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Chapter 1

Mathematical preliminaries

1 Vector spaces and tensor spaces

1.1 Vector spaces
Let V be an n-dimensional vector space over R.

We say that V has a set of basis vectors

{ej ; j = 1, . . . , n}

and elements (that is, vectors) x expanded in this basis as1

x =

n∑
j=1

xjej =: xjej , xj ∈ R,

where the scalars xj are called the coordinates or components of x.

Example 1. Define the set

Rn := R× · · · × R =
{(
x1, . . . , xn

)
;xj ∈ R

}
.

Rn constitutes a vector space over R if vector addition and scalar multiplication are defined to be the
standard real vector addition and real scalar multiplication.

Furthermore, the Cartesian basis is

{e1 = (1, 0, . . . , 0) , e2 = (0, 1, 0, . . . , 0) , . . . , en = (0, . . . , 0, 1)} .

Remark 1. Two vector spaces V and W over the same field F are said to be isomorphic, denoted V ∼= W , iff
there exists a bijection T : V →W that preserves addition and scalar multiplication. That is,

T (x+ y) =T (x) + T (y) , and
T (cx) =cT (x)

for all x,y ∈ V and all c ∈ F .2

Claim 1. All n-dimensional vector spaces over R are isomorphic to Rn.

1I have adopted the notation that vectors are bold.
2Here, and throughout this document, one must be mindful of what type of variable and what type of operation is written,

because often the same symbols are used for addition between vectors and addition between scalars. In this case, x+y is vector
addition, cx is scalar-vector multiplication, T (x) + T (y) is scalar addition, and cT (x) is scalar-scalar multiplication.

1



CHAPTER 1. MATHEMATICAL PRELIMINARIES 2

Proof. In fact, all finite-dimensional vector spaces of the same dimension and over the same field are
isomorphic to one another. See Theorem 9 of this document.

1.2 Tensor spaces
Let V be an n-dimensional vector space over R with basis {ej}.

Definition 1. Linear forms. A mapping f : V → R is called a linear form iff

(i) f (x+ y)=f (x) + f (y)

(ii) f (cx) =cf (x)

for all x,y ∈ V and all c ∈ R.

Definition 2. Bilinear forms. A mapping f : V × V → R is called a bilinear form iff

(i) f (x + y, z)=f (x, z) + f (y, z)

(ii) f (x,y + z)=f (x,y) + f (x, z)

(iii) f (cx,y) =cf (x,y)

(iv) f (x, cy) =cf (x,y)

for all x,y, z ∈ V and all c ∈ R.

Definition 3. Bilinear form components. The scalars tjk := f (ej , ek) are called the coordinates or
components of the bilinear form f in the basis {ej}.

Proposition 1. The coordinates completely determine a bilinear form.

Proof. Let x,y ∈ V . Then

f (x,y) = f
(
xjej , y

kek
)

= xjykf (ej , ek) = tjkx
jyk.

and we see that knowledge of {tjk} implies knowledge of f (x,y).a

aNotice the importance of f obeying properties (i)-(iv) of a bilinear form.

Definition 4. 2-tensors. The n2 scalars tjk are called the coordinates of the rank-2 tensor (or 2-
tensor) t (which is equivalent to the bilinear form f).

Claim 1. Symmetric forms. A bilinear form, f , is symmetric if and only if the components of the
tensor with respect to the given basis are symmetric; that is,

f (x,y) = f (y,x) ∀x,y ∈ V ⇔ tjk = tkj ∀j, k = 1, . . . , n

http://math.kennesaw.edu/~sellerme/sfehtml/classes/math3260/isomorphicvectorspaces.pdf
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Proof. Assume f (x,y) = f (y,x) ∀x,y ∈ V . Then

tjk := f (ej , ek) = f (ek, ej) = tkj ∀j, k = 1, . . . , n.

Now assume tjk = tkj ∀j, k = 1, . . . , n. Then

f (ej , ek) = f (ek, ej) ∀j, k = 1, . . . , n.

Let x,y ∈ V . These can be expanded as x = xjej and y = yjej . Thus,

xjykf (ej , ek) =xjykf (ek, ej)

=⇒ f
(
xjej , y

kek
)

=f
(
ykek, x

jej
)

=⇒ f (x,y) =f (y,x) .

Theorem 1. The set of rank-2 tensors forms a vector space of dimension n2 over R.

Proof. (Problem #3)

In a similar manner to how we constructed 2-tensors, one can consider multilinear forms f : V ×V ×V → R,
f : V × V × V × V → R, etc. to construct tensors of rank 3, 4, etc. with coordinates tjkl, tjklm, etc. Having
defined tensors in this manner, let us consider some commonly encountered tensors.

Example 1. The Levi-Civita tensor. Consider R3 with its Cartesian basis {e1, e2, e3}. The Levi-
Civita tensor (or completely antisymmetric tensor) is the rank-3 tensor ε : R3 × R3 × R3 → R defined
by

ε (ej , ek, el) =: εjkl =


+1 if (jkl) is an even permutation of (123)

−1 if (jkl) is an odd permutation of (123)

0 if (jkl) is not a permutation of (123).

One example of its use is in representing the cross product x× y in Einstein notation:

(x× y)j = εjklx
kyl.

Example 2. The Euclidean Kronecker delta. Consider Rn with its Cartesian basis {e1, . . . , en}.
The Euclidean Kronecker delta is the rank-2 tensor δ : Rn × Rn → R, where

δ (ej , ek) =: δjk =

{
1 if j = k

0 otherwise.

Note that δjk has the values 0 and 1 in the particular case of the Cartesian basis, but generally this is
not so. This is because the Kronecker delta is typically defined in terms of the mixed tensor, δjk, which
we discuss in the next section.

1.3 Dual spaces
Let V be an n-dimensional vector space over R, and let f be a linear form thereon. Let x ∈ V , and expand
x in a basis: x = xjej . Now consider

f (x) = f
(
x1e1 + · · ·+ xnen

)
= f (e1)x1 + · · ·+ f (en)xn

=: u1x
1 + · · ·+ unx

n = ujx
j
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where uj := f (ej) ∈ R. Every linear form on V can be written in this way; the scalars uj uniquely determine
the form f .3 Furthermore, the set of all u := (u1, . . . un), and thus the set of linear forms f , constitutes a
vector space, denoted V ∗. Since V ∗ is of dimension n, it is isomorphic to Rn, and by extension, to V .

Definition 1. Dual spaces.
(a) The space V ∗ of linear forms on V is called the space dual to V .
(b) The elements of V ∗ are called co-vectors.a They are one-to-one correspondent to the vector

elements of V .
aCo-vectors are also called covariant vectors, in which case vectors are called contravariant vectors.

Since the co-vectors are defined via linear forms, and rank-n tensors are defined by n-linear forms,4 we can
consider co-vectors as tensors of rank 1.

Definition 2. Natural pairing. The scalar f (x) ∈ R is called the natural pairing or dual pairinga of
the co-vector u (corresponding to f) and the vector x. We write

〈u,x〉 := f (x) = ujx
j .

aAccording to Dr. Belitz, this is called the scalar product and denoted u · x, though I have been unable to verify this.

If {ej} is a basis of V , there exists a canonical dual basis or co-basis
{
ej
}
of V ∗,5 defined by〈

ej , ek
〉

=
(
ej
)
l
(ek)

l
= δjk,

where

δjk :=

{
1 if j = k

0 otherwise

is called the Kronecker delta. The basis {ej} and co-basis
{
ej
}
are said to be biorthogonal.6 Any element

u ∈ V ∗ can be expanded in terms of the dual basis as

u = uje
j .

Definition 3. Contra-/co-variant and mixed tensors.
(a) Bilinear forms f : V ∗ × V ∗ → R acting on the co-basis define contravariant tensors of rank 2,

f
(
ej , ek

)
= tjk,

and analogously for higher rank tensors.a The tensors of Example 2 are then called covariant tensors.
(b) Multilinear forms acting on mixtures of basis and co-basis vectors define mixed tensors. For

example, f : V ∗ × V × V ∗ → R defines tjlk = f
(
ej , ek, e

l
)
.b

aIn this manner, vectors can be considered contravariant tensors of rank 1.
bThe Kronecker delta, δjk, is thus a mixed tensor of rank 2.

Definition 4. Tensor product. The contravariant tensor whose components are given by the product
of the components of two contravariant vectors x and y is called the tensor product of x and y, denoted
by

t = x⊗ y, tjk = xjyk

3The proof of this is analogous to that of Proposition 1.
4As per § 1.2
5It can be proven that, for finite dimensional V , the co-basis is a basis of V ∗.
6If {ej} is the Cartesian basis, it can be proven that ej = ej ∀j ∈ [n]
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Analogously, tjk = xjyk, tjk = xjy
k, and tjk = xjyk.

2 Minkowski space

2.1 The metric tensor

Definition 1. Metric tensor. Let V be an n-dimensional vector space over R with basis {ej}, and
let g : V × V → R be a symmetric bilinear form.a Then g defines a symmetric 2-tensor:

gjk = g (ej , ek) = gkj

Let g have an inverse g−1, corresponding to a tensor gjk, in the sense

gjkg
kl = δlj

Then we call the scalar
g (x,y) = xjgjky

k

the generalized scalar product of x and y, with gjk called the metric tensor, denoted

g (x,y) =: x · y =: xy

aThat is, g (x,y) = g (y,x) ∀x,y ∈ V .

Since V is isomorphic to Rn, we can consider Rn in what follows.

Definition 2. Co-basis. Consider Rn endowed with a metric tensor, g, and let {ej} be a basis. We
define an adjoint basis or co-basis

{
ej
}
by

ej := gjkek

It readily follows thata

ej = gjke
k

aej = δljel = gjkg
klel = gjke

k

Proposition 1. The contravariant and covariant components of a vector are related by

xj = gjkx
k, xj = gjkxk

Proof. x = xjej = xjgjke
k = xke

k, since xj are defined to be the components of x in basis
{
ej
}
. But

g is symmetric:
gjk = gkj =⇒ xk = gkjx

j . Therefore, xj = δkj x
k = gklg

ljxk = xlg
lj .

Remark 1. It can be proven7 that the metric tensor, operating on a general n+ 1 rank tensor, has the effect
that it lowers or raises the index being summed over:

gjkt
kl1···ln = tj

l1···ln .

7We proved it in class lol
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Remark 2. Note that δjk = gjlδ
k
l = gjk, which in general is not equal to δjk. However, glj = gjkg

kl = δlj is
always true. Only in Euclidean space is δjk = δjk.

2.2 Basis transformations

Definition 1. Matrices.
(a) An n × n array of real numbers Dj

k (corresponding to the jth row and kth column) we call an
n× n matrix D with elements Dj

k.
(b) A matrix D is invertible if a matrix D−1 exists such that

Dj
k(D−1)kl = (D−1)jkD

k
l = δjl

or, DD−1 = 1n with 1n the n× n unit matrix with (1n)jk = δjk.
(c) The matrix DT with elements

(DT )jk = Dk
j

is called the transpose of D.

Proposition 1. The transpose of a product is the product of the transposes, in reverse order:

(AB)
T

= BTAT

Proof. ((AB)
T

)jk = (AB)k
j = Ak

lBl
j = (AT )lk(BT )j l = (BT )j l(A

T )lk = (BTAT )jk.

Proposition 2. The inverse of a transpose is the transpose of the inverse:

(
D−1

)T
=
(
DT
)−1

Proof. DT
(
D−1

)T
=
(
D−1D

)T
= (1n)

T
= 1n.

Definition 2. Basis transformation. Consider Rn with a metric tensor g; let {ej} be a basis and
let D be an invertible matrix. Then we define a new basisa {ẽj} by the basis transformation

ẽj = ek(D−1)kj ,

whose inverse transformation yieldsb

ej = ẽkD
k
j

aFor proof that it is indeed a basis, see Problem 5.
bej = ekδ

k
j = ek(D−1)klD

l
j = ẽlD

l
j
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Proposition 3. Let x ∈ Rn be a vector whose contravariant coordinates with respect to a basis {ej}
are xj. Then its coordinates with respect to the basis {ẽj}, denoted x̃j and called a coordinate transfor-
mation, are

x̃j = Dj
kx

k or x̃ = Dx

with inverse transformation

xj = (D−1)jkx̃
k = or x = D−1x̃

Proof. x = xjej = xj ẽkD
k
j = xjDk

j ẽk = x̃kẽk =⇒ x̃k = xjDk
j

Proposition 4. Let gjk = ej ·ek be the metric in the basis {ej}, and let D−1 be a basis transformation
such that ẽj = ek(D−1)kj . Then the metric g̃ corresponding to g expressed in the transformed basis
{ẽj}, defined by coordinates

g̃ := g (ẽj , ẽk)

is given by

g̃jk = ((D−1)T )j
mgml(D

−1)lk or g̃ =
(
D−1

)T
gD−1 or g = DT g̃D

Proof. Problem 6

Corollary 1. The covariant coordinates transform according to

x̃j = (D−1)kjxk

with inverse transformation
xj = Dk

j x̃k

Proof. x̃j = g̃jkx̃
k = g̃jkD

k
lx
l = g̃jkD

k
lg
lmxm = (g̃Dg)j

mxm

= (
(
D−1

)T
gD−1Dg)j

mxm
g2=1

= (
(
D−1

)T
)j
mxm = (D−1)mjxm

2.3 Normal coordinate systems

Lemma 1. For every symmetric n×n matrix M j
k = Mk

j that has an inverse, there exists a transfor-
mation D such thata

M̃ j
k = (DTMD)jk = m(j)δ

j
k.

That is to say, there exists a transformation that diagonalizes M .
aWhen a sub- or superscript is in parentheses, no summation is implied.

Proof. This is called the spectral decomposition theorem, and is proven elsewhere.
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Corollary 1. Let gjk be a metric on Rn. There exists a coordinate transformation D such thata

g̃jk = λ(j)δjk

aHere, for whatever reason, the Kronecker delta is the Euclidean one.

Proof. g can be considered a real symmetric matrix; by Lemma 1, it can be diagonalized in this form.

Theorem 1. There exists a coordinate transformation D that diagonalizes g such that

g̃ =



1
. . .

1
−1

. . .
−1


with m elements of +1 and n−m elements of −1, where 0 ≤ m ≤ n.

Proof. From Corollary 1, we can write ...

Definition 1. Normed coordinate systems. Basis sets in which the metric has the form of Theorem 1
are called normed coordinate systems. The number m is characteristic of the space; this is sometimes
called Sylvester’s Rigidity Theorem.

Example 1. Normed Euclidean space. Let m = n. Then

g =

1
. . .

1


and we see

gjk = δjk.

Rn endowed with this metric is called n−dim Euclidean Space, En. The normal coordinate systems
are called Cartesian. In the space En, we have xj = gjkx

k = δjkx
k = xj . In this case, positive

semi-definiteness holds, and so also the Pythagorean Theorem.

Example 2. Normed Minkowski space. Let m = 1; (n ≥ 2). Then

g =


1
−1

. . .
−1


Rn endowed with this metric is called Minkowski space, Mn. The normal coordinate systems are called
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inertial frames. In the space Mn, we have x1 = x1 and xj = −xj for j = 2, . . . , n. In physics we label
x =

(
x0, x1, x2, x3

)
with x0 = x0 = ct where t is called time and

(
x1, x2, x3

)
is called space. c is a

characteristic velocity, namely the speed of light in vacuum.

2.4 Normal coordinate transformations

Definition 1. Normal coordinate transformation. A normal coordinate transformation is one that
transforms a normal coordinate system into another normal coordinate system. That is,

g =
(
D−1

)T
gD−1 ,

from which it follows
g = DT gD .

Example 1. For En, these transformations are called orthogonal and are a subset of unitary transfor-
mations:

g = 1n =
(
D−1

)T
1nD

−1 =
(
D−1

)T
D−1

=⇒ DT = D−1

Example 2. For M4, these transformations are called Lorentz transformations.

Lemma 1.
(i) If D is a normal transformation, then so is D−1

(ii) If D1, D2 are normal transformations, then so is the successive transformation D1D2.

Proof. Problem 7

Theorem 1. The set of normal transformations forms a group (not necessarily abelian) under matrix
multiplication.

Proof. Problem 7

Example 3. In En, the group of normal transformations is called the orthogonal group O (n).

Example 4. In Mn, the group of normal transformations is called the pseudo-orthogonal group
O (1, n− 1).

Proposition 1. Let D be a normal coordinate transformation. Then

detD = ±1
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Proof. From Definition 1, det g = det
(
DT gD

)
= det g(detD)

2
=⇒ detD = ±1.

3 Tensor Fields

3.1 The concept of a tensor field
Let V be Rn endowed with metric tensor g, and let D be a normal coordinate transformation (say, from
coordinate system CS to C̃S). That is, transformed coordinates take the form x̃j = Dj

kx
k.

Definition 1. (Pseudo-)tensor fields. ∀x ∈ V , consider assigning a rank-N tensor tj1···jN (x) to
x. The set of assigned tensors,a

{
tj1···jN (x) ;x ∈ V

}
, is called a tensor field iff, under a coordinate

transformation,
t̃j1···jN (x) = Dj1

k1 · · ·DjN
kN t

j1···jN (x)

and is called a pseudo-tensor field iff, under a coordinate transformation,

t̃j1···jN (x) = (detD)Dj1
k1 · · ·DjN

kN t
j1···jN (x)

aA tensor field t can be considered a tensor-valued function with domain V . That is, t : V → V N .

Example 1. Is the Levi-Civita tensor a tensor or pseudo-tensor? Recall that by Example 1, the
Levi-Civita is independent of x; that is,a

ε̃jkl := ε
(
ẽj , ẽk, ẽl

)
= ε

(
ej , ek, el

)
= εjkl.

Let D be a normal coordinate transformation. Thenb

Dj
αD

k
βD

l
γε
αβγ =

∑
π∈S3

sgn (π)Dj
π(1)D

k
π(2)D

l
π(3)

=

∣∣∣∣∣∣
Dj

1 Dj
2 Dj

3

Dk
1 Dk

2 Dk
3

Dl
1 Dl

2 Dl
3

∣∣∣∣∣∣
= sgn

(
j k l
1 2 3

)
detD = εjkl detD

= εjkl
1

detD
= ε̃jkl

1

detD
.

As per Definition 1, the Levi-Civita tensor constitutes a pseudo-tensor field:

ε̃jkl = (detD)Dj
αD

k
βD

l
γε
αβγ

aThis is the only justification I could come up with for this equation. I am not sure if the middle two parts of this
equation are the reason you can say this.

bA few remarks on the notation used here:
• S3 denotes the “symmetric group on 3 letters”, and represents the set of possible permutations of the set {1, 2, 3}.

Thus, π ∈ S3 means π is some permutation of the numbers {1, 2, 3} such as 312, and
∑
π∈S3

(· · · ) represents a sum

over all possible permutations of {1, 2, 3}.
• sgn (π) represents the “sign” of the permutation; if it is an even permutation, sgn (π) = 1, and if an odd permutation,

sgn (π) = −1.
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• π (1) is the first number in the permutation, π (2) is the second, etc. That is, if the permutation is 312, π (1) = 3,
π (2) = 1, etc.

• We can represent a permutation, say 312, with the notation
(

1 2 3
π (1) π (2) π (3)

)
=

(
1 2 3
3 1 2

)
. The order of

the columns doesn’t matter:
(

1 2 3
3 1 2

)
=

(
2 3 1
1 2 3

)
. However, the bottom row always represents π (1), π (2),

etc.

3.2 Gradient, curl, divergence
Let f (x) be a scalar-valued function f : V → R (that is, a scalar field).

Claim 1. Let D be a coordinate transformation. Then

(
D−1

)
j
k =

∂xj

∂x̃k

Proof. Take the partial derivative of xj =
(
D−1

)
j
kx̃

k with respect to x̃k.

Definition 1. Gradient. The gradient of f , denoted (∇f) (x) or (grad f) (x), is the vector field
defined by componentsa

(∇f)j (x) :=
∂

∂xj
f (x)

which is often also writtenb

∂jf (x) :=
∂

∂xj
f (x) .

Analogously,c

∂jf (x) :=
∂

∂xj
f (x) .

aNote that when we begin discussing Minkowski space, the ∇ symbol will be reserved for Euclidean vectors.
bA subscript is used because, as we will prove, the gradient transforms covariantly.
cThe superscript reflects the fact that this derivative transforms contravariantly.

Proposition 1. The gradient of a scalar field transforms as a covariant vector:

∂̃j f̃ (x̃) =
(
D−1

)
k
j∂kf (x)

Proof. Let D be a coordinate transformation. Thena

∂̃j f̃ (x̃) =
∂

∂x̃j
f̃ (x̃) =

∂

∂x̃j
f (x)

=
∂xk

∂x̃j
∂

∂xk
f (x)

=
(
D−1

)
k
j∂kf (x) .
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aSince f is a scalar-valued function, f̃ (x̃) = f (x). The second line follows from the chain rule.

Definition 2. Curl. The curl of a vector field v (x), denoted (∇× v) (x) or (curl v) (x), is the vector
field whose jth component isa

(∇× v)
j

(x) := εjkl∂kvl (x)

aThe superscript reflects the fact that the curl transforms as a pseudovector.

Proposition 2. The curl of a vector field transforms as a pseudovector:

˜(∇× v)
j

(x̃) = (detD)Dj
k (∇× v)

k
(x)

Proof. Let D be a coordinate transformation. By Proposition 1 and Corollary 1 from § 2.2,

˜(∇× v)
j

(x̃) = ε̃jkl∂̃kṽl (x̃)

= ε̃jkl
(
D−1

)
m
k∂m

(
D−1

)
α
lvα (x)

= δjβ ε̃
βkl
(
D−1

)
m
k

(
D−1

)
α
l∂mvα (x)

= Dj
γ

(
D−1

)
γ
β ε̃
βkl
(
D−1

)
m
k

(
D−1

)
α
l︸ ︷︷ ︸

(detD)εγmα

∂mvα (x)

= (detD)Dj
γε
γmα∂mvα (x)

= (detD)Dj
γ (∇× v)

γ
(x)

Definition 3. Divergence. The divergence of a vector field v (x), denoted (∇ · v) (x) or (div v) (x),
is the scalar field defined by

(∇ · v) (x) := ∂jv
j (x)

Proposition 3. The divergence of a vector field transforms as a scalar:

(̃∇ · v) (x̃) = (∇ · v) (x)

Proof. By Proposition 1 and Proposition 3 from § 2.2,

(̃∇ · v) (x̃) = ∂̃j ṽ
j (x̃)

=
(
D−1

)
l
j∂lD

j
kv
k (x)

=
(
D−1

)
l
jD

j
k∂lv

k (x)

= δlk∂lv
k (x) = ∂kv

k (x)

= (∇ · v) (x)
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3.3 Tensor products and traces
We can generalize the concepts of the tensor product defined in Ch. 1 and the trace of a matrix.

