Trust, the Oregon Advanced Computing Institute, and the
National Science Foundation (BSR 8911038 and BSR
9024977). We are also very grateful to Prof. Trond
Steihaug and Jan Henriksen of Para//AB, the supercom-
puter center at the Institutt for Informatikk, University of
Bergen, Norway, for their support and the generous use of
their 16,384-processor MP-2216 for our longer simulation
experiments.

References

[1] Biagioni, E. S. and Prins, J. F. Scan-directed load bal-
ancing for mesh-connected highly parallel computers.
In Unstructured Scientific Computation on Scalable
Multiprocessors. MIT Press, 1992.

[2] Blank, T. The MasPar MP-1 architecture. COMPCON,
Feb. 1990.

[3] Conery, J. S. et al. A parallel algorithm for calculating
the free energy in DNA. To appear in Proceedings of
the Hawaii International Conference on System Sci-
ences (Maui, Jan. 3–6), 1995.

[4] Giles, R. and Tamayo, P. A parallel scalable approach
to short-range molecular dynamics on the CM-5. Proc.
Scalable High Performance Computing Conference,
1992, pp. 240–245.

[5] Hatcher, P. J., Quinn, M. J., et al. Architecture-inde-
pendent scientific programming in Dataparallel-C:
Three case studies. Supercomputing ‘91, pp. 208–217.

[6] Karypis, G. and Kumar, V. Unstructured tree search on
SIMD parallel computers: A summary of results.
Supercomputing ‘92, pp. 453–462.

[7] Lynch, M., Conery, J.S., and Bürger, R. Mutational
meltdowns in sexual populations. Evolution (accepted
for publication).

[8] Myczkowski, J. and Steele, G. Seismic modeling at 14
gigaflops on the Connection Machine. Supercomput-
ing ‘91, pp. 316–325.

[9] Nickolls, J. R. The design of the MasPar MP-1: A cost
effective massively parallel computer. COMPCON,
Feb. 1990, pp. 25–28.

[10]Press, W. H. et al. Numerical Recipes in C: The Art of
Scientific Computing. Cambridge University Press,
1988.

[11]Stone, H. S. High Performance Computer Architecture
(3d ed). Addison-Wesley, 1993.

[12]Zima, H. and Chapman, B. Supercompilers for Paral-
lel and Vector Computers. ACM Press, 1991.

