14. **Particle in homogeneous \(E \) and \(B \) fields**

Consider a point particle (mass \(m \), charge \(e \)) in homogeneous fields \(\mathbf{B} = (0, 0, B) \) and \(\mathbf{E} = (0, E_y, E_z) \). Treat the motion of the particle nonrelativistically.

a) Show that the motion in \(z \)-direction decouples from the motion in the \(x-y \) plane, and find \(z(t) \).

b) Consider \(\xi := x + iy \). Find the equation of motion for \(\xi \), and its most general solution.

hint: Define the cyclotron frequency \(\omega = eB/mc \), and remember how to solve inhomogeneous ODEs.

c) Show that the time-averaged velocity perpendicular to the plane defined by \(\mathbf{B} \) and \(\mathbf{E} \) is given by the *drift velocity*

\[
\langle v \rangle = c \mathbf{E} \times \mathbf{B}/B^2
\]

Show that \(E_y/B \ll 1 \) is necessary and sufficient for the non relativistic approximation to be valid.

d) Show that the path projected onto the \(x-y \) plane can have three qualitatively different shapes, and plot a representative example for each.

(6 points)

15. **Harmonic oscillator coupled to a magnetic field**

Consider a charged 3-d classical harmonic oscillator (oscillator frequency \(\omega_0 \), charge \(e \)). Put the oscillator in a homogeneous time-independent magnetic field \(\mathbf{B} = (0, 0, B) \). Show that the motion remains oscillatory, and find the oscillation frequencies in the directions parallel and perpendicular, respectively, to \(\mathbf{B} \).

(4 points)

16. **Relativistic motion in parallel electric and magnetic fields**

Consider a relativistic charged particle (mass \(m \), charge \(e \)) in parallel homogeneous electric and magnetic fields \(\mathbf{E} = (0, 0, E), \mathbf{B} = (0, 0, B) \).

a) Show that the equation of motion for the \(z \)-component of the momentum \(p_z \) decouples from \(p_x \) and \(p_y \), and that the momentum perpendicular to the \(z \)-axis is a constant of motion: \(p_x^2 + p_y^2 = p_{\perp}^2 = \text{const} \).

b) Choose the zero of time such that \(p_z(t = 0) = 0 \), and show that with a suitable chosen origin the \(z \)-component of the particle’s position can be written

\[
z(t) = \frac{1}{eE} \sqrt{\frac{T_0^2}{c^2} + c^2e^2E^2t^2}
\]

where \(T_0 \) is the kinetic energy (i.e., the energy of the particle without the potential energy due to the fields) at time \(t = 0 \).

hint: If you have trouble, recall Einstein’s law of falling bodies from PHYS 611. You can find my version at http://pages.uoregon.edu/dbelitz/teaching/2013_14/PHYS_611-4/ , Assignment # 5, Problem 21.
c) Introduce a parameter \(\varphi \) via \(d\varphi/dt = ceB/T(t) \), with \(T(t) \) the time-dependent kinetic energy. Show that the orbit of the particle can be represented in the parametric form

\[
x = \frac{cp_\perp}{eB} \sin \varphi, \quad y = \frac{cp_\perp}{eB} \cos \varphi, \quad z = \frac{T_0}{eE} \cosh(\frac{E\varphi}{B})
\]

and explicitly find the relation between \(\varphi \) and \(t \).

hint: Consider \(\pi := p_x + ip_y \) and note that \(|\pi| = p_\perp = \text{const.} \) by the result of part a).

d) Describe and visualize the orbit, and discuss the motion in the limits of large and small times.

(14 points)