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This paper describes software created to search for and analyze pairs of duplicate genes within
a genome. The process is based on a program that uses aligned amino acid sequences to gener-
ate a corresponding alignment of the underlying nucleotide sequences and perform a codon by
codon comparison of the nucleotides. Observed numbers of nucleotide substitutions can be
used to make inferences about the ages of gene duplication events and the effects of natural
selection acting on duplicate genes.

1   Introduction

Duplicate genes are found in a wide variety of organisms, including yeast15, vascular
plants4, and vertebrates12,13. The existence of these duplicates has implications for
comparative genomics, suggesting avenues of research based on searching for
orthologous genes, and many diseases are often associated with gene duplications.
The study of duplicate genes may also shed light on evolutionary processes; the dou-
ble genome duplication hypothesis12 is a conjecture that two rounds of complete
genome duplication provided the “raw material” for morphological innovations that
led to the establishment of the vertebrate genome.

Possible sources of multiple copies of a gene range from tandem duplication,
which often leads to a copy of just a single gene, to chromosomal rearrangements
that duplicate and rearrange larger sections of the genome, to polyploidization, in
which the entire genome is duplicated. But what happens to duplicate genes that
have become fixed in a population? Under what might be termed the classical
model12, there are two possible fates for a pair of duplicate genes: most likely one
gene acquires deleterious mutations that cause it to be silenced, but in rare situations
a mutation will be beneficial and one of the copies takes on a new function. Recently
a third possibility has been suggested: mutations accumulate in both copies, partially
degrading each gene until at some point the two genes have partitioned the functions
of the original gene2,11. This new model, called duplication, degeneration, comple-
mentation (DDC), accounts for the fact that there are more functioning duplicates in
extant organisms than can be explained by the classic model, and is also consistent
with the observation that many genes have a modular structure that allows for inde-
pendently mutable subfunctions.

Conery, J.S. and Lynch, M. Nucleotide substitutions and evolution of duplicate genes.
Pacific Symposium on Biocomputing 6:167-178 (2001).
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We recently performed a series of computational experiments designed to shed
light on the origin and subsequent evolution of duplicate genes.10 For these experi-
ments we constructed databases with the complete set of available coding sequences
for nine different species. A heuristic similarity search program compared each
sequence to every other sequence from the same genome to locate potential dupli-
cates. We then subjected each pair to further analyses based on an examination of
nucleotide substitutions.

This paper describes the software we developed for these experiments The next
section is a description of a program that compares large numbers of pairs of genes.
The input to the program is a stream of aligned amino acid sequences, and the output
is a set of aligned nucleotide sequences with codons placed according to the amino
acid alignment. We then describe how the nucleotide sequences can be processed to
estimate the accumulation of nucleotide substitutions. We conclude by summarizing
some of the results of our experiments.

2   A Genome-Wide Search for Duplicate Genes

Figure 1 is an overview of the flow of information in our search for duplicate genes.
The starting point is a collection of protein sequences in Fasta format. We created a
local database containing all the sequences from a genome, and then used BLAST1

to compare each sequence to every other sequence from that genome. BLAST serves
two roles in this process: it does the similarity search that locates pairs of similar
genes, and it also produces an alignment of the amino acid sequences of those pairs.
blast2align is a Perl script that extracts the sequence IDs, similarity score, and align-
ment for each pair found by BLAST.

The central application in this process is a program named ntalign. For each pair
of sequences, ntalign uses the BLAST output as a guide to align the underlying
nucleotide sequences so later steps in the process can examine the sequences codon
by codon, for example to infer how many substitutions have occurred since the
sequences diverged from a common ancestor (methods for estimating numbers of
nucleotide substitutions are discussed in the next section).

By using the amino acid alignment to direct the nucleotide alignment we avoid
frame shifts that would throw off the comparison of codons. For example, consider
this fragment of an amino alignment and the corresponding nucleotide alignment
generated when the BLAST output is used as a guide:

G-NGQ... ⇒ GGA---AATGGACAA...
GTNS-... ⇒ GGCACAAACTCA---...