Definition 1. (General) tensor product. Let s, t be tensors of ranks N and M , respectively. The
tensor product of s and t, denoted s⊗ t, is the rank N +M tensor defined by coordinates

(s⊗ t)j1···jN+M = sj1···jN tjN+1···jN+M

Proposition 1. The tensor product of two tensors or pseudotensors is tensor, while the tensor product
of a tensor with a pseudotensor is a pseudotensor.

Proof. Easy (apparently)

Definition 2. Contraction. Let t be a tensor or pseudotensor of rank N+2. We define the (1, 2)−trace
or (1, 2)−contraction of t as the rank N tensor or pseudotensor u with components

ul1···lN := gjkt
jkl1···lN = tjj

l1···lN = tj
j l1···lN .

Note that the 1st and 2nd indices were summed over; in general the (j, k)−contraction will instead sum
over the jth and kth indices, respectively.

Example 1. The curl of a vector field can be considered a (2, 4)− and (3, 5)−contraction of the rank
5 pseudotensor εjkl∂mvα (x).

3.4 Minkowski tensors
Consider M4; that is, R4 endowed with the Minkowski metric tensor g = (+,−,−,−).

Let Aµ ∈M4. We adopt the following conventions:

1. We will often refer to the entire vector as Aµ =
(
A0, A1, A2, A3

)
=:
(
A0,A

)
.8

2. In sums, lowercase Greek indices run over all four indices: µ = 0, 1, 2, 3.

3. Latin indices run over the three Euclidean components: j = 1, 2, 3.

In this notation, Aµ = gµνA
ν =

{
A0 µ = 0

−Aj µ = 1, 2, 3
. Furthermore, A :=

(
A1, A2, A3

)
can be considered a

Euclidean vector in the subspace of M4 spanned by {e1, e2, e3}.
Now consider a rank 2 tensor F . Analogous to the above conventions, we can write F in an array as

Fµν =


F 00 F 01 F 02 F 03

F 10 F 11 F 12 F 13

F 20 F 21 F 22 F 23

F 30 F 31 F 32 F 33


=

(
F 00 F 0j

F j0 F jk

)
8Note that we also label the first index with a 0 instead of a 1.
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where F 0j and F j0 can be considered vectors in the Euclidean subspace, and F jk can be considered a
Euclidean 2-tensor.9

Definition 1. Symmetric tensors. Fµν is called a symmetric tensor iff

Fµν = F νµ ,

from which it follows that F 0j = F j0.

Definition 2. Antisymmetric tensors. Fµν is called an antisymmetric tensor iff

Fµν = −F νµ ,

from which it follows that F jk is antisymmetric, F 0j = −F j0 and Fµµ = 0.

Lemma 1. Antisymmetric Euclidean 2-tensors are isomorphic to Euclidean pseudovectors.

Proof.

tjk = −tkj =⇒ t =

 0 v3 −v2

−v3 0 v1

v2 −v1 0


=⇒ tjk = εjklvl

Since t is a tensor and ε is a pseudotensor, v is a pseudovector.a

aFor some reason, Belitz writes the components of v with subscripts instead of superscripts. I think they should be
superscripts, though.

Proposition 1. Any antisymmetric 2-tensor in Minkowski space can be written

Fµν =

(
0 aj

−aj tjk

)

:=


0 a1 a2 a3

−a1 0 v3 −v2

−a2 −v3 0 v1

−a3 v2 −v1 0


where a is a Euclidean vector and v :=

(
v1, v2, v3

)
is a Euclidean pseudovector.

Proof. See Definition 2 and Lemma 1.

9I use a different notation that Belitz; in his notation, F 0j = F h and F j0 = F v .
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Example 1.

Fµν = Fµκgκν =

(
0 aj

−aj tjk

)(
1
−13

)
=

(
0 −aj
−aj −tjk

)

Follow an analogous procedure to compute

Fµν =

(
0 −aj
aj tjk

)

Fµ
ν =

(
0 aj

aj −tjk
)

Example 2. FµνFµν = 2
(
v2 − a2

)
. This is just a Minkowski scalar!



Chapter 2

Maxwell’s Equations

1 The variational principle of classical electrodynamics

1.1 The Maxwellian action
Axiom 1. Space and time are described by a four-dimensional Minkowski space with elements

xµ = (ctx,x) ,

where tx is called time, x is the position in space, and c is a characteristic velocity.

Remark 1. We adopt the conventions outlined in Ch. 1, § 3.4.

Axiom 2. Empty space (“vacuum”) supports a Minkowski vector field

Aµ (x)

called the electromagnetic 4-vector potential.

Definition 1. Electromagnetic field tensor. The antisymmetric 2-tensor field constructed from the
4-gradients of the electromagnetic 4-vector potential via

Fµν (x) := ∂µAν (x)− ∂νAµ (x)

is called the electromagnetic field tensor.

Remark 2. By Ch. 1, § 3.4, Fµν (x) can be represented in terms of a Euclidean vector field and a Euclidean
pseudovector field.

Axiom 3(a). The physical field configurations in vacuum are those that minimize the action

Svac := − 1

16π

ˆ
d4x Fµν (x)Fµν (x) ,

where d4x := cdt dx .

Remark 3. The coefficient 1
16π is dependent on the unit convention used. In this class we use CGS.

Remark 4. Classical electrodynamics is governed by a principle of least action, as is classical mechanics. How-
ever, in electrodynamics we need to find field configurations Aµ (x) that minimize the action; in mechanics,
we only had to find paths x (t).

16
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Remark 5. As per Example 2, FµνFµν is a (Minkowski) scalar; therefore the theory is invariant under Lorentz
transformations (but not Galilean).

Axiom 3(b). Matter is characterized (in part) by an M4 vector Jµ (x) that couples to Aµ (x) by the action

Sinteraction := −1

c

ˆ
d4x Jµ (x)Aµ (x) .

The field plus its interaction with a given Jµ (x) is described by the action

S = Svac + Sinteraction .

Remark 6. Jµ (x) is called the 4-current.

Remark 7. Jµ (x) is “god-given”. We do not include the feedback from the field on the matter. One needs
another action term to account for this.

Definition 2. Dual field tensor. The duala field tensor, denotedb F̃µν is defined as

F̃µν := εµναβFαβ ,

where εµναβ is the completely antisymmetric 4-tensor.
aNot “dual” as in the dual vector space; this is just the conventional name for this tensor.
bThis tilde is not implying any transformation; it is merely conventional.

Proposition 1.
∂µF̃

µν (x) = 0

Proof. Problem #12.

1.2 Euler-Lagrange equations for fields
Recall that in classical mechanics, for a system with f degrees of freedom, we had1

Lagrangian:
L = L (q1 (t) , . . . , qf (t) , q̇1 (t) , . . . , q̇f (t))

action: We varied q (t) and examined δS:

S =

ˆ
dt L (q (t) , q̇ (t))

extremals:

0
!
= δS =

ˆ
dt
∑
j

[
∂L

∂qj
δqj +

∂L

∂q̇j
δq̇j

]

=

ˆ
dt
∑
j

[
∂L

∂qj
− d

dt

∂L

∂q̇j

]
δqj

δqj arbitrary =⇒ 0 =
∂L

∂qj
− d

dt

∂L

∂q̇j

1In this section and elsewhere, the symbol !
= represents an equation we assert must be true as part of a proof (such as “we

must set δS = 0 to obtain extremals” → “δS !
= 0”).
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In field theory, we follow an analogous procedure to obtain the Euler-Lagrange equations. A scalar field
φ (x) = φ (x, t) can be considered a system with f → ∞ degrees of freedom by discretizing φ; to do so, we
identify φ (x1, t) := q1 (t), φ (x2, t) := q2 (t), etc. Imagine dividing space into cubes with the position vector
xj pointing to the jth such subdivision, then taking the limit that the number of cube subdivisions goes to
infinity.

We now need a “Lagrangian density” so that we can integrate over the volume elements. That is, we now
have

Lagrangian density:
L = L (φ (x, t) , ∂µφ (x, t)) ,

a function that depends on spatial gradients in addition to time derivatives.

Lagrangian: We obtain our Lagrangian by integrating over all space, such that2

L =

ˆ
dx L (φ (x, t) , ∂µφ (x, t)) .

action:

S = c

ˆ
dtL =

ˆ
dx0

ˆ
dx L (φ (x, t) , ∂µφ (x, t))

=

ˆ
d4xL (φ (x) , ∂µφ (x))

extremals: As before, we require

0
!
= δS =

ˆ
d4x

[
∂L

∂φ
δφ+

∂L

∂ (∂µφ)
δ (∂µφ)

]
=

ˆ
d4x

[
∂L

∂φ
− ∂µ

∂L

∂ (∂µφ)

]
δφ

δφ arbitrary =⇒ 0 =
∂L

∂φ
− ∂µ

∂L

∂ (∂µφ)
,

where the second line follows from integration by parts and discarding the boundary terms.

Thus, we obtain the Euler-Lagrange equations

∂µ
∂L

∂ (∂µφ)
=
∂L

∂φ
. (2.1)

Remark 1. These are the E-L equations for a scalar field, φ. See Problem #13 for a more detailed derivation,
in which the functional derivative of the action is used. For a functional S = S [φ (x)], the functional derivative
is defined (for vectors x, y) as

δS

δφ (x)
:= lim

ε→0

1

ε
(S [φ (y) + εδ (y − x)]− S [φ (y)])

Remark 2. This can be generalized to tensor fields; in fact, you just append indices to φ.

Remark 3. In general, L will depend on higher order gradients. Our action depends on gradients of Aµ (x)
by Axiom 3(b).

Remark 4. Our E-L equations for fields are PDEs, in contrast to mechanics where we only had coupled
ODEs!

2We use the notation dx to represent the volume element for R3 (in Cartesian coordinates, dx = dx dy dz.
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1.3 The field equations
From Axiom 3(b), the Maxwellian Lagrangian density is

L = − 1

16π
FµνF

µν − 1

c
JµAµ

= L (Aµ (x) , ∂νAµ (x)) .

Therefore, our Euler-Lagrange system of equations (Equation (2.1)) becomes

∂β
∂L

∂ (∂βAα (x))
=

∂L

∂ (Aα (x))
. (2.2)

Now, Fµν is defined in terms of gradients of Aµ only, so

∂L

∂ (Aα (x))
= −1

c

∂

∂ (Aα (x))
[Jµ (x)Aµ (x)]

= −1

c
Jα (x) . (2.3)

On the other side of the equation,

∂L

∂ (∂βAα (x))
= − 1

16π

∂

∂ (∂βAα)

[
Fµνg

κµgλνFκλ
]

= − 1

16π
gκµgλν

∂

∂ (∂βAα)
[(∂µAν − ∂νAµ) (∂κAλ − ∂λAκ)]

= − 1

16π
gκµgλν

[(
δβµδ

α
ν − δβν δαµ

)
(∂κAλ − ∂λAκ) +

(
δβκδ

α
λ − δ

β
λδ

α
κ

)
(∂µAν − ∂νAµ)

]
= − 1

16π

[(
gκβgλα − gκαgλβ

)
(∂κAλ − ∂λAκ) +

(
gβµgαν − gαµgβν

)
(∂µAν − ∂νAµ)

]
= − 1

16π

[(
∂βAα − ∂αAβ − ∂αAβ + ∂βAα

)
+
(
∂βAα − ∂αAβ − ∂αAβ + ∂βAα

)]
= − 1

16π

[
4
(
∂βAα − ∂αAβ

)]
= − 1

4π
F βα. (2.4)

Inserting Equations (2.3) and (2.4) into our Euler Lagrange Equation (2.2), we obtain

∂µF
µν (x) =

4π

c
Jν (x) . (2.5)

Remark 1. All physical fields must obey these four equations.

Remark 2. Since Fµν is defined in terms of Aµ, these equations are differential equations for Aµ, making Aµ
the “fundamental” physical object. Alternatively, we can augment Equations (2.5) by Proposition 1:

∂µε
µνκλFκλ (x) = 0 , (2.6)

which contains the structure of Fµν in terms of gradients of Aµ. We can then consider Equations (2.5) and
(2.6) to be field equations for Fµν , regarding Fµν as fundamental.

2 Conservation laws and gauge invariance

2.1 Continuity equation for the 4-current
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Proposition 1. The 4-current obeys the continuity equation:

∂µJ
µ (x) = 0 .

Proof. From § 1.3, Equation (2.5),

∂νJ
ν =

c

4π
∂ν∂µ︸ ︷︷ ︸
sym.

Fµν︸︷︷︸
a-sym.

= − c

4π
∂µ∂νF

νµ︸ ︷︷ ︸
relabel µ↔ν

= − c

4π
∂ν∂µF

µν = −∂νJν

=⇒ ∂νJ
ν = 0

Remark 1. The 4-vector Jµ =
(
J0,J

)
has a time-like component defined as J0 =: cρ and space-like compo-

nent defined as J =: j. That is,
Jµ =: (cρ, j) .

ρ is called electric charge density and j is called electric current density.

Remark 2. In terms of ρ and j, Proposition 1 takes the form c∂0ρ + ∂ij
i = 0. But ∂0 = ∂

∂(ct) = 1
c∂t and

∂i = ∂
∂xi =: ∇i; thus, the continuity equation is equivalent to

∂tρ (x, t) +∇ · j (x, t) = 0 . (2.7)

Remark 3. Integrate Equation (2.7) over a spatial volume V with surface boundary (V ):

∂t

ˆ
V

d3x ρ (x, t) = −
ˆ
V

d3x∇ · j (x, t) = −
ˆ

(V )

dS · j (x, t) .

Define

Q (t) :=

ˆ
V

d3x ρ (x, t)

to be the total charge within V . Then
dQ

dt
= −
ˆ

(V )

dS · j.

In words, the total charge within V can only change if there is a flux of charge current through the boundary
surface (V ), hence the name “continuity equation”.3

2.2 The energy-momentum tensor

Definition 1. Electromagnetic energy-momentum tensor. The tensor field Tµν (x), defined as

Tµν := − 1

4π
FµαF να +

1

16π
gµνFαβF

αβ ,

is called the electromagnetic energy-momentum tensor.

Remark 1. It is not obvious what this tensor has to do with energy and momentum for now; see Problem
#16 for some hints and LL for details.

3This “conservation of charge” is a result of our field equations. The field equations are in turn a result of the actions we
have postulated through axioms.
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Proposition 1.
(1) Tµν is symmetric; Tµν (x) = T νµ (x) .

(2) Tµν is traceless; Tµ
µ (x) = 0 .

Proof.
(1) We know the second term in the definition of Tµν is symmetric. For the first term,

FµαF να = gαβFµβgαγF
νγ = δβγF

µ
βF

νγ = F νβFµβ .

Thus the first term is symmetric and, in turn, Tµν is symmetric.

(2) −4πTµµ = FµαFµα − 1
4 g

µ
µ︸︷︷︸

δµµ=4

FαβF
αβ = 0

Remark 2. By Ch. 1, § 3.4, Tµν can be decomposed into T 00, Euclidean vector T 0j , plus symmetric Euclidean
tensor T jk.

2.3 The continuity equation for the energy-momentum tensor

Proposition 1. In the absence of matter (Jµ = 0), Tµν obeys

∂νTµ
ν (x) = 0.

Proof. From Definition 1,a

∂νTµ
ν =

1

4π

[
−∂νFµαF να +

1

4
∂νδ

ν
µFαβF

αβ

]
=

1

4π

[
− (∂νFµ

α)F να − Fµα∂νF να +
1

4
∂µFαβF

αβ

]
.

But by Equation (2.5), ∂νF να = 4π
c Jα = 0. Furthermore, the last term can be rewritten as follows:

Fαβ∂µF
αβ = gαγgβκF

γκ∂µg
αεgβνFεν = δνκδ

ε
γF

γκ∂µFεν = F εκ∂µFεκ

= (∂µFαβ)Fαβ

=⇒ ∂µFαβF
αβ = 2 (∂µFαβ)Fαβ .

=⇒ ∂νTµ
ν =

1

4π

[
− (∂νFµ

α)F να +
1

2
(∂µFαβ)Fαβ

]
.

By Problem #12 (see Belitz’s solution),

0 = ∂µFαβ + ∂αFβµ + ∂βFµα.
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=⇒ ∂νTµ
ν =

1

4π

[
− (∂νFµ

α)F να −
1

2
(∂αFβµ + ∂βFµα)Fαβ

]

=
1

4π

− (∂νFµα)F να +
1

2
(∂αFµβ)Fαβ︸ ︷︷ ︸
α→ν, β→α

+
1

2
(∂βFµα)F βα︸ ︷︷ ︸

β→ν

 .
=

1

4π

[
− (∂νFµα)F να +

1

2
(∂νFµα)F να +

1

2
(∂νFµα)F να

]
= 0

Note that in the third to last line we used the identity that, for any tensor contraction,

t(··· )α(··· )
α

(··· ) = t(··· )α
(··· )α(··· ).

That is, contracted indices can swap being upstairs or downstairs.
aIn the first line, we use the notational convention that ∂νFµαF να implies that the partial acts on everything to

the right; that is, ∂νFµαF να := ∂ν (FµαF να). If we wanted the partial only acting on Fµα, we would have to write
(∂νFµα)F να.

Remark 1. For any rank-(n+ 1) tensor field tµα1...αn (x), the continuity equation ∂µtµα1...αn = 0 implies a
conservation law for the rank-n tensor t0α1...αn (x) by the arguments from § 2.1. ∂µJµ = 0 is the case where
n = 0; the proposition above is the case where n = 1.

Corollary 1. In the presence of matter, the continuity equation gets modified to

∂νTµ
ν = −1

c
Fµ

νJν .

Proof. Problem #17.

2.4 Gauge invariance
Let χ (x) be an arbitrary scalar function of spacetime.

Definition 1. Gauge transformation. A transformation of the potential Aµ (x) according to

Aµ → Aµ − ∂µχ

is called a gauge transformation.

Proposition 1. The action from Axiom 3 is invariant under gauge transformations.

Proof. Fµν = ∂µAν − ∂νAµ → ∂µAν − ∂µ∂νχ − ∂νAµ + ∂ν∂µχ = ∂µAν − ∂νAµ = Fµν , so Svac is
invariant.

Sint = − 1
c

´
d4xJµA

µ → Sint −
1

c

ˆ
d4xJµ∂

µχ︸ ︷︷ ︸
integ. by parts

= Sint + 1
c

´
d4x(∂µJµ)︸ ︷︷ ︸

=0

χ = Sint, so Sint is invariant.

Therefore the total action is invariant.

Remark 1. The potential is not unique. This is a result of the fact that Fµν depends only on gradients of
Aµ.

Remark 2. We may choose a gauge transformation to enforce a particular condition on Aµ.
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Corollary 1. Aµ (x) can always be chosen (gauge transformed) such that

∂µA
µ = 0,

called the Lorenz gauge.

Proof. Choose χ (x) such that it solves the PDE ∂µ∂µχ = ∂µA
µ (Laplace’s equation).

=⇒ ∂µA
µ → ∂µA

µ − ∂µ∂µχ︸ ︷︷ ︸
=∂µAµ

= 0.

Remark 3. ∂µAµ is a Lorentz scalar, and so the Lorenz gauge is Lorentz invariant.

3 Electric and magnetic fields

3.1 The field tensor in terms of Euclidean vector fields
Since Fµν is an antisymmetric Minkowski tensor, from Ch. 1, § 3.4 we can write it in the form

Fµν =


0 Ex Ey Ez
−Ex 0 −Bz By
−Ey Bz 0 −Bx
−Ex −By Bx 0


=

(
0 E
−E Bjk

)

...with E (x) = (Ex (x) , Ey (x) , Ez (x)) a Euclidean vector field,

...and B (x) = (Bx (x) , By (x) , Bz (x)) a Euclidean pseudovector field.
Beware! There are some subtle notational details here. The above definition uses Landau & Lifshitz’s

notation. In terms of the numerical indices used throughout the rest of this text, these vector fields are

E = (Ex, Ey, Ez) :=
(
E1, E2, E3

)
= − (E1, E2, E3)

B = (Bx, By, Bz) :=
(
B1, B2, B3

)
= − (B1, B2, B3) .

One must be careful to not identify Ex with E1!

Definition 1. Electric and magnetic field; magnetic field tensor.
(a) E (x) is called electric field ; B (x) is called magnetic field.
(b) The antisymmetric Euclidean tensor

Bjk =

 0 −Bz By
Bz 0 −Bx
−By Bx 0

 = Bjk = −εjklBl

is called magnetic field tensor.

Remark 1. What about the contravariant components Fµν?
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Fµν = gµαgνβFαβ =


+
−
−
−


µ


+
−
−
−


ν

Fµν

=

(
0 −E
E Bjk = Bjk

)
From Ch. 1 § 3.4, we can write Aµ in the form

Aµ (x) = (φ (x) ,A (x)) ,

...with φ (x) := A0 (x) = A0 (x) a Euclidean scalar field,

...and A (x) =
(
A1 (x) , A2 (x) , A3 (x)

)
a Euclidean vector field.

Definition 2. Scalar and vector potential. φ (x) is called scalar potential, and A (x) is called vector
potential.

Remark 2. This is analogous to Jµ (x) = (cρ (x) , j (x)), with ρ the charge density and j the current density
(see § 2.1).

3.2 Maxwell’s equations
From § 1.3 Equation (2.6), we have

∂µε
µνκλFκλ = 0.

What are these in terms of E (x) and B (x)?

Proposition 1. The field equation
∂µε

µνκλFκλ = 0

is equivalent toa

∇ ·B = 0 (M1)

1

c
∂tB +∇×E = 0 (M2)

aBelitz refers to these as (1) and (2) instead of (M1) and (M2), respectively.

