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Abstract We describe a data-centric software architecture
for bioinformatics workflows and a rule-based workflow en-
actment system that uses declarative specifications of data
dependences between steps to automatically order the exe-
cution of those steps. A data-centric view allows researchers
to develop abstract descriptions of workflow products and
provides mechanisms for describing workflow steps as ob-
jects. The rule-based approach supports an iterative design
methodology for creating new workflows, where steps can
be developed in small, incremental updates, and the object
orientation allows workflow steps developed for one project
to be reused in other projects.
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1 Introduction

A typical bioinformatics project involves the use of sev-
eral different applications, including programs that search
sequence databases (e.g. BLAST [1]), align pairs of se-
quences (e.g. CLUSTALW [2, 3]), create phylogenetic trees
from sets of aligned sequences (e.g. MrBayes [4]), and,
in many cases, new applications designed for a specific
project. For small projects, these applications can be run “by
hand.” A scientist can run a program, transfer results into
a spreadsheet or text file, and cut outputs of one program
and paste them as inputs to another. For larger projects, such
as genome-scale analyses involving thousands of sequences
and dozens of applications, researchers need to automate
some or all of these steps through the use of a workflow
management system that launches applications and passes
results of one application on to others.
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The workflow for a large project is unlikely to be speci-
fied and implemented in a single, straightforward process. In
software engineering terms, a traditional waterfall develop-
ment process, involving successive phases of requirements
analysis, specification, implementation, and testing, will al-
most certainly fail. Instead the project will more likely fol-
low an iterative design process: researchers will implement
the first step in the workflow, perhaps running the applica-
tion several different times in order to explore combinations
of input data and parameters, and after each run, examining
the output to make sure the application works as expected.
Then another step will be developed, perhaps by writing a
script that launches the first application, extracts results, and
passes them to the second application. The creation of each
step involves considerable effort in making sure the appli-
cation being added to the workflow is producing results that
are useful. Not surprisingly, this might cause earlier steps
to be revisited, for example to change operating parame-
ters (e.g. choose a different sequence similarity cutoff for
BLAST outputs), or to include different output (e.g. to save
the BLAST alignments along with other data), or maybe
even to change the application altogether (e.g. use a differ-
ent BLAST implementation [5] or different similarity search
method [6]).

In this paper we introduce a method for organizing bioin-
formatics workflows that is intended to support this sort of
incremental development. In our approach, the focus is on
work products as opposed to process control. We introduce
a software architecture called the data-centric pipeline that
provides a project framework in which the products of each
step of the workflow are stored in a database, and the work-
flow is managed by a rule-based system that uses declar-
ative specifications of data dependences between steps to
automatically order the execution of the steps and the cor-
responding database updates.

One of the ways a rule-based approach supports the de-
velopment of new workflows is by providing support for
reusability. Rules are inherently modular, and a rule that is
developed for one project can be fairly easily incorporated
into another project. A rule-based workflow management
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system provides another dimension of reusability by exploit-
ing a common pattern for a workflow step. This pattern can
be encapsulated and used as a default command in the body
of a rule. Researchers can define new steps by writing class
descriptions that build on the basic pattern, reusing the meth-
ods that apply to their project and overriding or extending
others.

In the first part of this paper we survey related work
on methods for managing workflow, focussing on systems
intended specifically for bioinformatics. Following that is
a brief description of a small bioinformatics project that
will be used as a running example throughout the pa-
per. As an introduction to relational databases for biol-
ogists who may not be familiar with database technol-
ogy, and to justify our building the rule-based workflow
management system on a database foundation, Sect. 4 de-
scribes the advantages of a relational database system for
bioinformatics projects. Section 5 describes the rule-based
workflow model and the software architecture it is based
on, and in Sect. 6 we briefly describe the pipeline in-
terface program (PIP), a prototype implementation of the
model that has been used successfully in several of our
bioinformatics projects. Section 7 describes the base class
that encapsulates the common pattern that occurs in bod-
ies of rules and how one can derive new objects that can
override any or all of the base class methods. The pa-
per concludes with a short discussion and plans for future
work.

2 Related work

Software systems that manage complex workflows have pro-
liferated in the last 10-15 years. Many systems, includ-
ing several commercial applications, have been developed
specifically for business process management [7]. To help
establish standards in the field, and to help users develop
processes that can be controlled by variety of workflow sys-
tems, the Workflow Management Coalition (WFMC) was
formed to promote interoperability, and in 1994 published
a workflow reference model [8].

Workflow management is increasingly important in sci-
entific research. Early systems (e.g. LabBase [9]) were
developed mainly to coordinate applications within lo-
cal networks or supercomputer centers, and many used
a database to store work products [10]. One such sys-
tem, developed by Ailamaki et al. [11], used the database
schema to represent a project’s workflow. With the advent
of computational grids [12], several groups began develop-
ing workflow management systems for distributed applica-
tions (e.g. GridDB [13], WEF-Pilot [14], POESIA [15], and
Taverna [16]).

Computational biology is an increasingly important ap-
plication area for workflow management [17], especially
since data sources and applications are widely dispersed
across the internet. Several new systems have been devel-
oped for bioinformatics workflows in the last 2 years alone,

including HyperThesis [18], BioPipe [19], BioWBI [20],
BioMake [21], Taverna [16], and Pegasys [22].