If the nucleotide sequences are aligned directly, without respect to codon boundaries,
an algorithm might produce a different alignment, one which has more matches and
a smaller internal gap:
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Figure 1:  Analysis of Duplicate Genes. File names consist of the common name
for a species and an extension that identifies the type of information: .fa is file con-
taining a set of Fasta formatted amino acid sequences, .nt is a Fasta format nucle-
otide sequence file, .paml is a set of pairs of aligned nucleotide sequences, and .m
is a Matlab format data containing data points and the visualization commands to
display them. BLAST and formatdb are applications available from NCBI.
blast2align and mldiffs are Perl scripts; ntalign and cubit are C++ applications.
Source code for our Perl and C++ programs is available from the project web site
(http://csi.uoregon.edu/projects/genetics/ntdiffs).
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GG-AAATGGACAA...
GGCACAAACTCA-...

But this second alignment could not be used to analyze nucleotide differences in
codons because the one-character gap introduces a frame shift and a codon-based
analysis that processes the sequences three characters at a time will be misled.

Two parameters can be used to filter pairs to be analyzed. The program will
ignore a match if the alignment score produced by BLAST is worse than a specified
cutoff value. Users can also filter out sequences that have too many matches; for our
experiments, we were interested in looking at duplicates that occur outside multi-
gene families, so we analyzed pairs of genes only if both genes had five or fewer
high-quality matches.

We were concerned that the amino acid alignments may have included some
arbitrary placements on either side of a gap. Suppose the two sequences to be aligned
are of the formAXA andAZA, whereA designates a substring that has a good match
in the other sequence,X andZ are substrings that do not match well, andZ is longer
thanX. During the alignment, one or more gaps will be inserted nearX, resulting in
one of these three patterns:

AX-A A-X-A A-XA
AVWA AUVWA AUVA

HereZ has been rewritten as the concatenation of stringsU, V andW. If there is little
or no information to guide the match betweenX andZ the placement of the gaps in
the shorter sequence can be rather arbitrary; as shown above, the alignment algo-
rithm may align X with the beginning, middle, or end of Z. To address this problem
the ntalign application has an option that invokes a “gap expansion” algorithm. We
define an anchor to be a site where both sequences have the same amino acid. Before
aligning the underlying nucleotides, we look on each side of a gap for a region that
begins with an anchor and in which two out of the seven amino acids (including the
anchor) are an exact match. The probability of two out of seven random amino acids
being the same is less than 5%. We then discard these regions so they are not
included in the aligned nucleotide sequences.

A potential problem with this experimental design is the inclusion of pseudo-
genes and transposable elements in the data set. If a gene is silenced following dupli-
cation it can accumulate random mutations at any location, so including the
comparison of pseudogenes with functioning genes can lead to a biased estimate of
substitutions that affect coding sequences. One of the inputs to ntalign is a list of
sequence IDs that should be ignored; these sequences are filtered out before counting
the number of matches.

Not shown in Figure 1 are many other programs and data files that are an impor-
tant part of the overall process. We made extensive use of the programs in the
SEALS package14 when creating the initial sequence database, controlling BLAST
runs, and at other stages of the process. We wrote several additional Perl scripts that
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interact with the SEALS programs to manage this process. Details of the complete
process plus source code for our Perl scripts and C++ programs can be obtained from
the project web site at http://www.csi.uoregon.edu/projects/genetics/ntdiffs.

3   Estimation of Numbers of Nucleotide Substitutions

As illustrated in Figure 2, the number of observed differences between two
sequences is likely to be less than the number of substitutions that have occurred
since the sequences diverged from a common ancestor. At time  there has been one
change, and the number of observed differences equals the number of substitutions.
At  there have been two substitutions, but the second occurred at the same site as
the first so only one difference is observed. By  two more substitutions have
occurred, but one of them was a change that caused the two sequences to have the
same nucleotide at an already modified site. The goal is to compute an estimate of
the number of substitutions that have occurred as a function of the number of
observed differences.

In protein-coding sequences, a substitution that does not lead to a change in the
amino acid sequence is asynonymous, or silent, substitution. Mutations that cause a
change in the protein arenonsynonymous, orreplacement substitutions. For example,
if the codonGCC changes toGCA the substitution is synonymous since both are
codons for alanine, but the change fromGCC to GTC is nonsynonymous because the
amino acid generated by the new sequence will have a valine.