Proof.
ν = 0: Note that for, say, µ = 1, we obtain ∂1ε

10κλFκλ = −∂1F23 + ∂1F32 = −2∂1F23. Thus,

0 = 2 (−∂1F23 − ∂2F31 − ∂3F12) = 2(∂1Bx + ∂2By + ∂3Bz)︸ ︷︷ ︸
∇·B

=⇒ ∇ ·B = 0

ν = 1: Again, for a given choice of µ, the above simplification applies. Thus,

0 = 2 (∂0F23 − ∂2F03 + ∂3F02) = 2(−1

c
∂tBx−∂2Ez + ∂3Ey︸ ︷︷ ︸

−(∇×E)x

) =⇒ 1

c
∂tBx + (∇×E)x = 0

ν = 2, 3: Cyclically permute the ν = 1 case.
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Remark 1. These are the four homogeneous PDEs known as the first two Maxwell Equations.
Now consider, from § 1.3, the Euler-Lagrange equation (2.5):

∂µF
µν =

4π

c
Jν .

What are these in terms of E (x) and B (x)?

Proposition 2. The field equation

∂µF
µν =

4π

c
Jν

is equivalent to

∇ ·E = 4πρ (M3)

−1

c
∂tE +∇×B =

4π

c
j (M4)

Proof.
ν = 0: ∂0F

00︸ ︷︷ ︸
0

+ ∂jF
j0︸ ︷︷ ︸

∇·E

= 4π
c J0︸︷︷︸

cρ

=⇒ ∇ ·E = 4πρ

ν = 1: ∂0F
01 + ∂iF

i1 = 4π
c J

1 =⇒ −1
c∂tEx + ∂2Bz − ∂3By = − 1

c∂tEx + (∇×B)x = 4π
c jx.

ν = 2, 3: Cyclically permute the ν = 1 case.

Remark 2. Equations (M1)-(M4) are called Maxwell’s Equations. Their solutions determine physical field
equations for given charge and current densities.

Remark 3. Equations (M1)-(M4) are equivalent to Equations (2.6) and (2.5).

Remark 4. E and B are Euclidean vector fields, so the Lorentz invariance thereof is obscured.

Remark 5. Units: We use CGS (centimeter-gram-second) units, not SI units (see table below). At some
point when I have time I will write Maxwell’s equations in SI units here.

[unit] CGS SI

[charge] esu = g1/2 cm3/2 s−1 C

[ρ] g1/2 cm−3/2 s−1 Cm−3

[j] g1/2 cm−1/2 s−2 Cm−2 s−1

[E] g1/2 cm−1/2 s−1 NC−1

[B]
gauss = g1/2 cm1/2 s−1

= esu cm−2 NA−1 m−1

Table 2.1: Comparison of CGS and SI units.
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3.3 Discussion of Maxwell’s equations
Gauss’ Law

Consider a localized charge density ρ in a larger volume V with boundary surface (V ). Integrate (M3) over
V : ˆ

V

d3x∇ ·E (x, t) = 4π

ˆ

V

d3x ρ (x, t) .

If we define the total charge within V to be

Q (t) :=

ˆ

V

d3x ρ (x, t)

then by using this and the Divergence Theorem above, we obtain

ΦE :=

ˆ

(V )

dS ·E = 4πQ

In words, the flux of electric field through a closed surface is equal to the total charge contained therein.
Remark 1. This is called Gauss’ Law.

Remark 2. Electric charges are the sources of electric fields.

Magnetic field divergence

Integrate (M1) over V :

0 =

ˆ

V

d3x∇ ·B (x, t) .

Again, the Divergence Theorem yields

ΦB :=

ˆ

(V )

dS ·B = 0 .

In words, the flux of magnetic field through a closed surface is always zero.
Remark 3. The magnetic field has no sources; there are no magnetic monopoles.

Remark 4. In our Lorentz invariant formulation of 1, this comes from the asymmetry of the two field equations:

∂µF
µν =

4π

c
Jµ and ∂µF̃

µν = 0.

Faraday’s Law

Consider a surface S with boundary (S).
Integrate (M2) over S:

−1

c

ˆ

S

dS · ∂tB (x, t) =

ˆ

S

dS · (∇×E) (x, t) .

By Stokes’ Theorem,

−Φ̇B = c

˛

(S)

dl ·E

In words, the circulation of the electric field around a loop is proportional to the time rate of change of the
magnetic flux through a surface bounded by that loop.
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Remark 5. This is called Faraday’s Law of induction.

Remark 6. Consider a closed E−field line.
¸
dl ·E > 0 =⇒ Φ̇B < 0. So in a static B−field, there can be

no closed E−field lines!

Ampère-Maxwell Law

Integrate (M4) over S:
ˆ

S

dS · (∇×B) (x, t) =
4π

c

ˆ

S

dS · J (x, t) +
1

c

ˆ

S

dS · ∂tE (x, t) .

We define the total current to be

I (t) :=

ˆ

S

dS · J (x, t) .

Using Stokes’ Law once more yields

c

˛

(S)

dl ·B = 4πI + Φ̇E

In words, the circulation of the magnetic field around a loop is proportional to the sum of the total current
and the displacement current.

Remark 7. This is called the Ampère-Maxwell Law.

Remark 8. Currents induce B−fields, and vice versa.

Remark 9. For static fields, we have Ampère’s Law:

c

˛
dl ·B = 4πI.

The displacement current was later added by Maxwell.

3.4 Relations between fields and potentials

Claim 1. The electric and magnetic fields are related to the 4-potential by

E = −∇φ− 1

c
∂tA

B = ∇×A

Proof. From § 3.1,

Ej = −F 0j = −∂0Aj + ∂jA0 = −∂0A
j − ∂jA0 = −1

c
∂tA

j − ∂jφ.

We also determined

F12 = −B3 = ∂1A2 − ∂2A1 = (∇×A)3 = − (∇×A)
3
,

and cyclic for B2, B1.
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Remark 1. In general, both the scalar and vector potentials determine E.

Remark 2. As a safety check, lets try gauge transforming the relation for E:

Aµ → Aµ − ∂µχ =⇒

{
φ→ φ− 1

c∂tχ

A→ A +∇χ

=⇒ E → E +∇1

c
∂tχ−

1

c
∂t∇χ = E.

Thus, E is invariant.

Remark 3. B is also invariant under gauge transformations since ∇× (∇χ) = 0.

3.5 Charges in electromagnetic fields
So far, our attitude has been that the field equations determine E and B for given charges and currents.
What about the converse? For given fields, what is their influence on a point charge?

Let a point particle with charge e by at point y (t) with velocity ẏ (t) =: v (t) .

charge density · · · ρ (x, t) = eδ (x− y (t))

current density · · · j (x, t) = ρ (x, t)v (t)

4-current · · · Jµ = (cρ, j) , Jµ = (cρ,−j)

4-potential · · · Aµ = (φ,A)

By Axiom 3,

Sint = −1

c

ˆ
d4x Jµ (x)Aµ (x)

= −1

c

ˆ
dt

ˆ
dx cρ (x, t)φ (x, t) +

1

c

ˆ
dt

ˆ
dx j (x, t) ·A (x, t)

= −e
ˆ
dt φ (y, t) +

e

c

ˆ
dt v (t) ·A (y, t) .

Now consider the Lagrangian of the point particle, Lint = Lint (y, ẏ, t), which is related to Sint via Sint =´
dtLint (y, ẏ, t). Comparison with the above equation reveals

Lint (y, ẏ, t) = −eφ (y, t) +
e

c
v (t) ·A (y, t) .

Remark 1. These are the scalar and vector potentials from PHYS611 Ch2 1.3 Example 1!

Remark 2. Axiom 3 is consistent with our Mechanics axioms.

Remark 3. Lint must be augmented by the free particle Lagrangian L0. Since the field equations are Lorentz
invariant, we must pick L0 such that it is as well; we need the Einsteinian LE0 for consistency. However, the
Galilean LG0 works well enough if |v| � c.
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Remark 4. The momentum of the particle is p = ∂L0

∂v (not ∂L
∂v ; see PHYS611 Ch2 1.4), and Newton’s 2nd

Law takes the form (from PHYS611):

d

dt
p = F = F (1) + F (2)

= −∇ eφ︸︷︷︸
U

− (∂t − v×)
(e
c
A
)

︸ ︷︷ ︸
V

= e(−∇φ− 1

c
∂tA︸ ︷︷ ︸

E

) +
e

c
v × (∇×A︸ ︷︷ ︸

B

)

=⇒ d

dt
p = F = eE +

e

c
v ×B

which is the electric force plus the Lorentz force! In conclusion, all of this is consistent with what we did in
Mechanics.

3.6 Poynting’s theorem
Consider the continuity equation for the energy-momentum tensor

∂νT
µν = −1

c
FµνJν

from § 2.3 for µ = 0:4

T 00 = − 1

8π

[
2F 0αF 0

α −
1

2
FαβF

αβ

]
= − 1

8π

[
2E2 −

(
E2 −B2

)]
= − 1

8π

(
E2 + B2

)
;

T 01 = − 1

4π
F 0αF 1

α + 0 = − 1

4π
F 0jF 1

j = − 1

4π
(EyBz − EzBy) = − 1

4π
(E ×B)

1
,

and cyclic.

=⇒ ∂νT
0ν =

1

c
∂t

[
− 1

8π

(
E2 + B2

)]
+∇ ·

(
− 1

4π
E ×B

)
= − F 0νJν = −F 0jJj = E · j.

We summarize this with some new definitions as follows.

Claim 1. Poynting’s theorem. Define the energy density of the fields u (x, t) as

u :=
1

8π

(
E2 + B2

)
,

and define the energy current density (or Poynting vector) P (x, t) as

P :=
c

4π
E ×B .

Then
∂tu+∇ · P = −E · j

4Recall that Tµν := − 1
4π
FµαF να + 1

16π
gµνFαβF

αβ from § 2.2, and FαβFαβ = 2
(
E2 −B2

)
from Ch. 1 § 3.4.
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Proof. Follows directly from the above discussion.

Remark 1. For j = 0, this expresses local energy conservation. It is analogous to § 2.1 with ρ→ u, j → P .

Remark 2. Recall from § 3.5 that since F = eE + e
cv×B, the work per unit time (power) done by the fields

on a charge e is v · F = ev ·E. This implies

j ·E =
(ev
V

)
·E =

v · F
V

is the work per unit time and volume, or power density. So for j = 0, Poynting’s theorem still expresses
energy conservation. In words,

(energy change) = − (energy transported by the energy current)
− (work done by the field on the charges)

Remark 3. We still need to show that u (x, t) can be sensibly interpreted as the energy density of the field.
Let j (x, t) be the current density due to just one particle, as in § 3.5 (for many particles, we just sum

over them). Integrating, ˆ
dx j ·E =

ˆ
dx [E (x, t)] · [evδ (x− y)] = ev ·E (y) ,

where y is the position of the particle.
Consider a non-relativistic particle:

Ekin =
m

2
v2

=⇒ d

dt
Ekin = mv · dv

dt
= v · d

dt
p︸︷︷︸

=eE

= ev ·E,

where the last step follows from § 3.5. Now, integrating Poynting’s theorem over all space,

d

dt

ˆ
dx u (x, t) +

ˆ
dx∇ · P (x, t)︸ ︷︷ ︸

=
´
dS·P=0

(since P→0 at ∞)

= −
ˆ
dx j ·E = −ev ·E = − d

dt
Ekin.

Defining the integral of u as

U (t) :=

ˆ
dx u (x, t) ,

we see that
d

dt
(U + Ekin) = 0.

U must be the field energy, since the energy of the particle plus the energy of the field must be conserved.
Hence, u is the energy density of the field.

Remark 4. If we integrated over a finite volume, the energy may change due to an energy current across the
volume boundary, and we see that, in general,ˆ

dx∇ · P (x, t) 6= 0.

Thus, P should be interpreted as the energy current density of the field.

Remark 5. The remaining components of the continuity equation from § 2.3,

∂νT
jν = −1

c
F jνJν

express the fact that the energy current density is also conserved.
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4 Lorentz transformations of the fields

4.1 Physical interpretation of a Lorentz boost

Consider two inertial frames, CS and C̃S.
Let C̃S move with respect to CS with a constant velocity V = (V, 0, 0) .

From Problems #8, 10, the transformation from CS to C̃S is accomplished by a Lorentz boost:

ct̃ = ct coshφ+ x sinhφ,

x̃ = ct sinhφ+ x coshφ.

Consider the origin of C̃S as viewed by CS. Then x̃ = 0, and5

x coshφ = −ct sinhφ,

=⇒ V =
x

t
= −c tanhφ.

=⇒ sinhφ =
tanhφ√

1− tanh2 φ
=

V/c√
1− (V/c)

2
, coshφ =

√
1 + sinh2 φ =

1√
1− (V/c)

2
.

Remark 1. First, observe that when c→∞, we recover the Galileo transformation

x̃ = x+ V t, t̃ = t.

Let us define the above quantities:

β :=
V

c
, γ :=

1√
1− β2

=⇒ coshφ = γ , sinhφ = βγ .

With these results, the Lorentz boost can be written

Dµ
ν =


coshφ sinhφ
sinhφ coshφ

1
1

 =


γ βγ
βγ γ

1
1


4.2 Transformations of E and B under a Lorentz boost
Consider the field tensor Fµν in CS. The field transformed field tensor6 F̃µν in C̃S is

F̃µν = Dµ
αD

ν
βF

αβ and x̃µ = Dµ
νx

ν .

5I think there’s a sign error here.
6NOT the dual field tensor
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Now let Dµ
ν be a Lorentz boost. Then, from § 3.1 we have

F̃µν =
(
DFDT

)µν
=


γ βγ
βγ γ

1
1




0 −Ex −Ey −Ez
Ex 0 −Bz By
Ey Bz 0 −Bx
Ez −By Bx 0



γ βγ
βγ γ

1
1



=


Exβγ −Exγ (−Ey −Bzβ) γ (−Ez +Byβ) γ
Exγ −Exβγ (−Eyβ −Bz) γ (−Ezβ +By) γ
Ey Bz 0 −Bx
Ez −By Bx 0



γ βγ
βγ γ

1
1



=


0 −Ex − (Ey +Bzβ) γ − (Eyβ +Bz) γ
Ex 0 − (Ez −Byβ) γ − (Ezβ −By) γ

(Ey +Bzβ) γ (Eyβ +Bz) γ 0 −Bx
(Ez −Byβ) γ (Ezβ −By) γ Bx 0



=:


0 −Ẽx −Ẽy −Ẽz
Ẽx 0 −B̃z B̃y
Ẽy B̃z 0 −B̃x
Ẽz −B̃y B̃x 0


Thus,

Ẽ →


Ẽx = Ex

Ẽy = Ey coshφ+Bz sinhφ = (Ey +Bzβ) γ

Ẽz = Ez coshφ−By sinhφ = (Ez −Byβ) γ

B̃ →


B̃x = Bx

B̃y = By coshφ− Ez sinhφ = (By − Ezβ) γ

B̃z = Bz coshφ+ Ey sinhφ = (Bz + Eyβ) γ

(2.8)

Remark 1. The field equations were formulated in terms of Minkowski tensors; their Lorentz invariance is
guaranteed. Equations (2.8) reflect this same Lorentz invariance of Maxwell’s equations, which are equivalent
to the field equations.

Remark 2. Let V � c, and keep terms to O
(
V
c

)
.

=⇒ coshφ ≈ 1, sinhφ ≈ V

c

=⇒ Ẽ ≈ E −
(
V

c

)
×B +O

((
V

c

)2
)
, B̃ ≈ B +

(
V

c

)
×E +O

((
V

c

)2
)
.

Remark 3. Let E = 0, so there is no E−field in CS.

=⇒ Ẽ ≈ −
(
V

c

)
×B;

we see that in C̃S there is an E−field so long as B 6= 0!

4.3 Lorentz invariants
From the field tensor Fµν we can form the following Lorentz scalar fields:7

I(1) := −1

2
FµνFµν , I(2) :=

1

8
εαβµνFαβFµν .

7Belitz calls them scalars, but I think they are scalar fields.
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Remark 1.

I(1) is a scalar field =⇒ Ĩ(1) = I(1) in all inertial frames.
I(2) is a pseudoscalar field =⇒

∣∣∣Ĩ(2)
∣∣∣ =

∣∣∣I(2)
∣∣∣ in all inertial frames.

The absolute value signs are necessary since Ĩ(2) = (detD) I(2).

Claim 1. I(1) = E2 −B2

Proof. I(1) = − 1
2

(
0 −E
E Bjk

)(
0 E
−E Bjk

)
= E2 − 1

2B
jkBjk. Buta

1

2
BjkBjk =

1

2
εjklBlεjkmBm =

1

2

 δkk︸︷︷︸
3

δlm − δkmδlk︸ ︷︷ ︸
δlm

BlBm = B2

=⇒ I(1) = E2 −B2

aNote that when we write E2, we mean E2
x + E2

y + E2
z . Also, upper and lower indices don’t matter in what follows

(Euclidean).

Claim 2. I(2) = −E ·B

Proof.

I(2) =
1

8

[
ε0123F01F23 + ε0132F01F32

+ε0213F02F13 + ε0231F02F31

+ε0312F03F12 + ε0321F03F21

+ (4× 6 = 24 other terms)]

=
1

4

[
ε0123F01F23 + ε0213F02F13 + ε0312F03F12

+ (12 other terms)]

=
1

4
[−ExBx − EyBy − EzBz]× 4 = −E ·B

Proposition 1. The field combinations I(1) and I(2) are invariant under (proper) Lorentz transforma-
tions; i.e., their absolute values have the same values in all inertial frames.

Proof. See above.

Remark 2. If E ⊥ B in some inertial frame, then E ⊥ B in all other inertial frames

Remark 3. Ditto if E2 = B2 in some frame.
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5 The superposition principle of Maxwell theory

5.1 Real solutions

Proposition 1. Let ρ(α) (x), j(α) (x), with α = 1, 2, be two charge and current densities. Let E(α) (x),
B(α) (x) be solutions of Maxwell’s equations for ρ(α), j(α), and let λ(α) ∈ R. Then

E = λ(1)E(1) + λ(2)E(2),

B = λ(1)B(1) + λ(2)B(2)

are solutions for

ρ = λ(1)ρ(1) + λ(2)ρ(2),

j = λ(1)j(1) + λ(2)j(2).

Proof. ∇ ·E − 4πρ = ∇ ·E(1) − 4πρ(1)︸ ︷︷ ︸
=0

+∇ ·E(2) − 4πρ(2)︸ ︷︷ ︸
=0

= 0, etc.

Remark 1. This is obviously true since the theory is linear!

Remark 2. If the action contained terms of higher than second order in Fµν , this would not be true.

Remark 3. A field theory that leads to linear field equations is called Gaussian or free.

Corollary 1. Let E(k) (x), B(k) (x) be solutions for ρ(k) (x), j(k) (x), where k ∈ R, and let λ (k) : R→ R
be sufficiently well behaved. Then

E (x) =

ˆ
dk λ (k)E(k) (x) ,

B (x) =

ˆ
dk λ (k)B(k) (x)

are solutions for

ρ (x) =

ˆ
dk λ (k) ρ(k) (x) ,

j (x) =

ˆ
dk λ (k) j(k) (x) .

Proof. Generalize Proposition 1 to α = 1, . . . , N and let N →∞.

Remark 4. This can easily be generalized to E(k) (x), where k ∈ R3.

Corollary 2. The most general solution of Maxwell’s equations is obtained as

E (x) = E(0) (x) + E(p) (x) ,

B (x) = B(0) (x) + B(p) (x)

where E(0), B(0) are the most general solutions of the homogeneous equationsa and E(p), B(p) is a
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particular solution in the presence of ρ, j.
aThat is, when ρ = 0, j = 0.

Proof. Let E, B be any solution for ρ, j, and let E(p), B(p) be a particular solution.
By Proposition 1,

E(0) := E −E(p),

B(0) := B −B(p)

are solutions for ρ = 0 = j.
Conversely, if E(0), B(0) is a solution for ρ = 0 = j, and E(p), B(p) is some solution for ρ, j, then

E = E(0) + E(p),

B = B(0) + B(p)

is a solution for ρ, j.

5.2 Complex solutions
All physical solutions to Maxwell’s equations must consist of real fields E, B. However, it is sometimes
convenient to find complex solutions and take the real part afterwards.

Proposition 1. Let E, B be complex solutions for complex sources ρ, j. Then E∗, B∗ are solutions
for ρ∗, j∗.

Proof.
∇ ·E = 4πρ =⇒ ∇ · (Re E) + i∇ · (Im E) = 4π (Re ρ) + i4π (Im ρ)

=⇒ ∇ · (Re E) = 4π (Re ρ)

=⇒ ∇ · (Im E) = 4π (Im ρ)

=⇒ ∇ · (Re E − iIm E) = 4π (Re ρ− iIm ρ) =⇒ ∇ ·E∗ = 4πρ∗,

etc. for the other Maxwell equations.

Remark 1. This, again, is because of linearity.

Corollary 1. Let E, B be complex solutions for real (i.e. physical) sources ρ, j. Then Re E, Re B
are also solutions for ρ, j.

Proof. From Corollary (?), Re E, Re B are solutions for Re ρ = ρ, Re j = j.

Remark 2. In this case, Im E, Im B are solutions in the absence of sources (since Im ρ = 0, Im j = 0).
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Static solutions of Maxwell’s equations

1 Poisson’s equations

1.1 Electrostatics
Consider Maxwell’s equations for static fields:

(M2) → ∇×E = 0

(M3) → ∇ ·E = 4πρ.

(M1) → ∇ ·B = 0

(M4) → ∇×B =
4π

c
j

Remark 1. (M2) and (M3) now contain E only! (M1) and (M4) now contain B only! For static fields, E
and B decouple!

Remark 2. From Ch. 2 § 3.4, a static E−field is determined by φ alone:

E = −∇φ ,

and (M2) is thus automatically satisfied, since (∇×E)i = − (∇×∇φ)i = 0.

Proposition 1. The electrostatic potential φ (x) obeys Poisson’s equations for ρ (x):

∇2φ = −4πρ ,

where ∇2 := ∂j∂
j =: ∆ is the Laplace operator.

Corollary 1. In vacuum, φ (x) obeys the Laplace equation:

∇2φ = 0 .

Remark 3. Solutions of Laplace’s equation are called harmonic functions.

Remark 4. φ (x) = const., x, y, z2 − 1
2

(
x2 + y2

)
are all harmonic functions.

Remark 5. A harmonic function can have no extrema except at infinity; this is a theorem in analysis.