Almost all of these systems use a straightforward and
intuitive “dataflow” model for describing workflows: a pro-
cess is represented as a node in a directed graph, and an arc
A — B connects processes A and B if the output of A is
used as an input to B. The software system that controls
the workflow (an enactor in the terminology of the WFMC
reference model) uses the graph to schedule processes and
pass data between them. Advanced workflow systems pro-
vide several useful features, including the ability to interact
with users in partially automated workflows that require hu-
man intervention, to run independent jobs in parallel, and to
checkpoint and restart after hardware failures.

Many of the systems for managing bioinformatics work-
flows help researchers develop new workflows through the
use of a graphical interface. In Taverna, for example, there
is a palette with icons representing commonly used appli-
cations [16]. The user can place instances of a process in
the workflow by selecting an icon from the palette, and
processes can be connected by clicking on instances in the
workflow document. In systems with GUI interfaces work-
flow descriptions can be saved, usually as XML files, so they
can be recalled and edited at a later time. Many other en-
actors also use XML as the formal representation of work-
flows.

Not all enactors require workflows to be defined by
acyclic graphs. In an iterative workflow, output from a node
may feed back to a predecessor. This implies the use of con-
ditional execution and the ability to direct outputs along dif-
ferent paths, e.g. when a node has several output arcs the
process may send its results along all paths or choose among
different paths.

Workflows defined by graphs can become very complex,
especially when the graphs are cyclic, making it very dif-
ficult to analyze the workflow, e.g. to predict if or when a
process will be activated. One way to manage this complex-
ity is to constrain the graphs in some form. van der Aalst
et al. defined a set of workflow patterns and evaluated a
number of workflow systems in their ability to express and
manage these patterns [23]. The Biology Workflow Builder
(BioWBI [20]) limits workflow components to five simple
patterns, and uses an algebra to define rules for composing
these patterns into a larger workflow. Another approach is to
use a different formal model as an alternative to dataflow
graphs. For example, the YAWL system [24] is based on
Petri nets, which provides a framework for analyzing vari-
ous properties of workflows.

The rule-based workflow management scheme presented
in this paper provides another alternative formalism. In a
rule-based workflow, individual steps are described by rules.
As in other rule-based systems, rules can have dependences,
i.e. a rule header can name other steps that must complete
before the rule can be executed, and a workflow enactor will
use dependences between rules to schedule activities. The
main advantage of a rule-based approach over either struc-
tured or unstructured flow graphs or Petri nets is that rules
describing workflow products provide a data-centric view
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of the workflow. By focussing on the data objects produced
by each step, a workflow specification can be a concise
declarative description of the experimental protocol [13].
BioMake [21] is another rule-based enactor, where state-
ments written in a control language based on the Prolog pro-
gramming language [25] define steps and manage the work-
flow. Davulcu et al. [26], Bonner [27], and Senkul et al. [28]
defined formal logic systems to analyze properties of work-
flows describe by graphs, and these systems all have a sim-
ilar structure to rule-based systems, but we are not aware of
any workflow enactors based on these logics.

For bioinformatics, an important benefit of a rule-based
framework is the support it provides for iterative design of
workflows. As an example, consider how BLAST [1] might
be incorporated into a workflow. An iterative development
process would first consider how to obtain the inputs, in
this case FASTA-formatted sequences, so the user would
first write a query to fetch sequences from the database, and
if necessary rewrite them in FASTA format. The next step
is to figure out how to launch BLAST and pass it the se-
quences. The first few runs may generate full “BLAST re-
ports” as text output so the user can verify BLAST is work-
ing as expected, but eventually the workflow developer will
determine a format for storing BLAST hits in the database.
BLAST can be run with a parameter that has it generate tab-
separated records, or maybe a special wrapper will be writ-
ten that parses the output to extract the information needed
for this workflow. Finally, the researcher may want to exper-
iment with different runtime parameters, for example differ-
ent similarity cutoffs, substitution matrices, gap penalties,
etc. It is also quite likely the user may come back to the
design of the BLAST step at some future time, after other
steps that consume BLAST outputs have been implemented.
For example, it may be necessary to alter one of the BLAST
parameters or to change the code that processes BLAST out-
puts to capture part of the output that was not saved previ-
ously.

The important point is that a workflow enactor can help
this design process if it allows a researcher to execute in-
dividual steps or restart the workflow at arbitrary points.
In process-centric workflows selecting individual steps or
restarting the workflow can be difficult because most sys-
tems lack an explicit representation of the state of the work-
flow [7]. For a data-centric, rule-based workflow, however,
restarts are straightforward: the user identifies the work
product that should be rebuilt, and the system infers the pro-
cesses that need to execute in order to regenerate the data.

Two other ways the rule-based approach supports work-
flow development are through modularity and reusability.
Rules provide a complete and concise specification of work-
flow products, including the inputs, outputs, and commands
used to implement each workflow step, and it is a fairly sim-
ple operation to copy a set of rules from one workflow to
another. In Sect. 7 we describe how rule-based workflow
supports reuse through inheritance, where a base class cap-
tures a common rule structure, and researchers can write new
classes that extend or modify this structure for the specific
needs of new workflows.

3 Example project: searching for tandem duplicates

To introduce the rule-based approach to workflow manage-
ment we will first describe a simple bioinformatics project.
The project involves only a few steps, but these steps illus-
trate the sorts of operations and data flow that are commonly
found in bioinformatics.

The project is a search for pairs of genes called tandem
duplicates. When chromosomes are passed from one gener-
ation to the next, the cells carrying the chromosomes have
one copy of each gene from the parent cell. The chromo-
somes in daughter cells are often the result of recombina-
tion, when information from the parent’s chromosomes is
reorganized so the daughter cell carries genes from two dif-
ferent parent chromosomes (Fig. 1). Normally, the chromo-
somes break and recombine at the same location. But if the
breaks happen at different locations one of the daughter cells
may end up with two copies of a parent’s gene—a tandem
duplication.

