39. **Electromagnetic waves and gauge invariance**

a) Show that the Lorenz gauge, \(\frac{1}{c} \partial_t \varphi + \nabla \cdot \mathbf{A} = 0 \), still does not uniquely determine the potentials of an electromagnetic wave: Let \(f \) be an arbitrary scalar solution of the wave equation, \(\Box f = 0 \). Then the transformation \(\mathbf{A} \rightarrow \mathbf{A} + \nabla f \), \(\varphi \rightarrow \varphi - \frac{1}{c} \partial_t f \) leaves both the wave equation for the 4-vector potential and the fields unchanged.

b) Show in particular that the gauge of an electromagnetic wave can always be chosen such that \(\varphi = 0 \), \(\nabla \cdot \mathbf{A} = 0 \).

(3 points)

40. **Plane waves**

Consider the scalar field

\[\psi(x, t) = \cos(k \cdot x - \omega t) , \]

where \(k \) is a Euclidian vector.

a) What is necessary and sufficient to make \(\psi \) a solution of the wave equation?

b) Perform a Lorentz boost, and show that the transformed wave again has the form

\[\psi'(x', t') = \cos(k' \cdot x' - \omega' t') . \]

How are \(k' \) and \(\omega' \) related to \(k \) and \(\omega \)?

(3 points)

41. **Spherical waves**

Consider the wave equation

\[\left(\frac{1}{c^2} \partial_t^2 - \nabla^2 \right) f(x, t) = 0 \]

Find and discuss the most general solution that has the form

\[f(x, t) = u(r, t)/r \]

where \(r = |x| \).

(3 points)