36



CHAPTER 3. STATIC SOLUTIONS OF MAXWELL’S EQUATIONS 37

1.2 Magnetostatics
From Ch. 2, § 3.4, B = ∇×A.
Remark 1. This is always true!

Remark 2. (M1) is automatically fulfilled, since ∇ · ∇ ×A = 0.

Proposition 1. The static Euclidean vector potential A (x) obeys

∇2A = −4π

c
j ,

where j = j (x).

Proof.

(∇×∇×A)i = εijk∂jεklm∂lAm = εkijεklm∂j∂lAm = (δilδjm − δimδjl) ∂j∂lAm
= −∂j∂jAi + ∂i∂jAj

= −∇2Ai + ∂i (∇ ·A) .

But by Problem #19, we can always choose the Coulumb gauge to make ∇ ·A = 0.

=⇒ 4π

c
j = ∇×B = ∇×∇×A = −∇2A.

Remark 3. Combining Propositions 1 and 1, we see that the components of the static electromagnetic poten-
tial obey Poisson’s equation with − 4π

c times the components (cρ, j) of the 4-current as the inhomogeneity.

Remark 4. Poisson’s equation is linear; thus, the most general solution is a particular solution plus the most
general solution of Laplace’s equation (see Ch. 2 § 5.1 Corollary 2).

Remark 5. From § 1.1 Remark 5, the only solution of Laplace’s equation that vanishes at infinity is the zero
solution; in an infinite system, there is only one physical solution of Poisson’s equation.

Remark 6. Things get more complicated in a finite system with boundary conditions.

2 Digression: Fourier transforms and generalized functions

2.1 The Fourier transform in classical analysis
Let f : Rn → C be a complex-valued function of n real arguments that is absolutely integrable:

ˆ
dx |f (x)| <∞.

Remark 1. The space of these functions, denoted γ(1), forms a vector space over C under addition of functions.
Notation:
x = (x1, . . . , xn) ∈ Rn,´
dx =

´
Rn
dx1 · · · dxn,

k · x = k1x1 + · · ·+ knxn (k ∈ Rn) .
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Definition 1. Fourier transform. The Fourier transform of f (x) is defined as

f̂ (k) :=

ˆ
dx e−ik·xf (x) =: F [f (x)] (k)

Remark 2. f̂ : Rn → C is another complex-valued function of Rn.

Remark 3. The Fourier transform is a linear integral transform.

Remark 4. F [λ1f1 + λ2f2] = λ1F [f1] + λ2F [f2] ∀λ1,2 ∈ C due to this linearity.

Proposition 1. f̂ (k) is bounded and continuous.

Proof. To show that f̂ is bounded,∣∣∣f̂ (k)
∣∣∣ =

∣∣∣∣ˆ dx e−ik·xf (x)

∣∣∣∣ ≤ ˆ dx
∣∣e−ik·xf (x)

∣∣ =

ˆ
dx |f (x)| <∞,

where we have used the triangle inequality.
To show that f̂ is continuous,∣∣∣f̂ (k1)− f̂ (k2)

∣∣∣ =

∣∣∣∣ˆ dx
(
e−ik1·x − e−ik2·x

)
f (x)

∣∣∣∣ ≤ ˆ dx
∣∣e−ik1·x − e−ik2·x

∣∣ |f (x)|

→ 0 for k1 → k2,

where, again, we have used the triangle inequality.

Proposition 2. Let xlf (x) be absolutely integrable. Then f̂ (k) is differentiable with respect to kl and

∂

∂kl
f̂ (k) = F [−ixlf ] (k) .

Proof. ∂
∂kl

f̂ (k) = ∂
∂kl

´
dxe−ik·xf (x) = −i

´
dxe−ik·xxlf (x) = F [−ixlf ] (k). Note that we needed to

stipulate that xlf (x) was absolutely integrable to proceed with the last step.

Proposition 3. Let f (x) be differentiable with respect to xl, and let ∂
∂xl

f be absolutely integrable. Then

F [∂lf ] (k) = iklf̂ (k) .

Proof. For n = 1,
ˆ
dx e−ikx

d

dx
f (x) = e−ikxf (x)

∣∣∞
−∞︸ ︷︷ ︸

=0

−
ˆ
dx (−ik) e−ikxf (x) = ikf̂ (k) .
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Remark 5. The Fourier transform turns derivatives into products! Prospect: turn differential equations into
algebraic ones!

Remark 6. This also works for n > 1 and higher derivatives. For instance, for n = 3,

F
[
∇2f

]
(k) = −k2f̂ (k) .

Proposition 4.
F [f∗] (k) = (F [f ] (−k))

∗
.

Proof. F [f∗] (k) =
´
dxe−ik·xf∗ (x) =

(´
dxeik·xf (x)

)∗
=
(
f̂ (−k)

)∗
.

Theorem 1. Convolution theorem. Let f1, f2 be absolutely integrable, and let their convolution
f1 ? f2, defined as

(f1 ? f2) (y) :=

ˆ
dx f1 (y − x) f2 (x) ,

exist and be absolutely integrable. Then

F [f1 ? f2] (k) = f̂1 (k) f̂2 (k) .

Proof.

F [f1 ? f2] (k) =

ˆ
dy e−ik·y

ˆ
dx f1 (y − x) f2 (x)

=

ˆ
dx e−ik·x

ˆ
dy e−ik·(y−x)f1 (y − x) f2 (x)

=

ˆ
dx e−ik·xf2 (x)

ˆ
dze−ik·zf1 (z)

Remark 7. Convolutions in real space turn into products in Fourier space.

2.2 Inverse Fourier transforms
Let f1, f2 be absolutely integrable.

Lemma 1.
´
dx f1 (x)

(
f̂2 (x)

)∗
=
´
dy f̂1 (−y) (f2 (y))

∗
.



CHAPTER 3. STATIC SOLUTIONS OF MAXWELL’S EQUATIONS 40

Proof.
ˆ
dx f1 (x)

(
f̂2 (x)

)∗
=

ˆ
dx f1 (x)

(ˆ
dy e−ix·yf2 (y)

)∗
=

ˆ
dx f1 (x)

ˆ
dy eix·y (f2 (y))

∗

=

ˆ
dy (f2 (y))

∗
ˆ
dx f1 (x) eix·y︸ ︷︷ ︸

f̂1(−y)

=

ˆ
dy f̂1 (−y) (f2 (y))

∗

Theorem 1. Inverse Fourier transform. Let f (x) and f̂ (k) exist and be absolutely integrable.
Then the inverse Fourier transform is

f (x) =
1

(2π)
n

ˆ
dk eik·xf̂ (k) =: F−1

[
f̂
]

(x) .

Remark 1. This means F [F [f ]] = (2π)
n
f ; i.e., the Fourier transform is its own inverse apart from a factor

of (2π)
n.

Proof. Consider Lemma 1 with f1 = f , f2 (y) = e−αy
2

eiy·x, where α > 0.

=⇒ f̂2 (k) =

ˆ
dy e−ik·ye−αy

2

eix·y

=

ˆ
dy e−iy·(k−x)e−αy

2

=
(π
α

)n
2

e−
1
4α (k−x)2 ,

where the last step, that Fourier transform of a Gaussian is a Gaussian, is the result of Problem #27.
By the Lemma, ˆ

dy f̂ (−y) e−αy
2

e−iy·x︸ ︷︷ ︸
(f2(y))∗

=

ˆ
dk f (k)

(π
α

)n
2

e−
1
4α (x−k)2︸ ︷︷ ︸

(f̂2(k))
∗

.

Consider the limit as α→ 0.
On the left hand side,

lim
α→0

ˆ
dy f̂ (−y) e−αy

2

e−iy·x =

ˆ
dk f̂ (k) eik·x
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On the right hand side, by the Intermediate Value Theorem,

lim
α→0

ˆ
dk f (k)

(π
α

)n
2

e−
1
4α (x−k)2 = f (x) lim

α→0

(π
α

)n
2

ˆ
dk e−

1
4α (x−k)2

= f (x) lim
α→0

(π
α

)n
2

(ˆ
dk e−

1
4αk2

)n
= f (x) lim

α→0

(π
α

)n
2 (

2
√
a
)n (√

π
)n

= (2π)
n
f (x)

2.3 Test functions
problem: In classical analysis, very few functions are Fourier transformable, and even simple functions are

not Fourier transformable

solution: “Generalized functions” (sometimes called “distributions”)

In order to define generalized functions, we first consider function spaces in addition to γ(1).

Definition 1. Test functions. A function F : R→ C is called a test function iff

(i) F is differentiable arbitrarily many times, and

(ii) F and all of its derivatives go to zero faster than any powera |x| → ∞.

aThat is, limx→∞ xNF (n) (x) = 0 for all N,n ∈ N.

Example 1. F (x) = e−x
2

is a test function, So is xne−mx
2

for all m,n ∈ N.

Definition 2. Weakly increasing functions. A function φ : R → C is called a weakly increasing
function iff

(i) φ is differentiable arbitrarily many times, and

(ii) φ and all its derivatives do not grow faster than |x|N for |x| → ∞, where N ∈ N may depend on
the order of the derivative.

Example 2. Any polynomial is a weakly increasing function, but ex is not.

Remark 1. The derivative of a test function is a test function; so is the sum of two test functions, as well as
scalar multiples of test functions. Thus, the set of test functions forms a vector space; we call it γ.

Remark 2. Let F be a test function and let φ be a weakly increasing function. Then

G (x) := F (x)φ (x)

is a test function.

Now, test functions are all Fourier transformable since they are absolute-integrable (they die off at in-
finitely very fast). But is the Fourier transform of a test function also a test function?
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Proposition 1. If F (x) is a test function, then so is its Fourier transform, F̂ (k) :=
´
dxe−ikxF (x).

Proof. Consider the pth derivative of F̂ (k):

F̂ (p) (k) :=
dp

dkp
F̂ (k) = (−i)p

ˆ
dx xpF (x) e−ikx = (−i)p F [xpF (x)] (k)

By the two remarks above, xpF (x) is a test function, and so F [xpF (x)] (k) exists.∣∣∣F̂ (p) (k)
∣∣∣ =

∣∣∣∣ˆ dx xpF (x) e−ikx
∣∣∣∣

=

∣∣∣∣ˆ dx xpF (x)
1

−ik
d

dx
e−ikx

∣∣∣∣
Integrating by parts (the boundary term vanishes since F is a test function):

=⇒
∣∣∣F̂ (p) (k)

∣∣∣ =

∣∣∣∣ 1

−ik

ˆ
dx e−ikx

d

dx
(xpF (x))

∣∣∣∣ .
We can do this again to pile on more derivatives onto xpF (x) at the cost of a term 1

−ik . Doing this
N − 1 more times (where N ∈ N is arbitrary), we get

∣∣∣F̂ (p) (k)
∣∣∣ =

∣∣∣∣∣
(

1

−ik

)N ˆ
dx e−ikx

dN

dxN
(xpF (x))

∣∣∣∣∣ .
By the triangle inequality, this becomes

∣∣∣F̂ (p) (k)
∣∣∣ ≤ 1

|k|N

ˆ
dx

∣∣∣∣ dNdxN (xpF (x))

∣∣∣∣︸ ︷︷ ︸
<∞ since F∈γ

= O

(
1

|k|N

)
.

Since N can be made arbitrarily large,
∣∣∣F̂ (p) (k)

∣∣∣ falls off faster than any power. Thus, F̂ (p) (k) is a test
function.a

aSpecifically, F̂ (0) (k) = F̂ (k) is a test function, so the proposition is true.

Remark 3. The inverse Fourier transform is given by the theorem in § 2.2.

Proposition 2. Parseval’s equation. Let F1 (x) and F2 (x) be test functions, and let F̂1 (k) and
F̂2 (k) be their Fourier transforms. Then

ˆ
dk

2π
F̂1 (k) F̂2 (k) =

ˆ
dx F1 (x)F2 (−x) .

Proof.
´
dk
2π F̂1 (k) F̂2 (k) =

´
dk
2π

´
dxe−ikxF1 (x) F̂2 (k) =

´
dxF1 (x)

´
dk
2π F̂2 (k) e−ikx =

´
dxF1 (x)F2 (−x) .

2.4 Generalized functions

Definition 1. Regular sequences. Let n ∈ N, and let {fn (x)} be a sequence of test functions. The
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sequence is called regular iff

lim
n→∞

ˆ
dx fn (x)F (x) (3.1)

exists for all test functions F (x).

Remark 1. The integral exists for all n, so the only issue is whether the limit exists.

Example 1. Consider the sequence
{
e−

x2

n2

}
, where n ∈ N. This sequence is regular since limn→∞

´
dxe−

x2

n2 F (x) =´
dxF (x) for all F ∈ γ. For proof, see Problem #30.

Definition 2. Equivalence of regular sequences. Two regular sequences of test functions are called
equivalent iff their limits from Equation (3.1) are equal.

Example 2.
{
e−

x2

n4

}
is equivalent to

{
e−

x2

n2

}
; so is

{
e−

x2

n

}
.

Definition 3. Generalized functions, regularizations. The set of all equivalent regular sequences
{fn (x)} defines a generalized function (or distribution)a f (x), and we define the integral

ˆ
dx f (x)F (x) := lim

n→∞

ˆ
dx fn (x)F (x)

by the limit on the right hand side, which exists for all F ∈ γ and is the same for all of the equivalent
sequences.

Any of the equivalent sequences is called a regularization of the generalized function f (x).
aIn other words, if we let L ∈ C, then f (x) =

{
{fn (x)} : limn→∞

´
dx fn (x)F (x) = L

}
. (Note to reader: I am not

sure if this is correct, gotta double check)

Example 3.
{
e−

x2

n2

}
and its equivalent sequences define the generalized function f (x) = 1.

{
e−

x2

n2

}
is a regularization of f (x) = 1.

Remark 2. The properties of the generalized function f (x) = 1 coincide with those of the ordinary function.

Remark 3. Differentiation, addition, multiplication with weakly increasing functions, and Fourier transforms
of generalized functions can all be defined in terms of their regularizations; doing so yields generalized
functions. However, multiplication between two generalized functions can not be consistently defined.

Proposition 1. Let f (x) be a function (in the ordinary sense) such that there exists an N ∈ N such
that f(x)

(1+x2)N
is absolutely integrable.

Then one can construct sequences of test functions {fn (x)} such that limn→∞
´
dx fn (x)F (x) =´

dx f (x)F (x) for all test functions F (x).

Proof. See books (e.g., Lighthill Chapter 2.3).

Remark 4. This result says that a large class of ordinary functions can be considered generalized functions.
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Example 4. Consider the ordinary function sgn x := |x|
x . This function fulfills the premise of Propo-

sition 1 for N = 1. Thus, sgn x is a generalized function. One regularization is {tanh (nx)} (for proof
see Problem #31).

Remark 5. Such constructed generalized functions are called regular generalized functions. The derivative of
any regular generalized function exists, but in general it is not regular.

Example 5. d
dx sgn x exists as a generalized function, but it is not regular (see Problem #32).

Definition 4. Distribution limit. Let ft (x) be a generalized function for any value of the parameter
t, and let f (x) be another generalized function such that

lim
t→c

ˆ
dx ft (x)F (x) =

ˆ
dx f (x)F (x)

for all test functions F (x), where cmay be finite or infinite, and the set of parameters tmay be continuous
or discrete. Then we say

lim
t→c

ft (x) = f (x) .

Remark 6. This is sometimes called a distribution limit.

Example 6. limε→0 |x|ε sgn x = sgn x. See Problem #31(c) for more.

Example 7. Consider the test functions fn (x) that make up a regular sequence (in the sense of
Definition 1) to be generalized functions (math books say we can), and let f (x) be the generalized
function that is defined by this sequence and its equivalence class. Then

lim
n→∞

fn (x) = f (x) .

Proposition 2. Under the conditions of Definition 4, we have

(i) limt→c f
′
t (x) = f ′ (x)

(ii) limt→c ft (ax+ b) = f (ax+ b)

(iii) limt→c φ (x) ft (x) = φ (x) f (x) for any weakly increasing function φ (x).

Proof. Math books.

2.5 The δ−function

Definition 1. Dirac delta function. The generalized function δ (x) is defined as the set of equivalent
regular sequences (of test functions) for which

ˆ
dx δ (x)F (x) = lim

n→∞

ˆ
dx fn (x)F (x) = F (0) ∀F ∈ γ .
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Remark 1. There is no ordinary function that has this property.

Proposition 1. One regularization of δ (x) is the sequence defined by

fn (x) =

√
n

π
e−nx

2

(n ∈ N) .

Proof. First, note that fn are test functions, as required by Definition 3. Also note that
ˆ
dx fn (x) =

√
n

π

ˆ
dx e−nx

2

=
1√
π

ˆ
dx e−x

2

= 1.

=⇒
∣∣∣∣ˆ dx fn (x)F (x)− F (0)

∣∣∣∣ =

∣∣∣∣ˆ dx fn (x) (F (x)− F (0))

∣∣∣∣
≤
ˆ
dx fn (x) |F (x)− F (0)| =

ˆ
dx fn (x) |x|

∣∣∣∣F (x)− F (0)

x

∣∣∣∣
≤ (supF ′)

ˆ
dx |x| fn (x) = 2 (supF ′)

ˆ ∞
0

dx x

√
n

π
e−nx

2

=
2√
nπ

(supF ′)︸ ︷︷ ︸
const.

ˆ ∞
0

dx xe−x
2

︸ ︷︷ ︸
indep. of n

→ 0 for n→∞,

where the first inequality is the triangle inequality, and the second inequality comes from the fact that
F ′ is bounded, allowing us to pull out the (finite) supremum of F ′.

Proposition 2. The Fourier transform of δ (x) is

δ̂ (k) = 1 .

Proof. Consider the regularization fn (x) =
√

n
π e
−nx2

. From Problem #27, f̂n (k) = e−
k2

4n . But from
§ 2.4 Example 3, this is a regularization of the generalized function that is identically equal to 1.

Corollary 1. The δ−function can be written

δ (x) =

ˆ
dk

2π
eikx .

Proof. From the theorem from § 2.2,

δ (x) =

ˆ
dk

2π
eikxδ̂ (k) =

ˆ
dk

2π
eikx.
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Remark 2. This integral does not exist in classical analysis!

Proposition 3. Let φ (x) be a weakly increasing function.a Then

φ (x) δ (x) = φ (0) δ (x) .

aAs per § 2.3 Definition 2.

Proof.
´
dx δ (x)φ (x)F (x)︸ ︷︷ ︸

test fct.

= φ (0)F (0) = φ (0)
´
dx δ (x)F (x) ∀F ∈ γ..

Corollary 2. Let φ (x) be a weakly increasing function. Thena

ˆ
dx δ (x)φ (x) = φ (0) .

aThis result says we can now use the δ−function with weakly increasing functions!

Proof.
´
dx δ (x)φ (x) = φ (0)

´
dx δ (x) = φ (0) δ̂ (k = 0) = φ (0) .

Remark 3. This is consistent with δ̂ (k) =
´
dx e−ikxδ (x) = 1.

Remark 4. We can define even and odd generalized functions in analogy to the definitions for ordinary
functions:

Example 1. δ (x) = δ (−x) is even, since δ (−x) =
´
dk
2π e

−ikx =
´
dk
2π e

ikx = δ (x) . Accordingly,
δ′ (x) := d

dxδ (x) is odd.

Remark 5. The δ−function makes Fourier back transforms easy:
ˆ

dk

2π
f̂ (k) eikx =

ˆ
dk

2π
eikx
ˆ
dy e−ikyf (y) =

ˆ
dy δ (y − x) f (y) = f (x) .

We can now Fourier transform weakly increasing functions, not just absolutely integrable ones!

Proposition 4. The δ−function has the properties

(i) δ (ax) =
1

|a|
δ (x) ∀a ∈ R− {0} ,

(ii) f (x) δ (a− x) = f (a) δ (a− x) ,

(iii) δ (f (x)) =
∑
j

1

|f ′ (xj)|
δ (x− xj) ,

where the xj are all real zeros of f (x) and we assume they are simple and isolated.
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Proof.

(i)
ˆ
dx F (x) δ (ax) = sgn a

ˆ
dx

a
F
(x
a

)
δ (x) =

sgn a
a

F (0) =
1

|a|
F (0)

=
1

|a|

ˆ
dx F (x) δ (x) ∀F ∈ γ.

(ii)
ˆ
dx F (x) f (x) δ (x− a) =

ˆ
dx F (x+ a) f (x+ a) δ (x) = F (a) f (a)

=

ˆ
dx F (x) f (a) δ (a− x) ∀F ∈ γ.

(iii) Let f (x) =: y, =⇒ x = f−1 (y) , dy = f ′ (x) dx. Then

ˆ
dx F (x) δ (f (x)) =

∑
j

xj+εˆ

xj−ε

dx F (x) δ (f (x)) =

f(xj+ε)ˆ

f(xj−ε)

dy
F
(
x = f−1 (y)

)
|f ′ (x = f−1 (y))|

δ (y)

=
F (xj)

|f ′ (xj)|

=
∑
j

ˆ
dxF (x)

δ (x− xj)
|f ′ (xj)|

∀F ∈ γ

Example 2. δ
(
x2 − a2

)
= 1

2|a| [δ (x+ a) + δ (x− a)] .

3 Solutions of Poisson’s Equation

3.1 The general solution of Poisson’s equation

Proposition 1. Every Fourier transformable solution of Poisson’s equation is uniquely determined by
the inhomogeneity ρ via

φ (x) =

ˆ
dk

(2π)
3 e

ik·x 4π

k2 ρ̂ (k)

Proof. From § 1.1,a

∇2φ = −4πρ
F−→ −k2φ̂ (k) = −4πρ̂ (k)

=⇒ φ̂ (k) =
4π

k2 ρ̂ (k)
F−1

−→ φ (x) = F−1

[
4π

k2 ρ̂ (k)

]
(x) .

aHere and elsewhere, the symbol F−→ is used to indicate a Fourier transform is taken.

Remark 1. Thanks to the theory in § 2, the class of solutions that can be constructed in this way is much
larger than before, since weakly increasing functions are allowed.
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Remark 2. § 1.2 Remark 5 follows immediately:

∇2φ = 0 ⇐⇒ k2φ̂ (k) = 0

⇐⇒ φ̂ (k) = 0 ∀k 6= 0

⇐⇒ φ (x) = const.

Remark 3. All of this is consistent with § 1.2 Remark 4.