A research group that wants to study instances of tandem
duplicate genes in yeast (Saccharomyces cerevisiae) could
begin the project by searching for pairs of genes that might
be tandem duplicates using the following workflow:

1. Build a table with a list of yeast chromosomes and the
web addresses of FTP servers from which to download
genome files. This table will have 16 records, one for
each yeast chromosome.

2. Download the annotated genome files, which will be text
files containing descriptions of the chromosomes, in-
cluding all the genes. This step will download 16 files,
ranging in size from 500 KB to 3.5 MB.

3. Scan the chromosome files to extract the complete set of
gene sequences from each chromosome. This step will
put around 6,000 gene sequences in the database.

4. Create a BLAST database from the genes, and then do an
“all vs. all” BLAST search. This step runs 6,000 BLAST
searches, comparing each gene against all the others.
Command line options can be used to tell BLAST to
print only the two best hits for each input and to ignore
lower quality matches that are unlikely to be duplicate
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Fig. 1 Tandem duplication. Genetic recombination in a diploid organ-
ism (an organism with two copies of each chromosome). a Normal
crossover: Two chromosomes break at the same relative location, so
the crossover produces the same number of genes on the new chro-
mosome. b Unequal crossover: The new chromosome is the result of
splicing together the two longer portions of each original chromosome,
and has two copies of gene B
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genes. The result of each search will be a pair of IDs of
genes that are most similar to the input gene. Depending
on the settings of BLAST parameters, this step will gen-
erate a table containing around 9,000 BLAST hits (each
gene will match itself, and about half the genes will have
a high quality match to another gene).

5. Look for “reciprocal best hits” in the BLAST results, that
is, genes X and Y such that X # Y, Y is the best hit for
X and X is the best hit for Y.

6. Filter the set of reciprocal best hits to find pairs that are
on the same chromosome and within a specified distance
of each other.

The types of applications in this example project are
fairly typical: they include a commonly used application
(BLAST) that can be downloaded from NCBI [29] and
installed on the user’s own system, some special purpose
scripts (e.g. building the table of chromosome names and
web addresses), and scripts that use library routines (e.g.
one can use the Bio::Perl [30] library to parse the chro-
mosome descriptions to get the gene sequences). A more
realistic search for tandem duplicates would involve many
other steps, perhaps using applications that do a complete
alignment of the candidate pairs (e.g. CLUSTALW [2, 3])
and a more rigorous analysis of the similarity of two se-
quences (e.g. PAML [31]), but the steps listed earlier are
varied enough to illustrate the main features of rule-based
workflow management.

The description of the steps in the tandem duplicate
workflow assume the programs will run on the user’s own
system, or perhaps a local server within their organization.
Most users will also store the data objects produced by the
applications in a local database, but since most database sys-
tems use a client—server model, the database server could be
anywhere. Regardless of the location of the database server,
the user retains local control over the data.

An alternative to running applications locally and to stor-
ing all work products in a locally controlled database is to
use distributed resources found elsewhere on the internet.
A web services approach might use web service composi-
tion techniques (e.g. [32]) to organize distributed resources
into a project workflow. For example, a researcher could use
a web services composition language to define a workflow
so that the step that runs BLAST passes sequences from a
gene database at a genome center to a BLAST service at
a third site. While there are many advantages to using dis-
tributed resources — such as being able to tap into the most
recent genomic data and not worrying about keeping a local
copy up to date, or being able to run complex applications
on high performance computers instead of being forced to
install them locally — there are several reasons to adopt a
workflow system that manages all the data at a single loca-
tion:

— Storing a local copy of each work product helps re-
searchers validate the workflow, e.g. by doing an “au-
dit” after the workflow has completed to check the ac-
curacy of intermediate steps, or to track the progress of
a particular data item. In the tandem duplicate example,

a researcher might know before the project begins that a
particular gene is or is not one of a tandem pair, and one
way to check the accuracy of the workflow is to track the
processing of these genes through the entire workflow.

— Local control of data provides better support for iterative
development, giving users the flexibility to run applica-
tions several different times (as in the description in the
introduction of how BLAST might be added to a work-
flow).

— Most projects will need to do some amount of special-
purpose analysis, such as filtering or transforming data
produced in one step so it can be used in later steps. The
reciprocal best hits step of the tandem duplicate project
is an example. This “computational glue,” which will
most likely be special-purpose scripts or programs writ-
ten specifically for the project, will need access to the
data produced at various steps.

— Many projects will be working with data that is not avail-
able on the internet, but is produced locally. A good
example might be a laboratory that is sequencing the
genome of an organism for the first time, so the data
is not available at any of the genome centers. After de-
veloping and testing the tandem duplication pipeline on
yeast data, the group will be ready to search for tandem
duplicates in the new genome by running it on their own
new genomic data.

— Bioinformatics projects often deal with very large data
sets. It may be impractical to wrap this data in XML to
transfer it between web services, or the project may re-
quire more processing than a web service may be willing
to provide. The yeast tandem duplication project, as sim-
ple as it is, requires around 6,000 BLAST searches.

An orientation toward local control over project data
does not preclude a hybrid approach in which some of the
data used in a project is fetched from a remote site (the yeast
tandem duplicate project begins with downloading data from
a genome center) or some steps involve running applica-
tions on remote sites. If a rule-based workflow does use dis-
tributed resources, however, the data produced by a step is
brought into the project database where it will be available
for analysis and use in later steps.