ATGTATTCA

ATGTATTCA
ATGTTTTCA

Original sequence

ATGTATTCT
ATGTCTTCA

ATGTCTTCT
ATGTCTTCA
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Figure 2:  Nucleotide Substitutions. Changes at each time period are indicated in
boldface. The number of observed differences and the cumulative number of sub-
stitutions is given on the right.
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In a large-scale analysis involving several pairs of genes the sequences in one
pair have a different length than sequences in another pair. Thus the goal is to com-
pute the number of substitutions per site or number of substitutions per codon.

In our search for duplicate genes we used two different techniques for estimat-
ing numbers of substitutions, a method first introduced Li, Wu, and Luo8 and later
refined by Li,6 and the maximum likelihood method of Goldman and Yang.3 While
maximum likelihood is the preferred method, it is much more expensive computa-
tionally, making it difficult to compare the hundreds of thousands of sequence pairs
identified by BLAST. We implemented Li’s method as part of the ntalign application
and used it as an initial filter to identify pairs of sequences that should be examined
more closely with maximum likelihood. The mldiffs program shown in Figure 1 is a
script that selects pairs based on the initial estimates produced by ntalign, finds the
corresponding aligned nucleotide sequences, and launches the maximum likelihood
program16 for that pair.

Li’ s method begins by characterizing positions within a codon as being nonde-
generate, twofold degenerate, or fourfold degenerate, depending on whether zero,
two, or four substitutions can be made at that site without changing the codon. For
example, in the codonAAT, the first two sites are nondegenerate because any change
is nonsynonymous. The third site is twofold degenerate:  causes no change
becauseAAT andAAC are both codons for asparagine, but  and  result
in changes becauseAAA andAAG are codons for lysine.

Each observed difference is classified according to the type of site where it
occurs and whether it is atransition (a change from purine to purine or pyrimidine to
pyrimidine, i.e.  or ) or a transversion (any other change). In this
paper we use a vector notation when describing the number of sites and the number
of transitions and transversions:

The number of sites of each type and the numbers of observed transitions and
transversions are used to compute two estimates of the number of nucleotide substi-
tutions: the number of synonymous substitutions per synonymous site, denotedKs,
and the number of nonsynonymous substitutions per nonsynonymous site, denoted
Ka.6,8

Two codons being compared may not have the same number of sites of each
type. For example, consider a pair of sequences where one contains the codonACT
and the other containsAAT. ACT is a codon for threonine, and any change in the last
position gives another codon for threonine, so this codon has two nondegenerate sites
and one fourfold degenerate site: . AAT is a codon for asparagine.
One change in the third site gives another asparagine codon, but the other two

Number of sites of type .

Number of transitions ati-type sites.

Number of transversions ati-type sites.

T C⇒
T A⇒ T G⇒

A G⇔ C T⇔

N n0 n2 n4, ,〈 〉= i 0 2 4, ,{ }∈

P P0 P2 P4, ,〈 〉=

Q Q0 Q2 Q4, ,〈 〉=

N ACT 2 0 1, ,〈 〉=
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changes lead to lysine codons, so . To handle these situations, the
algorithm for counting the number of sites of each type uses the average of the
counts from each input sequence. So for this example,

When there are two or three observed differences between a pair of codons the
categorization of the differences depends on the order in which the changes evolved.
As an example, suppose we are comparing two sequences where the codons are cur-
rently GTT andGAA. Suppose the ancestral sequence wasGTT and as the result of
two independent mutations this codon changed toGAA in one of the current
sequences. If the change at the third site occurred first, the series of codons was

, but if the change at the second site occurred first the series
was . In the first series the change at the third site would be
added to  because it is a transversion and the third site inGTT is fourfold degen-
erate. But in the second series the change at the third site would be classified as
because the third site inGAT is twofold degenerate. The difference at the second site
is classified as  because changes in the second site are nonsynonymous in this
case, and thus the two choices for counting the observed differences are

 or .
Li et al8 used a table of expected frequencies of amino acid changes to weight

the different paths (Figure 3). The cumulative frequency of a series of mutations is
the product of the individual frequencies along each edge. In the example, one path
from GTT to GAA has a frequency of , and the other path has a
frequency of . The relative probabilities are thus

for the series in which the transversion occurred at the fourfold degenerate site and

for the series in which the transversion occurred at the twofold degenerate site. The
relative probabilities are used to weight the transition and transversion vectors, so for
this pair of codons the observed differences are .