3.2 The Coulomb potential
What is the potential from one charge?

Consider a point charge: ρ (x) = eδ (x), where δ (x) := δ (x) δ (y) δ (z).

Theorem 1. The electrostatic potential resulting from a point charge is the Coulomb potential:a

φ (x) =
e

r
.

ar := |x|

Proof.
ρ̂ (k) = F [eδ (x)] (k) = e

=⇒ φ̂ (k) =
4π

k2 e
F−1

−→ φ (x) =
e

r

(For derivation of this inverse Fourier transform, see Problem #28).

Remark 1. We have now derived the Coulomb potential from a least action principle, whereas it was postu-
lated in PHYS 611.

Corollary 1. The electric field of a point charge is

E (x) = e
x

r3
.

Proof. E = −∇φ = −e∇ 1
r = −e

(
− 1

2
2x
r3

)
= e x

r3 .

Remark 2. The electric field of a point charge is purely radial and isotropic.

3.3 Poisson’s formula

Proposition 1. Let ρ (x) be a charge distribution whose Fourier transform exists. Then

φ (x) =

ˆ
dy

ρ (y)

|x− y|
.

This is known as Poisson’s formula.
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Proof. From § 3.1,

φ (x) = F−1

4π

k2 ρ̂ (k)︸ ︷︷ ︸


φ̂(k)

(x) .

We know that

F−1

[
4π

k2

]
(x) =

1

|x|
,

F−1 [ρ̂ (k)] (x) = ρ (x) .

From the convolution theorem from § 2.1,

φ (x) =

(
F−1

[
4π

k2

]
? F−1 [ρ̂ (k)]

)
(x)

=

ˆ
dy

1

|x− y|
ρ (y) .

Remark 1. For ρ (y) = eδ (y) , we get

φ (x) =

ˆ
dy

1

|x− y|︸ ︷︷ ︸
weakly
inc.

eδ (y) =
e

|x|
.

Remark 2. ∇x

(
1

|x−y|

)
= − (x−y)

|x−y|3

=⇒ E (x) =

ˆ
dy

x− y

|x− y|3
ρ (y) .

3.4 The field of a uniformly moving charge
Consider a charge e that moves with constant velocity with respect to an observer. Finding the fields are
potentials is much easier if one starts in the frame of the charge!

Let CS′ be the inertial frame in which the charge is at rest. From § 3.2,1

φ′ (x′) =
e

r′
,

and
A′µ = (φ′ (x′) , 0) .

Let CS be the inertial frame of the observer, and let v = (v, 0, 0). Then CS and CS′ are related by a
Lorentz boost; from Ch. 2 § 4.1,2

x′ = γ (x− vt)
y′ = y

z′ = z

1The primes are not derivatives!
2Recall that γ := 1√

1− v2
c2

.
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and, by boosting A′µ,

φ︸︷︷︸
A0

= γ φ′︸︷︷︸
A′0

= γ
e

r′
= γ

e√
x′2 + y′2 + z′2

= γ
e(

γ2 (x− vt)2
+ y2 + z2

) 1
2

=
e(

(x− vt)2
+
(
1− v2

c2

)
(y2 + z2)

) 1
2

.

This is the scalar potential due to the moving charge, which we can rewrite as

φ (x, t) =
e

R∗
, where R∗ :=

√
(x− vt)2

+

(
1− v2

c2

)
(y2 + z2) =

r′

γ
.

What about A?
A (x, t) = γ

v

c
φ′ =

v

c
φ (x, t)

=⇒ A =
v

c

e

R∗
.

We calculate the fields using the same procedure. In CS′, we have

E′ (x′) = e
x′

r′3
, B′ (x′) = 0.

We boost these, using the results from Ch. 2 § 4.2:

Ex = E′x =
ex′

(r′)
3 =

e

γ2

x− vt
(R∗)

3

Ey = γE′y = γ
ey′

(r′)
3 =

e

γ2

y

(R∗)
3

Ez =
e

γ2

z

(R∗)
3 .

Thus,

E =
e

γ2

R

(R∗)
3 , where R (x, t) := (x− vt, y, z) .

Note that R is the Galilean transformed x.
What about B? Again, from Ch. 2 § 4.2,

Bx = B′x = 0

By = −γ v
c
E′z = −v

c
Ez

Bz = γ
v

c
E′y =

v

c
Ey

=⇒ B (x, t) =
v

c
×E (x, t) .

Discussion of E (x, t):

Let θ be the angle between v and R.3

=⇒
√
y2 + z2

R
= sin θ =⇒ y2 + z2 = R2 sin2 θ

3Reminder: in this section and elsewhere, a bold letter represents a vector, and the unbolded letter represents the magnitude
of that vector: R vs. R := |R|.



CHAPTER 3. STATIC SOLUTIONS OF MAXWELL’S EQUATIONS 51

=⇒ (R∗)
2

= R2 − v2

c2
(
y2 + z2

)
= R2

(
1− v2

c2
sin2 θ

)

=⇒ E (x, t) =
e

γ2

R (x, t)

R3 (x, t)

1[
1− v2

c2 sin2 θ (t)
] 3

2

.

Thus, for a fixed distance R from the charge, E is minimized for θ = 0, π; i.e., in the direction of the motion.
The minimal value is

E‖ =
e

R2

(
1− v2

c2

)
.

We can maximize E by taking θ = ±π2 ; i.e., in the direction perpendicular to the motion. The maximal value
is

E⊥ =
e

R2

1√
1− v2

c2

.

The field is no longer isotropic, but squeezed in the direction of the motion.. This is a manifestation of the
Lorentz contraction.
Remark 1. We could have solved for the fields in this way: The 4-current in CS′ is

J ′µ =
(
ρ′ (x′) , j′ (x′)

)
, with ρ′ (x′) = eδ (x′) , j′ = 0.

Thus, the observer in CS sees

charge density: ρ (x, t) = γρ′ (x′, t′) = γeδ (γ (x− vt)) δ (y) δ (z) = eδ (R).

current density: j (x, t) = γ v
c cρ
′ = vρ = evδ (R).

Then we solve Maxwell’s equations for this time-dependent 4-current. This is equivalent, but much harder
to do!

3.5 Electrostatic interaction
Consider a time-independent charge density.

Proposition 1. The energy of the electric field produced by ρ = ρ (x) is

U =
1

2

ˆ
dx dy ρ (x) ρ (y)

1

|x− y|
.

Proof. From Ch. 2 § 3.6,

U =
1

8π

ˆ

V

dx E2 (x)

= − 1

8π

ˆ
dx E · ∇φ

= − 1

8π

ˆ
dx∇ (Eφ)︸ ︷︷ ︸´
ds·Eφ

→0 as V→∞

+
1

8π

ˆ
dx (∇ ·E)︸ ︷︷ ︸

4πρ

φ

=
1

2

ˆ
dx ρ (x)φ (x)

=
1

2

ˆ
dx dy ρ (x) ρ (y)

1

|x− y|
,
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where the last line follows from Poisson’s formula (§ 3.3)

Remark 1. Let ρ (x) be composed of N localized charge distributions:ρ (x) =
N∑
α=1

ρ(α) (x) .

=⇒ U =
1

2

∑
α,β

ˆ
dx dy ρ(α) (x)

1

|x− y|
ρ(β) (y)

=
∑
α

U (α) +
∑
α6=β

U (α,β),

where
U (α) :=

1

2

ˆ
dx dy ρ(α) (x)

1

|x− y|
ρ(α) (y)

is called the electrostatic self-energy of charge distribution α, and

U (α,β) := (1− δαβ)
1

2

ˆ
dx dy ρ(α) (x)

1

|x− y|
ρ(β) (y)

is called the electrostatic interaction energy of localized charge distributions α and β via the Coulomb inter-
action. As we shall see, the 1

|x−y| term in the self-energy is an issue.

Remark 2. Consider charged point particles: ρ(α) (x) = eαδ
(
x− x(α)

)
.

=⇒ U (α,β) = (1− δαβ)
1

2

eαeβ∣∣x(α) − x(β)
∣∣ . (Coulomb interaction)

But U (α) does not exist since we get 1
0 once the δ functions are applied to the integrals.

Remark 3. Thus, the concept of a point charge leads to an infinite self-energy and makes no sense in classical
electrodynamics. Only the interaction energy of point charges is physically meaningful.

Remark 4. One solution is to propose that maybe there aren’t point charges; particles have some spacial
extension. Let’s estimate the smallest extension r0 of a charge e that still makes physical sense.

Let e2

r0
∼= mc2. Then r0

∼= e2

mc2 . For electrons, re0 := e2

mec2
∼= 2.8× 10−13 cm. This is called the classical

electron radius. But experimental results place an upper limit on the radius of the electron to be re <
10−20 cm.

We see that something is wrong with classical electrodynamics. Quantum mechanics is needed to resolve
this issue. Ultimately, perfectly point-like things are not likely to be physical though. The Planck length
may be the limit.

3.6 The law of Biot & Savart

Proposition 1. A stationarya current density distribution j = j (x) leads to a vector potential

A =
1

c

ˆ
dy

j (y)

|x− y|
.

aThat is, a “macroscopically stationary” or “steady” current.
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Proof. From § 1.2, each component of A obeys Poisson’s equation. The solution for each component is
given by Poisson’s formula.

Remark 1. The proof in § 1.2 Proposition 1 required the use of the Coulomb gauge (∇ ·A = 0)!

Proposition 2. Law of Biot & Savart
The magnetic field generated by a static current density is

B (x) = −1

c

ˆ
dy

(x− y)× j (y)

|x− y|3
.

Proof. B = ∇×A, and (
∇x ×

j (y)

|x− y|

)
i

= εijk∂j
jk (y)(

3∑
l=1

(xl − yl)2

) 1
2

= εijkjk (y)

(
−1

2

)
2 (xj − yj)
|x− y|3

= −εijk (x− y)j jk (y)
1

|x− y|3

= − [(x− y)× j (y)]i
1

|x− y|3
.

Remark 2. Notice the analogy between electrostatics and magnetostatics.

Remark 3. See 4.6 below for a discussion of the concept of a stationary current density

3.7 Magnetostatic interaction
Consider a time-independent current density.

Proposition 1. The energy of the magnetic field produced by j = j (x) is

U =
1

2c2

ˆ
dx dy j (x) · j (y)

1

|x− y|
.

Lemma 1. ∇ · (A×B) = B · (∇×A)−A · (∇×B)

Proof.

∇ · (A×B) = ∂iεijkAjBk

= εijk (∂iAj)Bk + εijkAj (∂iBk)

= Bkεkij∂iAj −Ajεjik∂iBk
= B · (∇×A)−A · (∇×B)
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Proof. (Of Proposition 1)
From Ch. 2 § 3.6,

U =
1

8π

ˆ

V

dxB2 (x)

=
1

8π

ˆ
dxB · (∇×A)

1.
=

1

8π

ˆ
dx∇ · (A×B)︸ ︷︷ ︸´

ds·(A×B)
→0 as V→∞

+
1

8π

ˆ
dxA · (∇×B)︸ ︷︷ ︸

4π
c j

=
1

2c

ˆ
dxA (x) · j (x)

2.
=

1

2c

ˆ
dx j (x) · 1

c

ˆ
dy

j (y)

|x− y|

=
1

2c2

ˆ
dx dy

j (x) · j (y)

|x− y|

1. From the lemma above.

2. From § 3.6 Proposition 1.

Remark 1. Let j (x) be composed of N localized current distributions: j (x) =
N∑
α=1

j(α) (x) .

=⇒ U =
1

2c2

∑
α,β

ˆ
dx dy j(α) (x) · j(β) (y)

1

|x− y|

=
∑
α

U (α) +
∑
α6=β

U (α,β),

where
U (α) :=

1

2c2

ˆ
dx dy j(α) (x) · j(α) (y)

1

|x− y|

is called the magnetostatic self-energy of charge distribution α, and

U (α,β) := (1− δαβ)
1

2

ˆ
dx dy j(α) (x) · j(β) (y)

1

|x− y|

is called the magnetostatic interaction energy of localized current distributions α and β via the magnetostatic
interaction.

4 Multipole expansion for static fields

4.1 The electric dipole moment
Consider a localized charge distribution ρ = ρ (y).

question: What are the potential φ (x) and the field E (x) at a point x far from the charges?
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Let ρ (y) = 0 for |y| > r0; let |x| =: r � r0.

=⇒ 1

|x− y|
=

1√
r2 − 2x · y + y2

=
1

r

(
1− 2

x · y
r2︸ ︷︷ ︸

O( r0r )

+
y2

r2︸︷︷︸
O

(
r20
r2

)
)− 1

2

=
1

r

[
1 +

x · y
r2

+O

(
1

r2

)]
,

where the last step follows from the binomial approximation. Poisson’s formula (§ 3.3) gives

φ (x) =

ˆ
dy

ρ (y)

|x− y|
=

ˆ
dy ρ (y)

1

r

[
1 +

x · y
r2

+O

(
1

r2

)]
=

1

r

ˆ
dy ρ (y) +

x

r3
·
ˆ
dy yρ (y) +O

(
1

r3

)

Proposition 1. For large distances r from the localized charge distribution, the scalar potential has the
form

φ (x) =
Q

r
+

d · x
r3

+O

(
1

r3

)
, where

Q :=
´
dy ρ (y) is the total charge, and

d :=
´
dy yρ (y) is the electric dipole moment.

Remark 1. Analogous results hold for the gravitational potential of a localized mass distribution (PHYS
611).

Remark 2. If Q = 0, then d is independent of the origin of the coordinate system:
Let x′ = x + a with a = const. Then in the new coordinate system we have ρ′ (y) = ρ (y − a)

=⇒ d′ =

ˆ
dy yρ′ (y)

=

ˆ
dy yρ (y − a) =

ˆ
dy (y + a) ρ (y) = d +Qa

∴ Q = 0 =⇒ d′ = d.
If you ever get confused about this, consider a collection of point charges eα at locations xα:

ρ (y) =
∑
α

eαδ (y − xα)

Transform CS → CS′ such that x′α = xα + a. Then

ρ′ (y) =
∑
α

eαδ (y − a− xα)

= ρ (y − a) .

Corollary 1. The field at large distances is

E (x) = Q
x

r3
+

3 (x̂ · d) x̂− d

r3
+O

(
1

r4

)
,
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where x̂ := x
|x| .

Proof. E = −∇φ and −∇Q
r = Q x

r3 (see § 3.2),

∇d · x
r3

=
1

r3
∇ (d · x) + d · x∇ 1

r3

=
d

r3
+ d · x

(
−3

2

)(
1

r5

)
(2x)

=
d

r3
− 3 (d · x̂) x̂

r3
.

Remark 3. For Q = 0, the leading contribution to the field falls off as 1
r3 .

Remark 4. We can continue the expansion, with the next term being the quadrupole moment (a rank-2
tensor; see PHYS 611 and Problem #35). However, it is advantageous to introduce a more general concept.

4.2 Legendre functions and spherical harmonics
Note: the proofs in this section are omitted; see math books for proofs.

Definition 1. Legendre polynomials. The polynomials of degree l defined by

Pl (x) :=
1

2ll!

(
d

dx

)l (
x2 − 1

)l
, where l = 0, 1, 2, . . .

are called Legendre polynomials.

Remark 1. The first few Legendre polynomials are
P0 (x) = 1
P1 (x) = x
P2 (x) = 1

2

(
3x2 − 1

)
Remark 2. The Pl (x) have the following properties ∀l:

(0) Pl (1) = 1

(i) Pl (−x) = (−)
l
Pl (x) parity

(ii)
(
1− x2

)
P ′′l (x)− 2xP ′l (x) + l (l + 1)Pl (x) = 0 differential equation

(iii) Pl+1 (x) = (2l + 1)xPl (x)− lPl−1 (x) recursion relation

(iv)
´ 1

−1
dx Pl (x)Pl′ (x) = δll′

2
2l+1 orthogonality

Remark 3. Pl (x) are members of a larger family of orthogonal polynomials known as the classical orthogonal
polynomials.

Theorem 1. Completeness of the Legendre polynomials
Any piecewise continuous and continuously differentiable function f : [−1, 1] → R can be expanded

in Legendre polynomials as

f (x) =

∞∑
l=0

flPl (x) ,
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where
fl =

(
2l + 1

2

)ˆ
dx f (x)Pl (x)

(from orthogonality).

Definition 2. Associated Legendre functions. The functions (which are not polynomials now)

Pml (x) :=
(−)

m

2ll!

(
1− x2

)m
2

(
d

dx

)l+m (
x2 − 1

)l l = 0, 1, 2, . . .
m = −l,−l + 1, . . . , l − 1, l

are called associated Legendre functions.

Remark 4. P 0
l (x) = Pl (x) are the Legendre polynomials.

Remark 5. For fixed l, there are 2l + 1 functions Pml .

Remark 6. The first few Pml (x) are
P 0

0 (x) = P0 (x) = 1
P 0

1 (x) = P1 (x) = x
P 1

1 (x) = −
√

1− x2

P−1
1 (x) = 1

2

√
1− x2

Remark 7. The Pml have the properties:

(i) Pml (±1) = 0 zeroes

(ii) P−ml (x) = (−)
m (l−m)!

(l+m)!P
m
l (x) m−symmetry

(iii) d
dx

[(
1− x2

)
d
dxP

m
l (x)

]
+
[
l (l + 1)− m2

1−x2

]
Pml (x) = 0 differential equation

(iv)
´ 1

−1
dx Pml (x)Pml′ (x)︸ ︷︷ ︸

same m

= δll′
2

2l+1
(l+m)!
(l−m)! orthogonality

Definition 3. Spherical harmonics. Consider a unit sphere. Let Ω = (θ, ϕ) be a point on the sphere,
and let η = cos θ (−1 ≤ η ≤ 1). The C−valued functions defined on the sphere by

Ylm (Ω) =

[
(2l + 1) (l −m)!

4π (l +m)!

] 1
2

eimϕPml (η)

are called spherical harmonics.

Remark 8. Different books define the normalization differently!

Remark 9. The first few spherical harmonics are
Y00 (Ω) = 1√

4π

Y10 (Ω) =
√

3
4π cos θ

Y1,±1 (Ω) = ∓
√

3
8π e
±iϕ sin θ
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Remark 10. The Ylm have the properties:4

(i) Y ∗lm (Ω) = (−)
m
Yl,−m (Ω) complex conjugate

(ii) − i ∂∂ϕYlm (Ω) = mYlm (Ω)
}

differential equations
ΛYlm (Ω) = −l (l + 1)Ylm (Ω)

(iii)
´
dΩ Y ∗lm (Ω)Yl′m′ (Ω) = δll′δmm′ orthogonality

Theorem 2. Completeness of spherical harmonics
Any piecewise-continuous and continuously differentiable function on the sphere, f (Ω), can be ex-

panded in spherical harmonics:

f (Ω) =
∑
l,m

flmYlm (Ω) ,

where the coefficients are given by

flm =

ˆ
dΩ f (Ω)Y ∗lm (Ω)

Remark 11. This is often referred to by saying “the Ylm form a complete set on the sphere.”

Proposition 1. Addition theorem
Let Ω = (θ, ϕ), Ω′ = (θ′, ϕ′), and let γ be the angle between the two points:

cos γ = cos θ cos θ′ + sin θ sin θ′ cos (ϕ− ϕ′) .

Then

Pl (cos γ) =
4π

2l + 1

l∑
m=−l

Y ∗lm (Ω′)Ylm (Ω) .

Corollary 1. Sum rule

For γ = 0, we have Ω = Ω′ and Pl (1) = 1 = 4π
2l+1

l∑
m=−l

Y ∗lm (Ω)Ylm (Ω).

=⇒
l∑

m=−l

|Ylm (Ω)|2 =
2l + 1

4π
.

4.3 Separation of the Laplace operator in spherical coordinates
Consider the Laplace operator:

∇2 =: ∆ =
1

r

∂2

∂r2
r +

1

r2
Λ,

with

Λ :=
1

sin θ

∂

∂θ
sin θ

∂

∂θ
+

1

sin2 θ

∂2

∂ϕ2

4The symbol Λ represents the angular part of the Laplacian ∇2 in spherical coordinates:
Λ := 1

sin θ
∂
∂θ

sin θ ∂
∂θ

+ 1
sin2 θ

∂2

∂ϕ2 = ∂
∂η

(
1− η2

)
∂
∂η

+ 1
1−η2

∂2

∂ϕ2 ,
where we have defined η := cos θ.
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from § 4.2 Remark 10.

=⇒ ∇2f (r, θ, ϕ) =

(
1

r

∂2

∂r2
r +

1

r2
Λ

)
f (r, θϕ) =

1

r
∂2
rr︸ ︷︷ ︸ f

acts on
r only

+
1

r2
Λ︸︷︷︸ f

acts on
θ, ϕ
only

Theorem 1. The differential equation for the function ψ (x)[
−∇2 + V (r)

]
ψ (r, θ, ϕ) = a (r, θ, ϕ) (*)

is solved by

ψ (r, θ, ϕ) =
1

r

∑
l,m

ulm (r)Ylm (Ω) ,

where ulm (r) is the solution of the ODE(
− d2

dr2
+ Vl (r)

)
ulm (r) = ralm (r) (**)

with
Vl (r) := V (r) +

l (l + 1)

r2

and
alm (r) =

ˆ
dΩ a (r, θ, ϕ)Y ∗lm (Ω) (†)

Remark 1. The Poisson Equation has the form (∗).

Remark 2. This theorem is also very useful in Quantum Mechanics.

Proof. (Of Theorem 1)
ansatz: ψ (r, θ, ϕ) = 1

r

∑
l,m

ulm (r)Ylm (Ω)

(∗) =⇒ a (r,Ω) = −1

r
∂2
rr

1

r

∑
l,m

ulm (r)Ylm (Ω)− 1

r2

1

r

∑
l,m

ulm (r) ΛYlm (Ω)︸ ︷︷ ︸
−l(l+1)Ylm

+ V (r)
1

r

∑
l,m

ulm (r)Ylm (Ω)

=
∑
l,m

[
−1

r
∂2
r +

l (l + 1)

r3
+
V (r)

r

]
ulm (r)Ylm (Ω)

(see § 4.2). By § 4.2 Theorem 2, any reasonably well behaved a (r,Ω) can be expanded in spherical
harmonics:

a (r,Ω) =
∑
l,m

alm (r)Ylm (Ω) ,



CHAPTER 3. STATIC SOLUTIONS OF MAXWELL’S EQUATIONS 60

with alm (r) given by (†). Inserting this into the above equation:∑
l,m

alm (r)Ylm (Ω) =
∑
l,m

[
−1

r
∂2
r +

l (l + 1)

r3
+
V (r)

r

]
ulm (r)Ylm (Ω) ,

=⇒ ralm (r) =

[
−∂2

r +
l (l + 1)

r2
+ V (r)

]
ulm (r) =

(
− d2

dr2
+ Vl (r)

)
ulm (r)

which follows from the orthonormality of Ylm.