4 A case for relational databases in bioinformatics
workflows

Since the software architecture of our rule-based workflow
model requires the use of a database to store work prod-
ucts, it is worth exploring some of the benefits of using a
relational database management system in a bioinformatics
project. This section, which can be skipped by readers who
are already familiar with databases, is a brief overview of
relational database management systems, in particular the
open source MySQL [33] system, and the advantages of us-
ing MySQL or similar systems in bioinformatics projects.
Many scientists, when they first learn how a database
system like MySQL is organized, are not convinced the
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apparent complexity is worth the effort. Instead of being im-
mediately available for viewing and editing in a text file, data
is now hidden away on a database server, and the only ac-
cess is through a special new interface that will force them
to learn a new language.

For all but the smallest projects, however, a database sys-
tem has several benefits:

— The database provides a uniform interface to the data,
and thus an organizing structure for applications that
will be used in the workflow. For small projects,
where researchers run familiar applications like BLAST,
CLUSTALW, or PAML by hand, there is no problem
leaving the data in the text files generated by those appli-
cations — relevant items can be cut and paste into spread-
sheets or other analysis programs. For larger projects,
where there are many more applications or where the ap-
plications will be run several times, researchers will be
writing scripts to run the applications and parse the re-
sults. This is where the database becomes useful: Instead
of deciding on a file format for the output that will be
saved for each application, and developing code to read
and write those formats so the data can be passed from
one application to the next, the scripts can adopt a com-
mon structure that reads text fetched from the database
(usually tab separated the records) and generates output
in that same form.

— The structure of the tables that store the data can be
changed without affecting applications that use the data.
For example, suppose the application that extracts gene
sequences from the genome files in the tandem dupli-
cates project has to be modified because a new applica-
tion is being added to the workflow, and this application
needs gene attributes that were not used in the first ver-
sion of the workflow. The researcher can revise this step,
and add one or more columns to the table that stores gene
records, without worrying about other applications that
read the gene records. The BLAST step might not have
to modified at all, since all it needs from the genes table
is an ID and a sequence, and the query to fetch that infor-
mation will not be affected by adding a new column to
the genes table. But if gene descriptions had been stored
in a text file, the code in the script that reads gene de-
scriptions to make the BLAST database will almost cer-
tainly have to be updated to parse the new file format.

— If the workflow is defined so that one step is to pro-
cess only part of the data created earlier, the logic that
filters the data for the step can be implemented in the
database query instead of the script that implements the
step. For example, according to the specification given
earlier, pairs of genes in the reciprocal best hits table
of the tandem duplicates workflow will show up twice,
once as (X, Y) and once as (Y, X). To analyze each pair
only once, use only records where X < Y. When the
data is in a database, it is very easy to add this constraint
to the query that fetches data to pass to the application
that will use it; when the data is in a text file, any appli-
cation that uses the data would have to do its own filter-

ing. Adding the constraint to the query is more efficient,
simpler to implement, and easier to maintain than code
inside applications that read the data.

— Database queries can also be very useful for initial anal-
ysis of the output of a step, to make sure the application
implementing the step is working as expected. In previ-
ous projects on the evolution of duplicate genes [34, 35]
we originally used K, and K, metrics of sequence sim-
ilarity [36], to estimate the age of the duplication events
and the divergence of the gene pairs. Later we decided
to use a different application, which computed two dif-
ferent measures, known as dy and dg [31]. In situations
like this it is very easy to write queries in SQL that look
for outliers generated by each method (e.g. “how many
pairs have ds > 5.0?”) and to see if the results between
the methods are in general agreement (e.g. “in how many
pairs do the two methods produce very different results,
where |Ky — dg| > 1.0?”). These simple analyses are
extremely useful when implementing a workflow step,
to make sure an application is giving expected results
on test cases, or maybe to look for interesting cases to
subject to further analysis in later steps. For more com-
plex situations MySQL can export data to spreadsheets
or statistics packages such as R [37] for analysis or visu-
alization.

— Although there is some overhead in learning to use SQL,
it can be quite helpful, and in many cases fairly complex
operations can be implemented directly in SQL so that it
is not necessary to write separate applications for some
steps in the workflow. For example, the reciprocal best
hits step in the tandem duplicates project can be imple-
mented completely by SQL queries.

Finally, the fact that database systems such as MySQL
use a client—server architecture is also very useful, particu-
larly when projects involve teams from different organiza-
tions. Instead of e-mailing result files back and forth, project
members can all access the same data directly from the
database server. CGI scripting languages, such as PHP [38],
have facilities for accessing data in relational databases,
so team members can also view results via their web
browsers.

5 Software architecture: the data-centric pipeline

Our approach to building a workflow management system
for bioinformatics is based on a software architecture that
supports the gradual development and refinement of project
workflows. The term ‘software architecture’ is used in a vari-
ety of contexts in computer science; here we use it to mean a
framework that provides “constraints on the form and struc-
ture of a family of architectural instances” [39]. The archi-
tecture defines the general structure of a system, for exam-
ple a client—server architecture for a distributed system, or
a model-view-controller architecture for an application with
a graphical user interface, and then particular systems are
constructed using the architecture as a model.
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Our software architecture, the data-centric pipeline, is
characterized by the use of a database to store workflow
products and a rule-based workflow enactment scheme that
automatically schedules workflow steps based on declared
dependences between workflow products:

— The workflow will use a database to hold inputs to ap-
plications, and to store the results generated by appli-
cations; when the database is a relational database each
step of the workflow will generate a database table.