The previous example assumed one of the current codons was the ancestral

N AAT 2 1 0, ,〈 〉=

N N ACT N AAT+( ) 2⁄ 2 0.5 0.5, ,〈 〉= =

GTT GTA GAA⇒ ⇒
GTT GAT GAA⇒ ⇒

Q4
Q2

Q0

Q 1 0 1, ,〈 〉= Q 1 1 0, ,〈 〉=
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Figure 3:  Evolutionary Paths. A
graph showing transformations between
GTT andGAA, assuming one mutation
at a time. The edge labels show the rela-
tive frequency of the corresponding
amino acid changes and the classifica-
tion of the change as nondegenerate,
twofold degenerate, or fourfold degen-
erate.

1.0 0.128× 0.128=
0.004 0.382× 0.015=

0.128 0.128 0.015+( )⁄ 0.893=

0.015 0.128 0.015+( )⁄ 0.107=

Q 1.0 0.107 0.893, ,〈 〉=
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codon and the mutations both occurred in the same sequence. But the relative path
weights do not depend on the ancestral state; as long as we assume the differences
arose through two independent mutations the calculation of the relative weights does
not depend on which vertex is used as the starting point.

In order to make genome-scale sequence comparisons, ntalign uses a
table of precomputedN, P, andQ vectors, so the algorithm that counts and classifies
differences simply has to do a table lookup using two codons as table indices, com-
pute the sum ofN, P, andQ over all codons, and then calculateKs andKa using the
vector sums.

Our method for counting and classifying the differences between pairs of
codons is based on a data structure we call adifference cube, ann-dimensional cube
in which each vertex is labeled by a codon. It is basically ann-dimensional binary
hypercube, except node labels are 3-letter codon strings instead ofn-bit binary num-
bers. The labels are arranged so adjacent nodes are labeled by codons that differ at
exactly one site.

For any pair of codons, the number of dimensions in the corresponding differ-
ence cube is defined by the number of differing sites. The example in Figure 4 shows
the 3D difference cube for the pair of codonsGTT andAAA. Note that the two differ-
ences betweenGTT andGAA used in the example of Figure 3 are represented in one
of the faces of the 3D cube.

The following algorithm, based on a common algorithm for creating a binary
hypercube5, will create the difference cube for a pair of codonsX andY:

d = 0;
cube = node(X);
for i = 1..3:

if
d = d+1
expand(cube,i,Yi)

The number of dimensionsd is initialized to 0, and the cube is initialized as a single
node labeled by one of the codons (the notationnode(X) means “create a new node
with labelX”). The loop iterates over each of the three sites. At a site where the two

64 64×

ATT ATA

AAT

GTA

GAT GAA

Figure 4:  Difference Cube for GTT
and AAA. Since this pair of codons has
differences at all three sites the resulting
cube has three dimensions. The “front”
face of this cube is the 2D cube (i.e.
square) for the pair of codonsGTT and
GAA.

GTT

AAA

X i Y i≠
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codons differ, the cube is expanded by making a complete duplicate of each current
node, adding an edge between each existing node and the corresponding node in the
copy, and changing theith position in the label in each new node to beYi. When the
loop terminatesd will be the dimension of the resulting cube.

From then-dimensional difference cube for a pair of codons it is clear there are
 unique paths, each of lengthn, between the two vertices for the codons. Each step

on a path traverses a different dimension. Starting from one codon, there aren
choices for the first step,  for the second step, down to one choice for the last
edge. The paths can be enumerated by creating all permutations of the list of dimen-
sions .

Using the above method for constructing a difference cube for a pair of codons,
the table of codon differences is built with the following algorithm:

for
for

C = difference_cube(X,Y)
assign_frequencies(C)
NX,Y = differences(X,Y)
for

w = w + weight(path)
for

PX,Y += transitions(path,w)
QX,Y += transversions(path,w)

After constructing the difference cube and assigning expected frequencies to each
edge in the cube we compute the sum of relative frequencies of all the paths. Then
each path is traversed again, this time counting the number of transitions and trans-
versions along the path and weighting the counts as a fraction of the total weights.