4.4 Expansion of harmonic functions in spherical harmonics
Consider harmonic functions, i.e., solutions of

∇2φ (x) = 0 , (*)

and assume that φ is twice continuously differentiable.

Proposition 1. The most general solution of (∗) has the form

φ (x) =
∑
l,m

[
φ+
lm (x) + φ−lm (x)

]
,

where

φ+
lm (x) := q+

lmYlm (Ω)
1

rl+1

φ−lm (x) := q−lmYlm (Ω) rl

with constant coefficients q±lm.

Proof. Since ∇2φ = 0, we can expand φ using the theorem in § 4.3 with V (r) = 0, a (x) = 0.

=⇒ ∂2
rulm (r) =

l (l + 1)

r2
ulm (r) .

ansatz: ulm (r) = rn.
=⇒ n (n− 1) = l (l + 1)

=⇒ n =

{
l + 1

−l

The two linearly independent solutions are therefore

ulm (r) =

{
r−l

rl+1

=⇒ φ (x) =
∑
l,m

(
A

1

rl+1
+Brl

)
Ylm,

with A, B arbitrary constants.

Remark 1. φ+
lm (x→ 0)→∞ ∀l, φ−lm (x→∞)→∞ ∀l > 0.

Thus, the only harmonic function that is finite at r = 0 and r → ∞ is the constant l = 0 contribution
(see § 1.2 Remark 5, § 3.1 Remark 2).
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4.5 Multipole expansion of the electrostatic potential

Lemma 1.

1

|x− x′|
=

1

r+

∞∑
l=0

(
r−
r+

)l
4π

2l + 1

l∑
m=−l

Ylm (Ω)Y ∗lm (Ω′) ,

where

x = (r,Ω) , r+ = max (r, r′) ,

x′ = (r′,Ω′) , r− = min (r, r′) .

Proof. Let cos γ = x·x′
rr′ (that is, γ is the angle between x,x′).

=⇒ |x− x′| =
√
r2 − 2rr′ cos γ + r′2.

Case 1: r > r′

=⇒ 1

|x− x′|
1.
=

1

r

[
1− 2

r′

r
cos γ +

(
r′

r

)2
]− 1

2

=
1

r+

[
1− 2

r−
r+

cos γ +

(
r−
r+

)2
]− 1

2

2.
=

1

r+

∞∑
l=0

fl

(
r−
r+

)
Pl (cos γ)

3.
=

1

r+

∞∑
l=0

4π

2l + 1
fl

(
r−
r+

) l∑
m=−l

Y ∗lm (Ω′)Ylm (Ω)

1. Note that it is only possible to factor 1/r if r > r′.

2. From Theorem 1 in § 4.2, we can expand the square root in terms of Legendre polynomials since
cos γ ∈ [−1, 1].

3. From the Addition Theorem in § 4.2.

Remaining question: What is fl
(
r−
r+

)
?

From § 4.4, 1
|x−x′| is harmonic for r > r′ since

∇2
x

1

|x− x′|
= ∇2

x

1

r
=

1

r
∂2
rr

1

r
= 0.

Furthermore, 1
|x−x′| = O

(
1
r

)
for r →∞. By § 4.4, we know 1

|x−x′| has the form φ+
lm since it falls off as

1
r . Thus,

1

r
fl

(
r′

r

)
=

1

r

(
r′

r

)l
cl

for some constant cl. For γ = 0,

1

|x− x′|
=

1

r

[
1− 2

r′

r
+

(
r′

r

)2
]− 1

2

=
1

r

1

1− r′

r

=
1

r

∞∑
l=0

(
r′

r

)l
=

1

r

∞∑
l=0

fl

(
r′

r

)
Pl (1)︸ ︷︷ ︸

1

,
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where the second to last step is the geometric series. Comparing the two equations above, =⇒ cl = 1.

=⇒ fl

(
r−
r+

)
=

(
r−
r+

)l
.

Case 2: r′ > r analogous.

Proposition 1. The electrostatic potential of a localized charge distribution ρ = ρ (x) (that is, ρ (x) = 0
for |x| > r0) can be written, for |x| > r0,

φ (x) =
∑
l,m

Qlm
rl+1

√
4π

2l + 1
Ylm (Ω) ,

where

Qlm :=

√
4π

2l + 1

ˆ ∞
0

dr r2rl
ˆ
dΩ ρ (r,Ω)Y ∗lm (Ω)

are the multipole moments of the charge distribution.

Proof. From § 3.3 and inserting the lemma,a

φ (x) =

ˆ
dy

ρ (y)

|x− y|

=

ˆ
dy ρ (y)

1

r

∞∑
l=0

(y
r

)l 4π

2l + 1

l∑
m=−l

Ylm (Ωx)Y ∗lm (Ωy)

=
∑
l,m

1

rl+1

√
4π

2l + 1
Ylm (Ωx)

√
4π

2l + 1

ˆ
dy y2yl

ˆ
dΩ ρ (y,Ωy)Y ∗lm (Ωy)︸ ︷︷ ︸

=:Qlm

aNote that |x| := r, |y| := y.

Remark 1.
For l = 0, the moment is

Q00 =
√

4π

ˆ ∞
0

dr r2

ˆ
dΩ ρ (r,Ω)

1√
4π︸ ︷︷ ︸
Y ∗00

= Q,

the total charge.
For l = 1, we have Q1,−1, Q10, Q11:

Q1m =

√
4π

3

ˆ ∞
0

dr r3

ˆ
dΩ ρ (r,Ω)

[
δm0 cos θ − δm1

1√
2
e−iϕ sin θ + δm,−1

1√
2
eiϕ sin θ

]√
3

4π



CHAPTER 3. STATIC SOLUTIONS OF MAXWELL’S EQUATIONS 63

=⇒ Q10 =

ˆ ∞
0

dr r2

ˆ
dΩ ρ (r,Ω) r cos θ =

ˆ
dxx3ρ (x) = d3

=⇒ Q11 = − 1√
2

ˆ ∞
0

dr r2

ˆ
dΩ ρ (r,Ω) e−iϕr sin θ

= − 1√
2

ˆ
dx ρ (x) [r sin θ cosϕ− ir sin θ sinϕ]

= − 1√
2

ˆ
dx ρ (x) [x1 − ix2] = − 1√

2
(d1 − id2)

=⇒ Q1,−1 =
1√
2

(d1 + id2)

=⇒ d1 =
1√
2

(Q1,−1 −Q11),

d2 =
1√
2

(Q1,−1 +Q11).

4.6 Multipole expansion of the electrostatic interaction
Consider a charge density ρ< (x) confined to a region R< inside a sphere of radius r0. Let ρ< (x) be subject
to a charge density ρ> (y) confined to a region R> outside a sphere radius R0 > r0. What is the electrostatic
interaction energy U between these charge distributions?

From § 3.5,

U =
1

2

ˆ
dx dy ρ (x) ρ (y)

1

|x− y|

=
1

2

ˆ

R<

dx ρ< (x)

ˆ

R>

dy ρ> (y)
1

|x− y|
+

1

2

ˆ

R>

dx ρ> (x)

ˆ

R<

dy ρ< (y)
1

|x− y|

=

ˆ

R<

dx ρ< (x)

ˆ

R>

dy ρ> (y)
1

|x− y|

=

ˆ

R<

dx ρ< (x)φ> (x),

where
φ> (x) =

ˆ

R>

dy
1

|x− y|
ρ> (y)

is the potential generated by the charges in R> at x.5
If R0 � r0, φ> (x) will vary slowly within R<, so we can Taylor expand:

φ> (x) = φ> (x = 0) + x · ∇φ>|x=0 +
1

2
xixj

∂2

∂xi∂xj
φ>

∣∣∣∣
x=0

+ . . .

From § 1.1, φ> (x) obeys Laplace’s equation ∀x ∈ R<.

=⇒ δij
∂2

∂xi∂xj
φ>

∣∣∣∣
x=0

= 0

=⇒ φ> (x) = φ> (x = 0) + x · ∇φ>|x=0 +
1

2

(
xixj −

x2

3
δij

)
∂2

∂xi∂xj
φ>

∣∣∣∣
x=0

+ . . .

5Note that the choice to use φ> as the source and ρ< as the test charge is arbitrary; we could have written U in terms of ρ>
and φ<.
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Definition 1. Define the following:

φ0 := φ> (x = 0) . . . the potential φ> at the origin

E := −∇φ> (x = 0) . . . the field due to φ> at the origin

φij := ∂2

∂xi∂xj
φ> (x = 0) . . . the field gradients of φ> at the origin

=⇒ φ> (x) = φ0 − x ·E +
1

2

(
xixj −

1

3
x2δij

)
φij + . . .

Now drop the subscripts, and denote ρ := ρ<, φ := φ>.

=⇒ U =

ˆ
dx ρ (x)φ (x)

= φ0

ˆ
dx ρ (x)−E ·

ˆ
dx xρ (x) +

1

3
φij

1

2

ˆ
dx ρ (x)

(
3xixj − x2δij

)
+ . . .

=⇒ U = φ0Q−E · d +
1

3
φijQij + . . .

where

φ0, E, φij ...are the potential, electric field, and field gradient tensor due to ρ > evaluated at the origin.

Q, d, Qij ...are the total charge, dipole moment, and quadrupole moments of ρ<.

Remark 1. Alternatively, we can use the spherical harmonic expansion from § 4.4 to expand the potential:

φ (x) =
∑
l,m

φ−lm (x) =
∑
l,m

q−lmr
lYlm (Ω) ,

where we have disregarded the φ+
lm terms because they blow up at the origin.

=⇒ U =

ˆ
dx ρ (x)φ (x)

=

ˆ
dx ρ (x)

∑
l,m

q−lmr
lYlm (Ω)

=
∑
l,m

q−lm

ˆ
dr r2rl

ˆ
dΩ ρ (r,Ω)Ylm (Ω)︸ ︷︷ ︸

=
√

2l+1
4π Q∗lm

=⇒ U =
∑
l,m

q−lm

√
2l + 1

4π
Q∗lm ,

where, as per § 4.5, Qlm are the multipole moments of the charge density ρ (x) := ρ< (x) and the q−lm are
the coefficients of the expansion of the harmonic function φ (x) := φ> (x) in spherical harmonics.

Which one is used depends on the symmetry of the problem.

4.7 The magnetic moment
From § 3.6, the Biot & Savart law gives the magnetic field resulting from a stationary current density.
This requires an interpretation, as currents are produced by moving charges and hence are intrinsically time
dependent.
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Definition 1. Stationary current density. By stationary current density j (x), we mean the time
average taken over a time T large compared to all microscopic time-scales:

j (x) = j (x, t) :=
1

T

ˆ T

0

dt j (x, t)

Example 1. Current in a wire loop.
T must be much larger than the time it takes an electron to complete one revolution.

Remark 1. With this definition, M4 reduces to its static version upon time averaging, provided the electric
field E as a function of time is bounded. That is,

∂E (x, t)

∂t
=

1

T

ˆ T

0

dt
∂E

∂t
=

1

T
[E (x, T )−E (x, 0)]

T→∞−→ 0,

if E (x, t) is bounded.

(M4) =⇒ −1

c
∂tE︸ ︷︷ ︸
0

+∇×B = ∇×B =
4π

c
j .

Now consider the time averaged vector potential A (x) := A (x, t) at large distances from a localized static
current density given by

j (y) =
∑
α

eαvαδ (y − xα).

From § 3.6, the Biot & Savart law gives

A (x) =
1

c

ˆ
dy

j (y)

|x− y|
=

1

c

∑
α

eαvα
|x− xα|

1.
=

1

c

∑
α

eαvα
1

r

[
1 +

x · xα
r2

+ . . .
]

2.
≈ 1

c

1

r3

∑
α

eαvα (x · xα)

1. Expanding 1/ |x− xα| as per § 4.1.

2. The monopole contribution is zero by Remark 1:∑
α

eαvα =
d

dt

∑
α

eαxα = 0

since a static current density is assumed to be bounded. Here we also drop higher order terms.

We can rewrite the dipole term as follows:∑
α

eαvα (xα · x) =
∑
α

eαẋα (xα · x)

=
1

2

d

dt

∑
α

eαxα (xα · x) +
1

2

∑
α

eα [vα (xα · x)− xα (vα · x)] ,

by the product rule. Taking the time average,

=⇒
∑
α

eαvα (xα · x) =
1

2

∑
α

eα
d

dt
xα (xα · x)︸ ︷︷ ︸

0 (bounded)

+
1

2

∑
α

eα

[
vα (xα · x)− xα (vα · x)

]

=
1

2

∑
α

eα

[
vα (xα · x)− xα (vα · x)

]
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=⇒ A (x) =
1

2c

1

r3

∑
α

eα

[
vα (xα · x)− xα (vα · x)

]
.

Definition 2. Magnetic moment. The magnetic moment of the charges is defined as

m :=
1

2c

∑
α

eα(xα × vα) .

Proposition 1. The vector potential for large distances from the current density is given by the magnetic
moment via

A (x) =
1

r3
m× x +O

(
1

r4

)
.

Proof.

m× x =
1

2c

∑
α

eα(xα × vα)× x

=
1

2c

∑
α

eα

[
vα (xα · x)− x (xα · vα)

]
= r3A.

Corollary 1. The magnetic field for large distances from the current density is

B (x) =
3 (x̂ ·m) x̂−m

r3
+O

(
1

r4

)
.

Proof. Analogous to § 4.1.

Proposition 2. If all of the moving charges have the same charge-to-mass ratio eα
mα

=: e
m , and if the

motion is non-relativistic (vα � c), then the magnetic moment is proportional to the angular momentum
of the system:

m =
e

2mc
L . (*)

Proof. L :=
∑
α
xα × pα =

∑
α
mαxα × vα.

=⇒ m :=
1

2c

∑
α

eα(xα × vα) =
1

2c

∑
α

eα
mα

mα(xα × vα) =
e

2mc
L.

Remark 2. The proportionality factor e
2mc is called gyromagnetic ratio.
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Remark 3. (∗) holds for orbital momentum L of particles, but not for the magnetic moment related to spin.
For electrons,

me =
ge

2mc
Se,

with Se = 1
2~ the spin of the electron, m the electron mass, and g = 2.0023 · · · the so-called g-factor.

Remark 4. The g-factor was a mystery until the development of the Dirac equation, which predicts g = 2.
The rest is accounted for by loop corrections in QED.



Chapter 4

Electromagnetic waves in vacuum

1 Plane electromagnetic waves

1.1 The wave equation
Consider vacuum: Jµ (x) = 0 everywhere.

Remark 1. Any solutions to Maxwell’s Equations must be time-dependent since in Ch. 3 § 1.1, § 1.2, we saw
that in vacuum, static potentials obey Laplace’s equation, which has only the trivial (zero) solution.

Theorem 1. Wave equation. In vacuum (and with the Lorentz gauge), the 4-vector potential Aµ (x)
obeys

∂ν∂
νAµ (x) = 0 . (*)

Proof. From Ch. 2 § 1.3,

∂µF
µν =

4π

c
Jν

1.
= 0

= ∂µ (∂µAν − ∂νAµ)
2.
= ∂µ∂

µAν − ∂ν∂µAµ︸ ︷︷ ︸
0

= ∂µ∂
µAν

1. We are considering vacuum.

2. In Lorentz gauge, ∂µAµ = 0.

Remark 2. (∗) is called wave equation.

Remark 3. The operator
� := ∂ν∂

ν

is called d’Alembert operator. Explicitly,

∂ν∂
ν = gµν∂ν∂µ = gµν

∂2

∂xµ∂xν
=

1

c2
∂2
t −∇2.

Some books define it as the negative of this.

68
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Remark 4. The Lorentz gauge implies a Lorentz invariant relation between φ and A:

0 = ∂µA
µ =

∂

∂xµ
Aµ =

1

c
∂tφ+∇ ·A.

Corollary 1. The electric and magnetic fields also obey the wave equation:

�E = �B = 0 . (**)

Proof. From Ch. 2 § 3.4,

�B = � (∇×A) = ∇× (�A) = 0

�E = �

(
−∇φ− 1

c
∂tA

)
= −∇ (�φ)− 1

c
∂t (�A) = 0

Remark 5. The Lorentz gauge still does not determine the potentials uniquely; in vacuum, one can always
choose a gauge such that

φ = 0 =⇒ ∇ ·A = 0

(see Problem #39). However, this choice is not Lorentz invariant.

1.2 Plane waves

Definition 1. Plane waves. Solutions of the wave equation that depend on only one spacial coordinate
are called plane waves.

Let f (x, t) be any component of E or B or Aµ. From § 1.1 (∗) or (∗∗),(
∂2
t − c2∂2

x

)
f (x, t) = 0 . (*)

This is called the plane wave equation or 1D wave equation.

Theorem 1. d’Alembert solution. The most general solution of (∗) is

f (x, t) = f1 (x− ct) + f2 (x+ ct) ,

where f1, f2 are arbitrary twice continuously differentiable functions of their arguments.

Proof. We can write (∗) as (
1

c
∂t − ∂x

)(
1

c
∂t + ∂x

)
f (x, t) = 0. (†)

Define ξ := x− ct, η := x+ ct. =⇒ x = 1
2 (ξ + η), t = − 1

2c (ξ − η). Also define ψ (ξ, η) := f (x, t).

=⇒ 1

c
∂tf

1.
= (∂ξψ)

1

c
∂tξ + (∂ηψ)

1

c
∂tη

= −∂ξψ + ∂ηψ,

∂xf = (∂ξψ) ∂xξ + (∂ηψ) ∂xη

= ∂ξψ + ∂ηψ.

1. Inserting f (x, t) =: ψ (ξ, η) and using the chain rule.
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Inserting these relations into (†), we see

0 = −2∂ξ2∂ηψ (ξ, η)︸ ︷︷ ︸
=:a(η)

.

The bracketed term must not be a function of ξ since, after a ξ−derivative, the result is 0. Integrate:

=⇒ ψ (ξ, η) =

ˆ η

η0

dη̃ a (η̃) + b (ξ) .

Note that both terms above are arbitrary functions. Let f1 (ξ) := b (ξ), f2 (η) :=
´ η
η0
dη̃ a (η̃).

=⇒ ψ (ξ, η) = f1 (ξ) + f2 (η) = f1 (x− ct) + f2 (x+ ct) = f (x, t) .

Remark 1. PDEs in general have whole classes of functions as their solutions, in contrast to ODEs.

Remark 2. (Gotta insert this figure)
f1 moves in the +x direction with velocity c,
f2 moves in the −x direction with velocity c.
f is a superposition of f1, f2.

1.3 Orientation of the fields

Proposition 1. Consider a plane electromagnetic wave propagating in some direction n̂. Then E, B,
n̂ are mutually perpendicular, and

B = n̂×E .

Proof. By Problem #39, in vacuum we can always choose a gauge such that

∇ ·A = 0 and φ = 0.

Let n̂ = (1, 0, 0). =⇒ A (x, t) = A (x, t), and have the wave travel in the +x direction.

=⇒ A (x, t) = A (x− ct) = A
(
t− x

c

)
= A (u) ,

where u := t− x
c . Now, ∇ ·A = 0 =⇒ ∂xAx = 0. We also know

�A = 0 =⇒ ∂2
tAx = 0

=⇒ ∂tAx = const.

If the constant were not zero, Ex would not be zero since E = −∂tA. This would not fall off at infinity.
Thus, assume ∂tAx = 0 =⇒ Ax = 0. The wave solution does not fall off either, but its average
vanishes.

=⇒ A (u) = (0, Ay (u) , Az (u)) · · · ⊥ n̂

=⇒ E = −1

c
∂tA = −1

c
∂uA · · · ⊥ n̂
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=⇒ B = ∇×A = (0,−∂xAz, ∂xAy)

= −1

c
∂u (0,−Az, Ay)

= −1

c
∂u (n̂×A) = −1

c
n̂× ∂µA = n̂×E.

Corollary 1. The Poynting vector is given by

P (x, t) = cu (x, t) n̂ ,

where u (x, t) is the energy density of the fields.

Proof. From Ch. 2 § 3.6,

=⇒ P =
c

4π
E ×B =

c

4π
E × (n̂×E)

1.
=

c

4π
E2n̂

2.
=

c

8π

(
E2 + B2

)
n̂

= cu (x, t) n̂.

1. Since E ⊥ n̂.

2. Since E2 = B2.

Remark 1. The energy contained in the wave propagates with velocity c in the direction n̂ perpendicular to
the wave fronts.

1.4 Monochromatic plane waves
Consider the wave equation: (

1

c2
∂2
t −∇2

)
f (x, t) = 0.

Definition 1. Monochromatic plane wave. A solution of the form

f (x, t) = f0e
i(k·x−ωt) , f0 ∈ C,

is called a monochromatic plane wave with frequency ω.

Remark 1. Problem #40 =⇒ ω2 = c2k2 ⇐⇒ f solves wave equation.

Remark 2. By the superposition principle from Ch. 2 § 5, if f : R4 → C is a solution, then so are Re f , Im f .
What about k?
Case 1: kx, ky, kz ∈ R =⇒ ω ∈ R.
We can write f0 = |f0| e−iδ, where δ ∈ R. Then Re f , Im f yield the two solutions:

f (x, t) = |f0| cos (k · x− ωt− δ) ,

f (x, t) = |f0| sin (k · x− ωt− δ) .
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Remark 3. For fixed x, f is periodic in t with period T := 2π
ω .

Remark 4. For fixed t, f is periodic in space. Define

ϕ := k · x− ωt− δ

to be the phase of the wave.

f = const. ⇐⇒ ϕ = const. ⇐⇒ k · x = ωt+ δ.

Thus, the surfaces of constant field are planes perpendicular to k. k is called wave vector ; λ := 2π
|k| is called

wavelength.

Case 2:
At least one of ki is not real, e.g., kx = α+ iβ.

=⇒ f (x, t) = eiαλe−βxf0e
i(kyy+kzz−ωt)

=⇒ f →∞ if x→ ∓∞ for β ≷ 0.