— There is a one-to-one relationship between tables and
steps: Each step of the workflow produces a complete
table, and no other step will modify the table.

— Applications are organized so they read a stream of ob-
jects fetched from a database and generate a stream of
objects that are stored back in the database. With re-
spect to a relational database, this means a query, pos-
sibly joining information from several tables, generates
a stream of records for the application, and the applica-
tion produces a stream of records that will be stored in a
new table.

The requirement that every workflow step produce a new
table may seem restrictive, but in practice we have found
it to be very effective at simplifying the development and
maintenance of workflows. The overall philosophy is that
each workflow step generates new information, and the best
way to manage the data for the project is to add the informa-
tion generated by each step to a monotonically increasing
collection of records. The high-level specification of some
workflow steps may seem at odds with this requirement. For
example, suppose a workflow needs to filter the set of genes
extracted from a genome file, e.g. to filter out pseudogenes
or other sequences so they are not used in later steps. One
approach is to implement a step that deletes these records
from the gene table, but in the data-centric pipeline archi-
tecture the workflow would use a step that generates a new
table (the “suspects” table) containing the IDs of sequences
that should not be used. Later steps that use gene records
would see records from a virtual table, the result of a query
that fetches all genes from the gene table that are not also in
the suspects table. The query to fetch genes to use is more
complicated — in MySQL it might involve a left join of the
original table and the IDs in the suspects table — but in the
long run the workflow is easier to maintain. As another ex-
ample of a virtual view, in the previous section we described
a project that first used a quantity known as K as a metric
of sequence similarity, but then later switched to using a dif-
ferent measure known as ds. Instead of overwriting old K
values with newer dg values, one would just have the new
workflow step write its own table of dy and ds values. Steps
that have sequence similarity as an input would not be af-
fected by the change; all that is necessary is to modify the
query that selects records passed as inputs to the applica-
tions, for example with a join that combines gene IDs with
ds from the new table.

There are three main reasons for preferring to keep all
the data from each step, and to implement deletions and up-
dates through virtual views. First, keeping all the data makes

it easier to “roll back™ and redo earlier steps. For example,
the criteria that define suspect genes may change, so that
genes not used earlier are now included. If all the genes are
still in the original table, one only has to change the query
that fetches them, or the application that creates the suspects
table, but the entire gene table would have to be rebuilt if
the suspects have been deleted. Second, having access to all
the data means it is possible to compute a wider range of
statistics, e.g. to compute both the average gene length for
all genes in the genome and for all genes used in the project
(i.e. all non-suspect genes). Third, it is possible to imple-
ment the sorts of “audits” and comparisons mentioned in the
earlier sections — one can compare K with dg for all pairs,
or track the progress of a single gene, even it is in the suspect
table, as it progresses through the workflow.

There is also a practical reason for requiring the database
to keep a monotonically increasing data set, where each
workflow step creates a new table: it means a workflow en-
actor can use timestamps on tables to automatically schedule
the execution of the steps. The workflow enactor described
in the next section uses a simple rule structure to define the
dependences between data stored in tables. When a table is
updated, the enactor can determine which other steps must
then be re-executed to bring the project up to date. If a ta-
ble is modified by more than one step, for example if it is
created in one step and a later step deletes a subset of the
records, the data dependences are much more complicated.

Not all of the project data has to actually be stored in the
database. Some steps may create or download files that are
kept in the project directory instead of the database, but in
these cases the workflow step should put file descriptions in
the database. There is an example of this design in the tan-
dem duplicate workflow, where the download step retrieves
files from a remote server and records file descriptions in the
database.

The third aspect of the data-centric pipeline — that ap-
plications read and write streams of tab-separated records —
also entails some initial extra work. In many cases, it will be
necessary to write “wrappers” to run widely used applica-
tions, such as CLUSTALW and PAML. A wrapper will read
a stream of input records, use data elements to define input
parameters for the application, run the application, and then
generate the stream of output records from the outputs of
the application. Although this appears at first to be a serious
drawback, the class library from the Open Bioinformatics
Foundation [30] makes it very easy to write these wrappers.
The library has routines for running a wide variety of com-
mon bioinformatics applications.

6 The pipeline interface program

To evaluate the data-centric pipeline architecture and the
concept of a rule-based workflow we developed a simple
system called PIP (for Pipeline Interface Program). PIP is
written in Perl and interfaces to a MySQL database.
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6.1 Rule syntax

PIP rules are very much like rules in a Unix makefile. A rule
has a header, consisting of the rule name and a list of de-
pendences on the first line, followed by body that consists
of zero or more lines containing commands that will be exe-
cuted when the rule is invoked. The collection of rule head-
ers is the declarative specification of the work products of
the workflow: the name of the rule corresponds to the name
of a table in the database, and the dependence list is the set of
names of other tables that contain the data required to con-
struct the table. When the user asks PIP to create a new table,
or to update an existing table to a new version, PIP will con-
struct a work schedule based on the rule headers, and only
steps for tables that directly or indirectly contribute informa-
tion to the requested table will be executed.

As an example, here is the outline of the final rule from
the tandem duplicates project, the rule that selects a subset
of the records in the reciprocal best hits table to make the
final table of results:

tandems: rbh genes
mysql yeast -e ’DROP TABLE IF EXISTS tandems’
mysql yeast -e ’CREATE TABLE tandems SELECT ...’