Stop codons are not usually included in comparisons of coding sequences, but
they can occur as intermediate nodes. For example, when counting the differences
betweenAAA andTAT, intermediate states areAAT (asparagine) andTAA (stop). We
assign an expected frequency of 0 to any edge connected to a vertex labeled with a
stop codon, which leads to a cumulative frequency of 0 for any path that includes this
vertex. The net effect is that paths through stop codons are not included in the path
weight calculation.

4   The Evolution of Duplicate Genes

We used the process outlined in Figure 1 to analyze gene duplicates in a variety of
model species, including brewer’s yeast (Saccharomyces cerevisiae), nematode
(Caenorhabditis elegans), thale cress (Arabidopsis thaliana), and several vertebrates,
including human (Homo sapiens) and mouse (Mus musculus)10. After using BLAST

n!

n 1–

1…d

X AAA AAT … GGG, , ,{ }∈
Y AAA AAT … GGG, , ,{ }∈

path permutations 1…dim C( )( )∈

path permutations 1…dim C( )( )∈
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to identify pairs of similar amino acid sequences, we ran ntalign to process the
underlying nucleotide sequences and calculate and  for each pair. We then
used the maximum likelihood method to recompute the estimated numbers of substi-
tutions for those pairs with . To distinguish between the estimates computed
by each program, we will use Yang’s notation and refer to the maximum likelihood
estimates of the number of synonymous substitutions per synonymous site as  and
nonsynonymous substitutions per nonsynonymous site as .

4.1   Age Distribution of Duplicate Genes

If we assume the number of synonymous substitutions per synonymous site is pro-
portional to the age of a gene duplication event we can plot a histogram of  values
to get the age distribution of duplicate genes. In all species, most duplicates appear to
be quite young, with .10

There is an interesting peak in the age distribution of Arabidopsis genes at
, indicating there are several pairs of duplicate genes of a similar age. This

peak might be evidence in support of polyploidization inArabidopsis.4 Assuming an
estimated silent site substitution rate of 6.1 mutations per site per million years7,9 we
date this peak at about 65 million years ago.

Our analyses of vertebrate genomes did not show such a peak. If there are a
large number of duplicates remaining from a double genome duplication before the
divergence of ray-finned and lobe-finned fishes 430 MYA, a silent-site substitution
rate of 2.5 mutations/site/MY7 might lead to a peak in the age distribution at around

. However, it would be difficult to make any conclusions based on such a
high value of .

4.2   Relaxed Selection Following Duplication

By plotting  as a function of  we can get an overall view of how natural selec-
tion acts on duplicate genes. Again assuming  is a measure of the age of a pair of
duplicates, a value of  implies selection against amino acid changing substi-
tutions,  indicates relaxed selection, and  means selection for pro-
tein evolution. Both the classic model and the DDC model described in the
introduction predict a period immediately following a duplication when the genome
should be able to tolerate a high degree of nonsynonymous substitutions in one mem-
ber of a duplicate pair because the other member is still functioning at full strength.

Figure 5 shows a log-log plot of  vs.  for C. elegans. The diagonal is a plot
of , so points near the line are pairs less affected by selection against amino
acid changes. In this plot, and in the plots for all the other species we studied, there
are some pairs above the diagonal at small  values, but most are below, implying

Ks Ka

Ks 99<

dS
dN

dS

dS 0.1<

dS 0.8=

dS 2.2=
dS

dN dS
dS

dN dS<
dN dS= dN dS>

dN dS
dN dS=

dS
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that almost as soon as they arise gene duplications are subjected to selection pres-
sure.10

5   Summary

This paper described a method of searching for and analyzing pairs of duplicate
genes within a genome. At the heart of the process is a computer program that uses
aligned amino acid sequences to generate the corresponding alignment of the under-
lying nucleotide sequences in order to compare codon differences. The program
includes an efficient table-driven implementation of a method for estimating num-
bers of nucleotide substitutions; values computed by this approximate method can be
used to identify pairs that should be examined more closely. Numbers of substitu-
tions can be used to make inferences about the ages of gene duplication events and
the effects of natural selection acting on duplicate genes. Other analyses, including
stochastic models of the birth and death rates of duplicate genes and a discussion of a
potential role played by gene duplication in speciation, can be found in our forth-
coming paper.10
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