Thus, the solution is physically meaningful at most in a restricted space (e.g., total reflection at a surface).

Case 3: ω /∈ R =⇒ k /∈ R3.
This is the same as case 2, since ω2 = c2k2.

1.5 Polarization of electromagnetic waves
Nothing we have derived prohibits E, B from rotating about k. We can express a monochromatic plane
wave as

E (x, t) = E0e
i(k·x−ωt)

B (x, t) = B0e
i(k·x−ωt)

, where ω2 = c2k2 with k2 := |k|2 .

Remark 1. The direction of propagation n̂ from § 1.3 is

n̂ = k̂ :=
k

|k|
=

k
ω/c

.

From § 1.3 we also have
|E0| = |B0|

and E0, B0, k form a right-handed coordinate system.
Consider E.1 Let E2

0 = |E0|2 e−i2α, and define b := E0e
iα with the property b2 =

∣∣E2
0

∣∣ ∈ R. Consider
the physical solution

E (x, t) = Re
[
bei(k·x−ωt−α)

]
,

where b = b1 + ib2 with b1 ⊥ b2 since b2 ∈ R. Let k = (k, 0, 0). =⇒ b1 = (0, b1, 0), b2 = (0, 0, b2),

=⇒
Ey = b1 cos (k · x− ωt− α)

Ez = −b2 sin (k · x− ωt− α)
=⇒

E2
y

b21
+
E2
z

b22
= 1 .

Proposition 1. The E−field vector moves on an ellipse; the same is true for the B−field. This is
called elliptic polarization.

1This discussion is analogous for B−field.
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Proof. (above)

Remark 2. Monochromatic plane waves are, in general, elliptically polarized.

Remark 3. Special cases:

b1 = b2 circular polarization

b1 = 0 or b2 = 0 linear polarization

Remark 4. Visualization:

1.6 The Doppler effect
Define the 4-wavevector kµ :=

(
ω
c ,k

)
= (k0,k). From problem #40, kµ transforms as a Minkowski vector.

Proposition 1. The 4-wavevector has zero length in Minkowski space:

kµk
µ = 0 .

Proof. kµkµ = ω2

c2 − k2 = 0, from the wave equation.

Remark 1. This implies our 4-wavevector lies on the light cone given by k0 = |k|. .
Consider an observer in a moving frame whose velocity forms some angle θ with propagation direction k.
What frequency does the moving observer see?

Theorem 1. Doppler effect. If ω is the frequency of the wave observed in the rest frame, then the
moving observer measures a different frequency ω′ such that

ω′ = γω
(

1− v

c
cos θ

)
.

Proof. Lorentz boost 4-wavevector along x:

=⇒ ω′

c
= γ

(ω
c
− v

c
kx

)
.

But kx = |k| cos θ = ω
c cos θ; insert this and factor ω

c .

Remark 2. The frequency shift given by
(
1− v

c cos θ
)
is called linear Doppler effect. The shift from γ is

called quadratic Doppler effect.

Remark 3. The quadratic Doppler effect is nonzero even for cos θ = 0; a manifestation of time dilation.

Remark 4. Consider a non-relativistic wave, e.g. a sound wave (density wave) in a fluid. The density
fluctuation can be written

δn (x, t) = aei(k·x−ωt), where ω = c0k
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and c0 is the phase velocity. Under a Galilean transformation,

x′ = x− vt
y′ = y

t′ = t

=⇒ δn (x, t) = aei(kxx
′+kxvt

′+kyy
′−ωt′)

= aei(kxx
′+kyy

′−(ω−kxv)t′)

But ω − kxv = ω′

=⇒ ω′ = ω

(
1− v

c0
cos θ

)
.

Only the linear Doppler effect is observed, and there is no frequency shift for motion perpendicular to k.

2 The wave equation as an initial value problem

2.1 The wave equation in Fourier space
From § 1.1, the general wave equation is

�f (x, t) =

(
1

c2
∂2
t −∇2

)
f (x, t) = 0 . (*)

Take a spacial Fourier transform (Ch. 3 § 2), where

f̂ (k, t) =

ˆ
dx e−ik·xf (x, t)

with back transform
f (x, t) =

1

(2π)
3

ˆ
dk eik·xf̂ (k, t).

Remark 1. The generalized function concept implies this can be done for a large class of functions.

(∗) =⇒ 0 =

(
1

c2
∂2
t −∇2

)
1

(2π)
3

ˆ
dk eik·xf̂ (k, t)

=
1

(2π)
3

ˆ
dk

(
1

c2
∂2
t − k2

)
f̂ (k, t)

But this integrand is positive definite.

=⇒ d2

dt2
f̂ (k, t) + c2k2f̂ (k, t) = 0 . (**)

An alternative way to see this is to multiply (∗) by e−ik·x and take the x integral:

=⇒ 0 =

ˆ
dx e−ik·x

(
1

c2
∂2
t −∇2

)
f (x, t)

=
1

c2
∂2
t f̂ + k2f̂

(integrating by parts twice).

Remark 2. (∗∗) is an ODE for a harmonic oscillator with frequency2

ωk = c |k| =: ck.

Remark 3. The Fourier back transform theorem implies (∗) is equivalent to (∗∗).
2In this section, the notation ωk implies ω is a function of k.
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2.2 The general solution of the wave equation
The general solution of (∗∗) for f̂ is

f̂ (k, t) = a0
k cos (ωkt) +

•
a0
k

ωk
sin (ωkt) ,

where

a0
k := f̂ (k, t = 0) =

ˆ
dx e−ik·xf (x, t = 0)

•
a0
k := ∂tf̂ (k, t)

∣∣∣
t=0

=

ˆ
dx e−ik·x ∂tf (x, t)|t=0

Theorem 1. The general solution of the wave equation is uniquely determined by the field and its time
derivative at some initial time (WLOG t = 0),a and is given by

f (x, t) =
1

(2π)
3

ˆ
dk eik·x

[
a0
k cos (ωkt) +

•
a0
k

ωk
sin (ωkt)

]
,

with ωk = c |k| and a0
k,
•
a0
k defined above.

aThat is, f (x, t = 0) and ∂tf (x, t)|t=0.

Corollary 1. The solution can also be written

f (x, t) =
1

(2π)
3

ˆ
dk
[
f+
k e

i(k·x−ωkt) + f−k e
−i(k·x−ωkt)

]
,

where

f±k :=
1

2

(
a0
±k ± i

1

ωk

•
a0
±k

)
.

Proof.

a0
k cos (ωkt) +

•
a0
k

ωk
sin (ωkt) = a0

k

1

2

(
eiωkt + e−iωkt

)
+

•
a0
k

ωk

1

2i

(
eiωkt − e−iωkt

)
=

1

2

(
a0
k + i

•
a0
k

ωk

)
︸ ︷︷ ︸

f+
k

e−iωkt +
1

2

(
a0
k − i

•
a0
k

ωk

)
︸ ︷︷ ︸

f−−k

eiωkt

=⇒ f (x, t) =
1

(2π)
3

ˆ
dk eik·x

[
f+
k e
−iωkt + f−−ke

iωkt
]

=
1

(2π)
3

ˆ
dk f+

k e
ik·x−iωkt +

1

(2π)
3

ˆ
dk f−k e

−ik·x+iωkt,

where in the last line, in the second term ωk = ω−k is inserted.

Remark 1. The general solution of the wave equation is a linear superposition of monochromatic plane
waves with superposition amplitudes that are uniquely determined by the initial conditions f (x, t = 0) and
ḟ (x, t = 0)



Chapter 5

Electromagnetic radiation

idea: we have discussed

• static solutions of Maxwell’s equations with sources (Ch. 3)

• dynamic solutions of Maxwell’s equations in vacuum (Ch. 4).

Now we discuss

• dynamic solutions of Maxwell’s equations with sources.

1 Review of potentials, gauges

1.1 Fields and potentials
Recall in Ch. 2 § 3.4, the fields E, B (which are observable) can be obtained from potentials (that are not
observable) via

E (x, t) = −∇φ (x, t)− 1

c
∂tA (x, t)

B (x, t) = ∇×A (x, t)

Remark 1. The homogeneous Maxwell equations are automatically fulfilled by these.

Remark 2. From Ch. 2 § 3.1, φ, A are the components of the 4-vector Aµ (x) = (φ (x) ,A (x)).

Proposition 1. The inhomogeneous Maxwell equations (M3, M4) are equivalent to four PDEs, which
are the equations of motion (or field equations) for Aµ (x):a

∂µ∂
µAν (x)− ∂ν∂µAµ (x) =

4π

c
Jν (x) (∗)

aCompare with Ch. 4 § 1.1.

Proof. From Ch. 2 § 1.3,

4π

c
Jν = ∂µF

µν

= ∂µ∂
µAν − ∂ν∂µAµ.
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Corollary 1. In terms of φ, A, (∗) takes the form

�A +∇
(

1

c
∂tφ+∇ ·A

)
=

4π

c
j

−∇2φ− 1

c
∂t∇ ·A = 4πρ

(∗′)

where � := 1
c2 ∂

2
t −∇2.

Proof. Jν = (cρ, j), ∂µ := ∂
∂xµ

=
(

1
c∂t,−∇

)
, ∂µ := ∂

∂xµ =
(

1
c∂t,∇

)
.

=⇒ ∂µ∂
µ =

1

c2
∂2
t −∇2 =: �,

∂µA
µ =

1

c
∂tφ+∇ ·A.

ν = 1, 2, 3 in (∗) yields the first equation.

ν = 0 in (∗) yields

�φ− 1

c
∂t

(
1

c
∂tφ+∇ ·A

)
=

4π

c
cρ

=
Z
Z
Z

1

c2
∂2
t φ−∇2φ−ZZ

Z

1

c2
∂2
t φ−

1

c
∂t∇ ·A = 4πρ

Remark 3. In the static case, (∗′) simplifies to

∇2φ = 4πρ . . . Poisson’s equation (Ch3 §1.1) �

−∇2A +∇ (∇ ·A)︸ ︷︷ ︸
=∇×(∇×A)=∇×B

=
4π

c
j . . . Fourth Maxwell equation �

Remark 4. In vacuum and using Lorenz gauge, (∗) simplifies to

�Aν − ∂ν∂µAµ︸ ︷︷ ︸
=0

=0 . . . wave equation (Ch4 §1.1) �

1.2 Gauge conventions
From Ch. 2 § 2.4, the potentials are not unique. We can choose certain constraints, called gauge conventions.

Popular choices:

(1) Lorenz gauge ∂µA
µ (x) = 0 =

1

c
∂tφ+∇ ·A Lorentz invariant

(2) Coulomb gauge ∇ ·A = 0 (cf. Problem #19) not Lorentz invariant

Remark 1. Some books call (2) the transverse gauge, since k ·A (k) = 0 (from Fourier transforming), which
implies A ⊥ k. Others call it radiation gauge.

Remark 2. Another possibility is to choose φ (x) = 0 . This is also sometimes called radiation gauge.
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Remark 3. 4 potentials and 1 constraint (our choice of gauge) implies 3 potential fields uniquely determine
the 6 fields E, B.

Proposition 1. In Lorenz gauge, the field equations for the potentials § 1.1 (∗) becomes

�A =
4π

c
j

�φ = 4πρ
or, �Aµ =

4π

c
Jµ . (∗)

Proof. Lorenz gauge =⇒ ∂µA
µ = 0, ∴ § 1.1 (∗) =⇒ (∗).

Corollary 1. Once we choose Lorenz gauge, it is maintained under time evolution.

Proof. �∂µAµ = ∂µ�Aµ = 4π
c ∂µJ

µ = 0︸ ︷︷ ︸
continuity eq.

.

Remark 4. From Ch. 2 § 2.1, ∂µJµ = 0 is not an independent condition; it follows from the field equations.

Proposition 2. In Coulomb gauge, the field equations become

�A =
4π

c
j − 1

c
∂t∇φ

∇2φ = −4πρ
. (∗∗)

Proof. § 1.1 (∗′) with ∇ ·A = 0 =⇒ (∗∗).

Corollary 2. Coulomb gauge is maintained under time evolution.

Proof.

� (∇ ·A) = ∇ · (�A)
1.
=

4π

c
∇ · j − 1

c
∂t∇2φ

2.
=

4π

c
∇ · j +

4π

c
∂tρ

=
4π

c

(
∇ · j +

1

c
∂tcρ

)
=

4π

c
∂µJ

µ = 0︸ ︷︷ ︸
continuity eq.

.

1. Inserting �A from (∗′).

2. Inserting −∇2φ from (∗′).

Remark 5. Which gauge to pick is a matter of choice. Different choices are convenient for different problems.
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2 Green’s functions; the Lorenz gauge

2.1 The concept of Green’s functions
Consider an inhomogeneous wave equation:

�f (x, t) = i (x, t) , (∗)

with i (x, t) a given inhomogeneity.

Definition 1. Green’s function. A Green’s function G (x, t) for the PDE (∗) is a solution of

�G (x, t) = δ (x) δ (t) . (∗∗)

Remark 1. This is (∗) with a special inhomogeneity

i (x, t) = δ (x) δ (t) = δ (x) δ (y) δ (z) δ (t) .

Proposition 1. Let G (x, t) be a solution of (∗∗). Then

f (x, t) =

ˆ
dx′ dt′ G (x− x′, t− t′) i (x′, t′) =: (G ? i) (x, t)

is a solution of (∗).

Proof.

�f (x, t) =

ˆ
dx′ dt′ �G (x− x′, t− t′) i (x′, t′)

=

ˆ
dx′ dt′ δ (x− x′) δ (t− t′) i (x′, t′)

= i (x, t) .

Note that this assumes we can interchange �,
´

which is allowed if G is sufficiently well behaved.

2.2 Green’s functions for the wave equation
To find the form of Green’s functions, take the Fourier transform of § 2.1 (∗∗) with respect to time. That is,
take

´
dt eiωt (∗∗):1

=⇒ δ (x)

ˆ
dt eiωtδ (t)︸ ︷︷ ︸

=1 (Ch.3 §2.5)

=

ˆ
dt eiωt

1

c2
∂2
tG (x, t)−∇2

ˆ
dt eiωtG (x, t)︸ ︷︷ ︸
define =:Gω(x)

=⇒ δ (x) +∇2Gω (x) =
1

c2

ˆ
dt eiωt∂2

tG (x, t)

1.
=

(iω)
2

c2

ˆ
dt eiωtG (x, t)︸ ︷︷ ︸

=Gω(x)

1Note that, by convention, we use +i instead of −i here.
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1. Integrating by parts twice and assuming G (x, t) falls off at ±∞, or, using Ch. 3 § 2.1 Proposition 3.

Thus, Gω (x) obeys

−
(
∇2 +

ω2

c2

)
Gω (x) = δ (x).

We solve this by taking the spacial Fourier transforms. Define

Gω (k) :=

ˆ
dx e−ik·xGω (x) .

=⇒
(
k2 − ω2

c2

)
Gω (k) = 1

=⇒ Gω (k) =
1

k2 − ω2

c2

.

To find G (x, t), we must back transform.

spatial:

Gω (x) =

ˆ
dk

(2π)
3 e

ik·xGω (k)

=

ˆ
dk

(2π)
3 e

ik·x 1

k2 +
(
iω
c

)2
1.
=

1

4π

e±
iωr
c

r

1. From Problem #28,
´

dk
(2π)3

eikx 4π

k2+
(

1
r0

)2 = e
− r
r0

r , where r0 = ± c
iω , r = |x|.

temporal:

G (x, t) =

ˆ
dω

2π
e−iωtGω (x)

=
1

4π

1

r

ˆ
dω

2π
e−iωt±

iωr
c

=
1

4πr

ˆ
dω

2π
e−iω(t∓ rc )

=
1

4πr
δ
(
t∓ r

c

)
.

Theorem 1. The defining equation for the Green’s functions ( § 2.1 (∗∗)) has two solutions:

G± (x, t) =
1

4πr
δ
(
t∓ r

c

)
where r := |x| .

Proof. (above).

Remark 1. Consider a point-like, time-dependent source

i (x, t) = δ (x) i (t).
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From the proposition in § 2.1, the two solutions of the wave equation with this source are

f± (x, t) =

ˆ
dx′ dt′

1

4π |x− x′|
δ

(
t− t′ ∓ 1

c
|x− x′|

)
δ (x′) i (t′)

=
1

4πr

ˆ
dt′ δ

(
t− t′ ∓ r

c

)
i (t′)

=
1

4πr
i
(
t± r

c

)
.

This implies that if the source i (t′) does something at a time t′, then the 4-potential response at position x
occurs at a time

t = t′ ± r

c

for the solutions f±.

Definition 1. Define:
G+ as "retarded Green’s function"
G− as "advanced Green’s function"

Axiom 4. Causality; a physical response cannot precede the action of the source.

consequence: only the retarded solution is physical.

2.3 The retarded potentials
We can obtain the potentials by applying the proposition from § 2.1 and results from § 2.2 to the wave
equations for A, φ:

φ (x, t) =

ˆ
dx′ dt′

1

4π |x− x′|
δ

(
t− t′ − 1

c
|x− x′|

)
4πρ (x′, t′)

=⇒ φ (x, t) =

ˆ
dy

1

|x− y|
ρ

(
y, t− 1

c
|x− y|

)
. (∗)

Analogously,

=⇒ A (x, t) =
1

c

ˆ
dy

1

|x− y|
j

(
y, t− 1

c
|x− y|

)
. (∗∗)

Remark 1. (∗), (∗∗) are called retarded potentials.

Remark 2. The time delay ∆t = |x−y|
c corresponds to the time it takes the wave to travel from point y to x

with velocity c.

Remark 3. (∗), (∗∗) are analogous to Poisson’s formula in the static case (cf. Ch. 3 § 3.6). The new concept
from time dependence is retardation from finite speed of propagation.

3 Radiation by time-dependent sources

3.1 Asymptotic potentials and fields
Consider retarded potentials (§ 2.3 (∗), (∗∗)) at large distances r = |x| from the sources.



CHAPTER 5. ELECTROMAGNETIC RADIATION 82

We can expand |x− y|:

|x− y| =
√
r2 − 2x · y + y2

= r

√
1− 2

x̂ · y
r

+O

(
1

r2

)
= r − x̂ · y +O

(
1

r

)
,

where x̂ := x
r .

=⇒ φ (x, t) =
1

r

ˆ
dy ρ (y, tr) +O

(
1

r2

)
,

where tr := t− 1
c |x− y| ≈ t− r

c + 1
c x̂ · y. Analogously,

=⇒ A (x, t) =
1

cr

ˆ
dy j (y, tr) +O

(
1

r2

)
.

Remark 1. We keep only leading terms for r →∞, which are of O
(

1
r

)
.

Remark 2. How many terms to keep in the time argument tr of ρ, j depends on how rapidly the sources
are changing. If L is the linear dimension of the source, and the source changes appreciably on a time scale
∆t = L

c , then the term 1
c x̂ · y may be important.

Before deriving the asymptotic forms of E, B, we prove two useful lemmas.

Lemma 1.

∇1

r
f (tr) = −1

c
x̂

1

r
∂tf (tr) +O

(
1

r2

)
Note: In this section, ∂tf (tr) := (∂tf)|tr and ∇ 1

rf (tr) := ∇
(

1
rf (tr)

)
.

Proof.

∇1

r
f (tr)

1.
=

(
∇1

r

)
f (tr)︸ ︷︷ ︸

O(1/r2)

+
1

r
∇ (f (tr))

2.
=

1

r
(∂tf) (tr)∇tr +O

(
1

r2

)
3.
=

1

r
(∂tf) (tr)

(
−1

c

)
∇
√
x2 + y2 + z2 +O

(
1

r2

)
= − 1

cr

x

r︸︷︷︸
x̂

∂tf (tr) +O

(
1

r2

)

1. Product rule.

2. Chain rule.

3. ∇tr = − 1
c∇
√
x2 + y2 + z2
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Lemma 2.

∂tρ (y, tr) = −∇y · j (y, tr) +
1

c
x̂ · ∂tj (y, tr) +O

(
1

r

)

Proof. By the continuity equation (Ch. 2 § 2.1),

=⇒ ∂tρ (x, t) = −∇x · j (x, t)

=⇒ (∂tρ (y, t))t=tr = − (∇y · j (y, t))t=tr

But

∇y · (j (y, tr))
1.
= (∇y · j (y, t))t=tr + (∂tj) (y, tr) · ∇ytr

2.
= (∇y · j (y, t))t=tr +

1

c
x̂ · (∂tj) (y, tr) +O

(
1

r

)

=⇒ (∂tρ (y, t))t=tr =: ∂tρ (y, tr) = −∇y · (j (y, tr)) +
1

c
x̂ · (∂tj) (y, tr) +O

(
1

r

)
=: −∇y · j (y, tr) +

1

c
x̂ · ∂tj (y, tr) +O

(
1

r

)
.

1. Chain rule.

2. Recall tr := t− 1
c |x− y|

=⇒ ∇ytr = −1

c
∇y |y − x|

= −1

c

y − x

|y − x|
=

1

c

x

r

√
1− 2x̂ · y + y2

r2

− y

r
√
· · ·

=
1

c
x̂

(
1 +O

(
1

r

))
+O

(
1

r

)
.

Proposition 1. Far from the sources, the fields are

B (x, t) = − 1

c2
x̂

r
×
ˆ
dy ∂tj (y, tr)

E (x, t) = −x̂×B (x, t)

· · ·+O

(
1

r2

)
.

Remark 3. This implies E2 = B2, and x̂ ⊥ E ⊥ B, forming a right-handed orthogonal set.

Remark 4. The fields fall off as 1
r as opposed to 1

r2 in static solutions.

Proof. (of proposition).
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From § 1.1, B = ∇×A, so by the equation for asymptotic A,

=⇒ Bi = εijk∂j
1

r

1

c

ˆ
dy jk (y, tr)

1.
= εijk

(
− 1

c2

)
x̂j

1

r

ˆ
dy (∂tjk (y, t))t=tr

=⇒ B (x, t) = − 1

c2
x̂

r
×
ˆ
dy ∂tj (y, tr)

1. By lemma 1, ∂j 1
rf (tr) = − 1

c x̂j
1
r∂tf (tr).