The header shows this is a rule to build a table named
tandems, and that it depends on information in the rbh and
genes tables. The two lines in the body of the rule are both
shell commands, in this case commands which pass queries
to MySQL. The first query deletes an old version of the table
if there is one, and the second query builds the tandems table.
The body of the second query (not shown) joins information
from the two input tables to build the new table.

The commands in the body of a rule can be Unix shell
commands, or, as described later in Sect. 7, an invocation of
a Stage object. Any program that can be run from a Unix
shell can be used in a rule body. The only requirement for
the commands in the body of a rule are that after the last
command has terminated there needs to be a new table in
the database with the same name as the rule; in the previous
example, note there is a CREATE TABLE command to build the
table named tandems.

The commands in the body of a rule are not limited to
MySQL operations, and commands may have “side effects”
that read or write files in the project directory. An exam-
ple from the tandem duplicates project is the rule that runs
BLAST — what NCBI calls the BLAST database is a set of
binary files, and one of the commands in the body of the rule
for the BLAST step uses an NCBI program named formatdb
to create these files for BLAST.

Some applications already generate outputs as tab-
separated records that can be loaded directly into a MySQL
databases. Others, such as programs in the PAML package,
will need simple wrappers to run the application and refor-
mat the results. This is a straightforward operation for many
applications; for example, a Perl programmer would include
the Bio::Perl library [30] and create a factory object to
launch the application.

When a rule is invoked, the system compares the times-
tamp on the table to be built with the timestamps on the de-
pendences. If any one of the dependences has a newer times-
tamp, it presumably has updated information, and the com-
mands in the body of the rule are executed. A key point in
using rules to manage workflow is that when the rule for a ta-
ble is invoked, the system does a recursive invocation of the
rules for each table listed in the dependence list. Thus, if a
table containing information generated early in the workflow
is updated, all the user needs to do is invoke the rule for the
final product, and the workflow is automatically restarted.

Dependence processing is best explained in terms of a
directed acyclic graph, or DAG. There is one node for each
rule, and for any rule » with dependences di, dz, ... there
is an edge connecting each of the d; to r. When a rule is in-
voked, the system traverses the graph, working back through
the dependences for that rule. The DAG for the tandem
duplicates workflow is very simple, since the dependences
mostly just define a linear list where step i depends only on
step i — 1. An example of a richer set of dependences from
a project that builds a database of tRNA genes is shown in
Fig. 2.

A node may be encountered more than once during the
traversal, but as long as the graph is acyclic the dependence
checking terminates and each workflow step is executed just
once. In the example shown in Fig. 2, suppose a new set of
genome sequences becomes available, and the source table
is updated. Next suppose the researcher wants information
from the codons table, so PIP is invoked to make sure that
table is up to date. PIP will check DNA, and see that it de-
pends on download. Since download depends on source, and
source has recently changed, PIP runs the applications in the
download step, and then, since download is now newer than
DNA, it runs the applications in the DNA step. Since the codons
table also depends on genes, the dependence checking has
to work up that branch of the DAG also. But now when PIP
gets to the download table, it sees it is up to date (the times-
tamp on download is newer than the timestamp on source),
so PIP only runs commands in the body of the genes step.
Now that DNA and genes have both been updated PIP can run

Y
[[chrge| [ codons

aligned

Fig. 2 Dependence graph for a tRNA database
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the applications in the body of the codons step. As a final
note, the taxonomy table and the tables below it, on the left
side of the figure, are now outdated, but they will not be up-
dated until there is a request for information that depends on
one of these tables.

6.2 Control file

The rules that describe steps in the workflow are collected
into a control file called a “pipfile.” When the workflow is
activated, PIP reads the pipfile and builds a DAG from the
rules. The pipfile is also a place where the researcher can de-
fine workflow parameters, such as the name of the database
to use, database connection parameters (e.g. username and
password, if they are to override global settings), and direc-
tories where applications can be found.

When PIP is invoked from the command line the user
can specify the name of the rule that should be executed. For
example, to invoke the rule in the example above, one would

ty])e
% pip codons

6.3 Using PIP to develop workflows

To add a new step to a workflow, the developer has four basic
tasks:

— write a query that selects the information from existing
tables that will be passed to the application executed by
the new step;

— test the invocation of the application, if necessary writing
a wrapper that will use the information supplied by the
query;

— define the table that will contain the output of the appli-
cation, and make sure the output records from the appli-
cation or its wrapper conform to the table definition;

— collect the first three parts and incorporate them into a
rule, and insert the rule into the pipfile.

Two facilities built into PIP are very useful when imple-
menting and testing the new step.

The first is the ability to force the execution of a rule,
whether or not the corresponding table is outdated with re-
spect to its dependences. When the -r (restart) option is
specified, PIP will process only the rule named on the com-
mand line, and will execute all the commands in the body
of the rule, even if the table for the rule is newer than any
dependence.

The second feature is the ability to test the pipeline with-
out actually executing any commands or updating any tables.
When called with the -n (norun) option, PIP will construct a
DAG for all the rules, as usual, and begin processing the rule
named on the command line. It will check dependences, but
instead of executing commands in the bodies of rules, PIP
just prints the commands in the terminal window.

A common scenario for adding a new step to a workflow
managed by PIP is thus:

— develop the new step using the four tasks outlined earlier;

— use PIP to execute the step using the -r option as neces-
sary;

— use MySQL queries to examine the results, e.g. looking
for outliers, or selecting results from known test cases, or
generating data to be passed to a visualization program;

— if implementation of the new step leads to a modification
of an earlier step, make the required changes, and invoke
the modified step with the -r option;

— check the effects this modification has on the remainder
of the pipeline by typing pip -n;

— analyze the transcript to see how the change to the ear-
lier stage propagates to other stages, and adjust those as
necessary;

— run PIP on the full workflow to bring final output tables
up to date.

7 Stage objects and inheritance

Most steps in a rule-based workflow follow a consistent pat-
tern: an output table is prepared, either by creating a new ta-
ble or erasing the contents of an existing table; a query is ex-
ecuted, and the results of the query are piped to a set of shell
commands, which implement the workflow step; the output
of the command is filtered and reformatted and added to the
database. We call this pattern the “prep, step, and grep” pat-
tern (“grep” being the name of a common Unix utility that
filters text streams).

To allow workflows to take advantage of this pattern,
researchers can use techniques from object-oriented pro-
gramming to instantiate an object called a Stage. The object
constructor needs the two pieces of information that distin-
guish one step from another: the MySQL query that fetches
records for the step, and the commands that launch the ap-
plications used in the step.

(a)

download
mysgl SDB -e "DROP TABLE IF EXISTS genes"
mysql $DB < S$TABLES/genes.sqgl
mysgl $DB -N -8 -e \
"SELECT filename FROM download"” \
| gbkparse -genes -v > genes.txt
mysqlimport $DB -L genes.txt

genes:

(b)

download

Stage(
"SELECT filename FROM download",
"gbkparse -genes -v"

)

genes:

Fig. 3 Using a stage object to define a workflow step. a The original
step uses four shell commands to initialize a table, run a script named
gbkparse, and put the output into the database. b When using an ob-
ject constructor the workflow developer just specifies the query and the
shell command. The database name and directory with MySQL table
definitions must be defined in the control file
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.require Blast.pm

blast: genes

Blast(
"SELECT orf, sequence FROM genes )\
WHERE length(sequence) > 20",
"mysgl2fasta | blastall -p blastp \
-d $BLASTDE -b 2 -m 8 -e le-40",
"SBLASTDB"
)

Fig. 4 Example of a derived class

The PIP prototype allows users to instantiate and invoke
Stage objects. To use an object in a workflow, the body of
the rule consists of a single statement that invokes the con-
structor (Fig. 3). When PIP sees an object constructor in the
body of a rule, it replaces it with an automatically generated
set of commands. These commands create a new instance of
the Stage object, passing it the name of the database and the
location of a directory that has project table definitions, both
of which are defined in the header of the pipfile. When the
rule is activated, the command calls a method named exec,
which in turn calls, in order, methods named prep, step, and
grep. Any of the four methods defined in the base class can
be extended or replaced in new object derived from the Stage
class.

Figure 4 shows an example of the invocation of a new
class written for the tandem duplicate project. The blast
step of the workflow is almost like all the other steps, but
it has the extra requirement of building a BLAST database
before running BLAST itself. The file named Blast.pm con-
tains the definition of the new Blast Stage object, and this
object has a new implementation of the prep method that
calls formatdb. The rest of the step is the same as any other
step implemented by a Stage object, so Blast.pm does not
have definitions for any other methods, i.e. it inherits their
behavior from the base class.

8 Discussion

This paper describes a new paradigm for organizing bioin-
formatics workflows based on a software architecture called
a “data-centric pipeline.” The workflow is specified by a set
of rules, where each rule describes a table in a database,
and a workflow enactor uses dependences between rules to
schedule steps. Applications launched by the enactor read
streams of records generated by a query and write streams
of records to be stored in a table. We also described a sim-
ple prototype enactor named PIP, which was developed to
test this new framework. PIP was strongly influenced by the
Unix make utility. When PIP is run, the user specifies the
name of a table to update, and PIP uses rule dependences to
automatically schedule the operations necessary to update
that table.

PIP has been used successfully in several of our own
projects, including a datamart for bacterial tRNA genes (the
workflow shown in Fig. 2), assembly and annotation of
a newly sequenced fungus genome, and a project that is

building a database of human genes and pairs of their co-
orthologs in zebrafish. As an example of how simple the
command language is, the control file for a project that is
comparing orthologous genes from closely related bacterial
species has 33 rules and contains 296 lines of text (half of
which are comments). The first step in the workflow gener-
ates a table of genomes available at NCBI [29]. The next few
steps download chromosome descriptions and parse the files
to get lists of genes and other features. The system then au-
tomatically creates BLAST databases, runs BLAST, aligns
results with CLUSTALW, computes dy and dg values with
PAML, and runs various other applications written specifi-
cally for this project. We wrote 21 wrappers to launch the
applications that do not already read and write tab-separated
text files. The longest and most complex of these has 320
lines of Perl code (including comments), and the average is
95 lines.

PIP adds a very small overhead to projects. It is itself
little more than a wrapper that invokes the applications ac-
cording to command lines found in the project control file.
The only thing that makes PIP less efficient than a special
purpose script written to manage the workflow is the cost
of reading and parsing the rules in a control file, building a
DAG from rule dependences, accessing the project database
to get the timestamps on the tables that correspond to the
nodes in the DAG, and then traversing the DAG. One way
to measure this time is to invoke PIP on a project that has
just been completely updated. PIP will build and traverse the
complete DAG, and then print a message saying all steps are
up to date; the time to execute this “null” workflow is then
the sum of the execution times of each overhead component.

As shown in Fig. 5, the percent of time spent processing
the rules is negligible compared to the total time to com-
plete the workflow. Running the complete tandem dupli-
cate workflow on all 16 yeast chromosomes requires a little
over 30 min (the row labeled “full” in the figure). The PIP
overhead (the line labeled “null”) is less than a third of a
second.

Another question to ask about performance is whether
the data-centric pipeline, which uses a relational database
server, is less efficient than a special purpose script that
leaves all the information generated by applications in flat
files. A rough estimate of the overhead of querying the
database for input data for a step, plus the overhead of

Operation | Wall Clock CPU

full 30:13.00 26:23.00
null 00:00.32 00:00.24
download 01:03.76 00:03.84
genes 00:42.34 00:38.41
blast 27:32.35 27:14.93
rbh 00:00.55 00:00.27
tandems 00:12.49 00:00.28

Fig. 5 PIP performance on the tandem duplicates workflow
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creating a table and writing results to the table, can be
obtained by running each workflow step individually. The
difference between the wall clock and CPU time would
mainly be the result of the CPU that executes the work-
flow waiting for the database server to respond. The last
five rows of Fig. 5 show there is some overhead. Overheads
in a special-purpose script would be harder to quantify, but
would have to include time for file I/O plus time to parse
the files — one advantage of the database approach is that
the database server does most of the parsing and other file
management.

The command language for PIP is intentionally very
simple. It does not allow more than one step to run at any
one time, either in parallel or overlapped (e.g. a pipeline
where streams of outputs of one step are passed to the
next step, with both running concurrently), and it does not
have built-in facilities for checkpointing or other support
for large, distributed projects. PIP has primitive support for
case variables, which are values generated by the workflow
and used by subsequent steps [8], but they are not used to
implement conditional execution of rules or other control
constructs.

Parallelism, iteration, conditional execution, and other
more complex control can be implemented in a rule-based
framework, but this would require the use of case vari-
ables and a more full-featured workflow control language.
For example, rules could take the form of guarded Horn
clauses [40], where a system evaluates guards (boolean con-
ditions) at the front of each rule, and then use values of case
variables to select one of the rules whose guard clause is sat-
isfied as the rule to execute. An alternative approach, which
we plan to investigate, is to compile the very simple rules of
PIP into an XML specification so they can be executed by
Taverna, BioPipe, Pegasys, or other systems that do provide
checkpointing, rollback, and other more advanced workflow
management.

While PIP itself does not try to exploit parallelism in the
processing of rules, the commands it runs can be parallel
applications. PIP can invoke any application, whether it is
sequential or parallel, as long as it has a command line inter-
face. The only limitation is that they have a Unix command
line interface. An example of a rule body that uses multiple
processors is the CLUSTALW step in the bacteria ortholog
project mentioned earlier. We wrote a new stage class named
Parallel that overrides the base class methods for launching
the application and collecting results. The new class splits
the input stream into independent substreams and launches
a separate instance of the CLUSTALW wrapper on each sub-
stream. By using secure shell (ssh) or other applications for
running programs on remote hosts a PIP workflow can use
Global Grid resources, perhaps fetching data from a remote
site or running an application on another host.

The ability to encapsulate workflow steps into abstract
descriptions is a goal that is shared by several projects work-
ing on semantic web services for bioinformatics [32, 41, 42,
43]. An example of how a rule-based workflow provides an
abstract view of a step can be seen in the BLAST exam-

ple mentioned in Sect. 1: a project may need to do some
sort of sequence similarity search, and store the results in a
database. If the step that does the search is specified in the
form of an abstract rule, one just needs to modify the rule
body to use a different application, e.g. WU-BLAST [5] or
FASTA [6]. From the perspective of the workflow enactor,
all that is required is that some application provide a simi-
larity search to fill the specified table.

In our PIP implementation of the rule-based approach,
where rule bodies contain Unix commands, it would be
straightforward to take advantage of semantic web services;
all that is needed is a rule body that would invoke a sequence
similarity server on a remote host. Lord et al. make the case
for a programmatic interface to web services [44], and any
service that can be invoked from a command line can be in-
corporated into a PIP workflow.

Perhaps the biggest difference between workflows man-
aged by PIP and workflows inferred by web services com-
position techniques [32, 42, 43] is that the latter are often
oriented toward single transactions. A common example is a
travel support service, where a user connects to a virtual ser-
vice that has been composed from several independent web
services, e.g. for airline reservations, hotels, and sightsee-
ing. Workflow in this context refers to how a request from
a single user is processed by passing objects between the
constituent services. In this situation, the performance over-
heads of handling transactions are a concern, since prompt
feedback to the user is paramount. In many cases, a bioin-
formatics workflow could also be transaction oriented, par-
ticularly if a researcher is working on a small data set. But
many workflows are similar to the one used as an example
in this paper. In these workflows, large amounts of data are
completely processed at each step before the next step is in-
voked. In these situations, overhead from managing individ-
ual steps is not as critical.

One of the main motivations for the rule-based approach
was to support an iterative design process for bioinformatic
workflows, where modularity, reusability, and the ability to
isolate and test individual steps by executing them repeat-
edly are expected to be especially beneficial. This sort of
iterative design strategy for workflows is likely to be helpful
in other fields as well. Although it was designed for bioin-
formatics projects using MySQL databases, a rule-based en-
actor could be used in any field where work products can
be stored in a database (relational or object oriented), where
the database provides mechanisms for checking the status
of items in the database, such as timestamps on tables, and
where applications can be run via scripts that read and write
items from the database.

Auvailability

PIP is available for download from http://teleost.cs.
uoregon.edu/PIP. The distribution contains the source code
and documentation, including a tutorial (the tandem du-
plicates project) that illustrates many of the features of
PIP.
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