From § 1.1, E = −∇φ− 1
c∂tA, so by the equations for asymptotic φ, A,

=⇒ E = −∇1

r

ˆ
dy ρ (y, tr)−

1

c
∂t

1

cr

ˆ
dy j (y, tr)

1.
=

1

c

x̂

r

ˆ
dy ∂tρ (y, tr)−

1

c2r

ˆ
dy ∂tj (y, tr)

2.
= −1

c

x̂

r

ˆ
dy ∇y · j (y, tr)︸ ︷︷ ︸

=
´
R3 dS·j→0

+
1

c

x̂

r

ˆ
dy

1

c
x̂ · ∂tj (y, tr)−

1

c2r

ˆ
dy ∂tj (y, tr)

=
1

c2r

ˆ
dy [x̂ (x̂ · ∂tj (y, tr))− ∂tj (y, tr)]

3.
=

1

c2r

ˆ
dy x̂× (x̂× ∂tj (y, tr))

= −x̂×B (x, t) .

1. By lemma 1, and since ∂t = ∂tr .

2. By lemma 2.

3. Using the vector identity:

(a× (a× b))i = εijkajεklmalbm

= (δilδjm − δimδjl) ajalbm
= ai (a · b)− a2bi

Remark 5. A time-dependent localized current density leads to time-dependent fields everywhere in space
(with proper retardation to account for signal travel time). This phenomenon is called radiation.

Remark 6. Far from the source, the radiation fields E, B ...
(i) falls off as 1

r
(ii) are perpendicular to one another and to the radius vector from source to observer (because we

are far enough away that the waves are approximately plane waves).

Remark 7. The source must provide the field energy; there is steady power loss at the source.

3.2 The radiated power
From Ch. 2 § 3.6, the energy-current density of the fields is given by the Poynting vector:

P (x, t) =
c

4π
E (x, t)×B (x, t).
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Remark 1. E ⊥ B ⊥ x̂ =⇒ P ‖ x̂.

Remark 2. [P ] = energy per time and area = erg cm−2 s−1 = g cm s−3.

Remark 3. x̂ · P = power per unit area. Denote by P the total radiated power. Then the power radiated
per solid angle is given by

dP

dΩ
= x̂ · P dA

=
(
x̂ · c

4π
E ×B

) (
r2dΩ

)
=

c

4π
r2x̂ · (B × (x̂×B))

But

x̂ · (B × (x̂×B)) = x̂iεijkBjεklmx̂lBm

= (δilδjm − δimδjl) x̂iBj x̂lBm
= B2 −XXXX(B · x̂)

2︸ ︷︷ ︸
B⊥x̂

= B2

=⇒ dP

dΩ
=

c

4π
r2B2

=
c

4π
��r

2

(
1

c2�r

)2(
x̂×
ˆ
dy ∂tj (y, tr)

)2

=
1

4πc3

(
x̂×
ˆ
dy ∂tj (y, tr)

)2

Theorem 1. The power radiated by the source per solid angle is

dP

dΩ
=

1

4πc3

(
x̂×
ˆ
dy ∂tj (y, tr)

)2

.

Proof. (above).

Remark 4. Power ∝ (fields)2
, and fields ∝ 1

r : there is nonzero power per solid angle even as r →∞.

Corollary 1. The total power radiated is

P =

ˆ
dΩ

dP

dΩ
.

3.3 Radiation by an accelerated charged point particle
Consider a point particle with charge e moving with non-relativistic velocity v � c, on a trajectory R (t).

current density: j (y, t) = ev (t) δ (y −R (t)) where v (t) := Ṙ (t)
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retarded time:

tr := t− 1

c
|x− y|

1.
≈ t− r

c
+

1

c
x̂ ·R (t′)

2.
≈ t− r

c
=: te

1. t′ is the solution of t′ = t− 1
c |x−R (t′)| (from § 2.3)

2. 1
c x̂ ·R (t′) is small of order v

c if v � c.

Remark 1. te is the time of emission for a signal received at time t.
To find the power radiated, we will need the following quantity:ˆ

dy ∂tj (y, tr) ≈
ˆ
dy ∂tj (y, te)

=
d

dt
e

ˆ
dy v (te) δ (y −R (te))

= e
dv

dt

∣∣∣∣
t=te

= ev̇ (te).

Inserting into
(
x̂×
´
dy ∂tj (y, tr)

)2 yields (disregarding e):

(x̂× v̇ (te))
2

= εijkx̂j v̇kεilmx̂lv̇m

= (δjlδkm − δjmδkl) x̂j x̂lv̇kv̇m
= v̇2 − (x̂ · v̇)

2

=⇒ dP

dΩ
=

e2

4πc3

[
(v̇ (te))

2 − (x̂ · v̇ (te))
2
]
.

Let θ be the angle between the acceleration at time te and the radius vector to the observer.

=⇒ x̂ · v̇ (te) = v̇2 cos2 θ

=⇒ dP

dΩ
=

e2

4πc3
(v̇ (te))

2
sin2 [θ (te)] .

Proposition 1. Larmor formula. The total power radiated by the accelerated charge is

P =
2e2

3c3
v̇2 (for v � c) .

This is called the Larmor formula.

Proof.
´
dΩ sin2 θ = 2π

´ 1

−1
dη
(
1− η2

)
= 8π

3 .

Remark 2. This is called the Larmor formula, valid for non-relativistic particles.

Remark 3. This is the physics behind synchrotron radiation (see Problem #46).

Remark 4. This implies that a classical atom cannot be stable (see Problems #47, 48).
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3.4 Dipole radiation
Consider a system of many slow moving (v � c) charges that is still small compared to r. We will still use
the approximation tr ≈ te.

Proposition 1. In this situation the radiated power per solid angle is

dP

dΩ
=

1

4πc3

(
x̂× d̈

)2

,

where d is the dipole moment of the charge distribution, given by

d (t) :=

ˆ
dy yρ (y, t)

and d̈ is its second time derivative.

Remark 1. With θ the angle between d̈ and x̂, this becomes

dP

dΩ
=

1

4πc3
sin2 θ

(
d̈
)2

.

Remark 2. For one point charge, ρ (y, t) = eδ (y −R (t))

=⇒ d (t) =

ˆ
dy yeδ (y −R (t)) = eR (t)

=⇒ d̈ = ev̇,

so it works for one particle.

Lemma 1.
d

dt
d (t) =

ˆ
dy j (y, t)

Proof. Charge conservation implies
∂tρ+∇ · j = 0.

Integrating over space,

=⇒ 0 =

ˆ
dy y [∇y · j (y, t) + ∂tρ (y, t)]

1.
=

ˆ
dy [∇y (y · j)− j + y∂tρ (y, t)]

2.
= −

ˆ
dy j (y, t) +

d

dt

ˆ
dy yρ (y, t)

= −
ˆ
dy j (y, t) +

d

dt
d (t) .

1. Product rule

2.
´
dy ∇y (y · j)→ 0 if y · j falls off fast enough.
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Proof. (of proposition)
From § 3.2,

4πc3
dP

dΩ

1.
≈

(
x̂×
ˆ
dy ∂tj (y, te)

)2

=

(
x̂× d

dt

ˆ
dy j (y, te)

)2

2.
=

(
x̂× d

dt

(
d

dt
d

))2

=
(
x̂× d̈

)2

1. Replacing tr with te.

2. From the lemma above.

Remark 3. This contribution is called electric dipole radiation.

Now we keep corrections to the approximation we made (tr ≈ te). From § 3.2, to find dP
dΩ we need

ˆ
dy j (y, tr) =

ˆ
dy j

(
y, t− r

c︸ ︷︷ ︸
te

+
1

c
x̂ · y + . . .

)
1.
≈

ˆ
dy j (y, te) +

1

c

ˆ
dy (x̂ · y) ∂tj (y, t)|t=te

2.
=

ḋ (te) + 1
c
d
dt

∣∣∣
te

´
dy

[
1
2 (x̂ · y) j + 1

2 (x̂ · j)y

+ 1
2 (x̂ · y) j − 1

2 (x̂ · j)y
]

= ḋ (te)−
1

2c

d

dt

∣∣∣
te

ˆ
dy [y (x̂ · j)− j (x̂ · y)] + (other term)

3.
= ḋ (te)−

1

2c

d

dt

∣∣∣
te

ˆ
dy x̂× (y × j) + (other term)

= ḋ (te)− x̂× d

dt

∣∣∣
te

1

2c

ˆ
dy y × j (y, t) + (other term)

4.
= ḋ (te)− x̂× d

dt

∣∣∣
te
m + (other term)

5.
= ḋ (te)− x̂× ṁ (te) + (other term)

1. Taylor expanded.

2. Used the lemma to replace
´
dy j (y, te), split the integrand (x̂ · y) j into 1

2 (x̂ · y) j + 1
2 (x̂ · y) j, and

added to the integrand 0 = 1
2 (x̂ · j)y − 1

2 (x̂ · j)y.

3. Used vector identity a× (b× c) = b (a · c)− c (a · b).

4. By definition (Ch. 3 § 4.7), the magnetic dipole moment is m (t) := 1
2c

´
dy y × j (y, t).

5. In this and the following sections, we use the notation d
dt

∣∣∣
te
m =: ṁ (te).

Therefore, in this approximation, the power per solid angle is

dP

dΩ
=

1

4πc3

[
x̂×

(
d̈− x̂× m̈

)]2
,
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with d and m the electric and magnetic (respectively) dipole moments of the source. Note that the “other
term” in the proof that we have neglected is of the same order as the x̂ × (x̂× m̈) term in v/c. We will
discuss this later.

Corollary 1. The total radiated power is

P =
2

3c3

[(
d̈
)2

+ (m̈)
2

]
.

Proof.

4πc3P = 4πc3
ˆ
dΩ

dP

dΩ

=

ˆ
dΩ
[
x̂×

(
d̈− x̂× m̈

)]2
=

ˆ
dΩ

[(
x̂× d̈

)2

− 2
(
x̂× d̈

)
· (x̂× (x̂× m̈)) + (x̂× (x̂× m̈))

2

]
We consider these terms separately:

ˆ
dΩ
(
x̂× d̈

)2 1.
= 2π

ˆ 1

−1

dη
(
1− η2

)
d̈

2

= 4π

(
1− 1

3

)
d̈

2

=
8π

3
d̈

2

1. Choosing our coordinate system such that d̈ ‖ ẑ (using notation η := cos θ).

ˆ
dΩ (x̂× (x̂× m̈))

2 1.
=

ˆ
dΩ [x̂ (x̂ · m̈)− m̈]

2

2.
=

ˆ
dΩ
[
η2m̈2 − 2η2m̈2 + m̈2

]2
= 2π

ˆ 1

−1

dη
(
1− η2

)
m̈2

=
8π

3
m̈2

1. Vector identity a× (b× c) = b (a · c)− c (a · b).

2. Choosing our coordinate system such that m̈ ‖ ẑ (using notation η := cos θ).
ˆ
dΩ
(
x̂× d̈

)
· (x̂× (x̂× m̈)) = 0,

since the integral is odd in η (to see this, let x̂→ −x̂).

Now, what of the other term we’ve been ignoring?

Remark 4. The other term, given by

· · ·+ 1

2c

d

dt

∣∣∣
te

ˆ
dy [y (x̂ · j) + j (x̂ · y)] + . . .
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has the structure (for the ith component):
ˆ
dy (yijj + jiyj)

1.
= −

ˆ
dy yiyj∇y · j

2.
=

ˆ
dy yiyj∂tρ

=
d

dt

ˆ
dy yiyjρ (y, t)

=
d

dt
Qij (t) ,

where Qij (t) :=
´
dy yiyjρ (y, t) is the electric quadrupole moment of the charge distribution.

1. Integrating by parts “in reverse”.

2. Continuity equation.

Thus, the contribution to P from this term is of order 1
c5

...
Q

2.

Remark 5. The magnetic dipole moment has an extra 1/c in its definition. Thus, the magnetic dipole and
electric quadrupole radiation terms are of the same order in v/c (see Landau & Lifshitz 71).

4 Spectral distribution of radiated energy
In § 3 we calculated the total power radiated by a time-dependent source.

question: How is this energy distributed over different frequencies?

4.1 Retarded potentials in frequency space
From § 2.3,

φ (x, t) =

ˆ
dy

1

|x− y|
ρ

(
y, t− |x− y|

c

)
.

Define a temporal Fourier transform (cf. § 2.2)2

f (x, ω) :=

ˆ
dt eiωtf (x, t)

=⇒ f (x, t) =

ˆ
dω

2π
e−iωtf (x, ω) .

=⇒ φ (x, ω) =

ˆ
dt eiωt

ˆ
dy

1

|x− y|

ˆ
dω′

2π
e−iω

′(t−|x−y|/c)ρ (y, ω′)︸ ︷︷ ︸
=ρ(y,t−|x−y|/c)

=

ˆ
dy

1

|x− y|

ˆ
dω′

2π
ρ (y, ω′)

ˆ
dt ei(ω−ω

′)t︸ ︷︷ ︸
=2πδ(ω−ω′)

eiω
′|x−y|/c

=

ˆ
dy

1

|x− y|
eiω|x−y|/cρ (y, ω)

2In this notation, the argument of the function indicates if it is a Fourier transform or not (the same symbol f is used to
refer to the Fourier transformed function and the original function).
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Proposition 1. The retarded potentials in frequency space are

φ (x, ω) =

ˆ
dy

1

|x− y|
eiω|x−y|/cρ (y, ω)

and, analogously,

A (x, ω) =
1

c

ˆ
dy

1

|x− y|
eiω|x−y|/cj (y, ω) ,

where ρ (y, ω) and j (y, ω) are the temporal Fourier transforms of ρ (y, t) and j (y, t), respectively.

Proof. (above)

4.2 Asymptotic potentials and fields
For large distances r := |x| from the sources, the expansion from § 3.1 applies:

|x− y| ≈ r − x̂ · y

=⇒ φ (x, ω) =

ˆ
dy

1

r

[
1 +O

(
1

r

)]
eiω(r−x̂·y+... )/cρ (y, ω)

≈ 1

r
eiωr/c

ˆ
dy e−iωx̂·y/cρ (y, ω) +O

(
1/r2

)
definition: k :=

ω

c
x̂ is called wave vector.

Remark 1. This is consistent with Ch. 4 § 1.5 Remark 1.

Remark 2. Far from the source, the wave fronts are approximately plane waves, so Ch. 4 applies.

=⇒ φ (x, ω) ≈ 1

r
eikr
ˆ
dy e−ik·yρ (y, ω)

=
1

r
eikrρ (k, ω),

with ρ (k, ω) the spacial Fourier transform of ρ (x, ω), and k := |k|. Note that 1
r e
ikr represents a spherical

wave.
Analogously,

A (x, ω) ≈ 1

r
eikr

1

c
j (k, ω).

Proposition 1. Far from the sources, the fields are

B (x, ω) ≈ iω
c

eiωr/c

r
x̂× 1

c
j (k, ω) ,

E (x, ω) ≈ −x̂×B (x, ω) .

Remark 3. The expression for E in terms of B follows instantly from the proposition in § 3.1 (by taking
Fourier transform).
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Proof. (of proposition)
Taking the temporal Fourier transform of B (x, t) = ∇×A (x, t) yields

B (x, ω) = ∇×A (x, ω)

=⇒ Bl (x, ω) = εlmn∂mAn (x, ω)

= εlmn∂m

(
1

r
eikr

)
1

c
jn (k, ω)

1.
≈ εlmnik

eikr

r
x̂m

1

c
jn (k, ω)

= ik
eikr

r

(
x̂× 1

c
j (k, ω)

)
l

.

1. The product rule yields two terms:

∂m
1

r
= − x̂m

r2
+O

(
1/r3

)
= O

(
1/r2

)
. . . discard this term

1

r
∂me

ikr =
1

r
eikrik∂mr =

eikr

r
ik

1

2r
2xm = ik

eikr

r
x̂m = O (1/r)

4.3 The spectral distribution of the radiated energy

Theorem 1. The total radiated energy per solid angle dΩ and frequency dω is

d2U

dΩ dω
=

ω2

4π2c3
|x̂× j (k, ω)|2 .

Remark 1. Check a static source: j (k, t) = j (k)

=⇒ j (k, ω) ∝ δ (ω)

=⇒ d2U

dΩ dω
= 0

Proof. (of theorem)
The instantaneous flux of energy is given by the Poynting vector (Ch. 2 § 3.6):

P (x, t) :=
c

4π
E (x, t)×B (x, t) .
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Then the total energy U radiated into a solid angle is (see § 3.2):

dU

dΩ
=

ˆ
dt r2 (x̂ · P (x, t))

= r2 c

4π

ˆ
dt x̂ · [E (x, t)×B (x, t)]

=
cr2

4π

ˆ
dt x̂ ·

[(ˆ
dω

2π
e−iωtE (x, ω)

)
×
(ˆ

dω′

2π
e−iω

′tB (x, ω′)

)]
1.
=

cr2

4π

ˆ
dω

2π

ˆ
dω′

2π
x̂ · [E (x, ω)×B (x, ω′)] 2πδ (ω + ω′)

=
cr2

4π

ˆ
dω

2π
x̂ · [E (x, ω)×B (x,−ω)]

2.
= −cr

2

4π

ˆ
dω

2π
x̂ ·
[
(x̂×B (x, ω))×B (x, ω)

∗]
3.
=

cr2

4π

ˆ
dω

2π
|B (x, ω)|2

4.
=

cr2

4π2

ˆ ∞
0

dω |B (x, ω)|2

5.
=

1

4π2c3

ˆ ∞
0

dω ω2 |x̂× j (k, ω)|2

1.
´
dt e−i(ω+ω′)t = 2πδ (ω + ω′).

2. Since Bi (x, t) ∈ R, B (x,−ω) = B (x, ω)
∗. Also, by § 4.2, E (x, ω) ≈ −x̂×B (x, ω).

3. Since x̂ ⊥ B.

4. Since integrand is even in ω.

5. From § 4.2 proposition, B (x, ω) ≈ iωc
eiωr/c

r x̂× 1
cj (k, ω).

=⇒ d2U

dΩ dω
=

ω2

4π2c3
|x̂× j (k, ω)|2 .

4.4 Spectral distribution for dipole radiation

From § 4.3, d2U
dΩ dω is given by the Fourier transform of the current density:

j (k, ω) , where k = |k| = ω

c
=

2π

λ
,

with λ the wavelength of the radiation.
Consider small sources in the limit that |y| � λ.

Example 1. For an atom radiating visible light, we have

|y| . a few Å
λ ≈ thousands of Å
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In this limit,

j (k, ω) =

ˆ
dy e−ik·y

ˆ
dt eiωtj (y, t)

1.
=

ˆ
dy [1− ik · y + . . . ]

ˆ
dt eiωtj (y, t)

2.
=

ˆ
dt eiωt

ˆ
dy j (y, t) +O (a/λ)

3.
=

ˆ
dt eiωt

d

dt
d (t) +O (a/λ)

= −iωd (ω) +O (a/λ)

1. Taylor expand e−ik·y.

2. Define a := |y|.

3. By § 3.4 lemma, d
dtd (t) =

´
dy j (y, t).

Proposition 1. If a is the linear dimension of the source, and λ the wavelength of the radiation, then
to lowest order in a/λ � 1 the energy radiated per unit solid angle and unit frequency is given by the
Larmor formula:

d2U

dΩ dω
=

ω2

4π2c3
sin2 θ

∣∣∣ḋ (ω)
∣∣∣2 ,

where θ is the angle between d, x̂
θ = � (d, x̂)

and ḋ (ω) is the Fourier transform of ḋ (t). That is,

ḋ (ω) := −iωd (ω) = Ft
[
ḋ (t)

]
(ω) .

Proof. In the dipole approximation, d ‖ j =⇒ |x̂× j|2 = sin2 θ |j|2.

Corollary 1. The total energy per unit frequency is

dU

dω
=

2

3

ω2

πc3

∣∣∣ḋ (ω)
∣∣∣2 .

Proof.
´
dΩ sin2 θ = 2π

´ 1

−1
dη
(
1− η2

)
= 4π

(
2
3

)
= 8π

3 .

Example 2. Consider a point charge e on trajectory y (t) with velocity v (t) = ẏ (t)� c.

=⇒ j (x, t) = ev (t) δ (x− y (t))

=⇒ ḋ (t) =

ˆ
dx j (x, t) = ev (t)

=⇒ ḋ (ω) = F [ev (t)] (ω) = ev (ω)
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=⇒ dU

dω
=

2

3

ω2e2

πc3
|v (ω)|2

=
2

3

e2

πc3
|v̇ (ω)|2

dU/dω is given by the Fourier transform of the acceleration.

Remark 1. This is consistent with the Larmor formula from § 3.3 (see Problem #52).

Example 3. Consider a slowly moving charge (v � c) on a circle.
=⇒ v̇ is purely radial
=⇒ power is maximal in the direction perpendicular to v̇

(
θ = ±π2

)
=⇒ no radiation emitted in direction of v̇ (θ = 0)
=⇒ in the orbital plane, the radiation has a butterfly shape
=⇒ in 3-D, it has the shape of a torus

4.5 Example: radiation by a damped harmonic oscillator
Consider a charge e in a harmonic potential (oscillator frequency ω0) with damping constant γ.

equation of motion:
ÿ = −ω2

0y − γẏ (∗)

Remark 1. We think of the damping as due to the radiation emitted.

Remark 2. This is a simple model for an electron in a classical atom.

initial conditions:
y (t = 0) = a, ẏ (t = 0) = 0.

Lemma 1. For weak damping (γ � ω0), the solution of (∗) is

y (t) ≈ a cos (ω0t) e
−γt/2 (t > 0) .

Proof. See Problem #53.

=⇒ ẏ (t) = −aω0 sin (ω0t) e
−γt/2 [1 +O (γ/ω0)] =: v (t)

=⇒ v (ω) ≈ −aω0

ˆ ∞
0

dt eiωt sin (ω0t) e
−γt/2

= −aω0

2i

ˆ ∞
0

dt eiωt
[
eiω0t−γt/2 − e−iω0t−γt/2

]
= −aω0

2i

[
−1

i (ω + ω0)− γ/2
− −1

i (ω − ω0)− γ/2

]
=

aω0

2

[
1

ω − ω0 + iγ/2
− 1

ω + ω0 + iγ/2

]
Let ω > 0 (discussion for ω < 0 is analogous). Then v (ω) is dominated by the first term when ω ≈ ω0.

=⇒ |v (ω)|2 ≈ a2ω2
0

4

1

(ω − ω0)
2

+ γ2/4
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=⇒ dU

dω
=

2e2

3πc3
|v̇ (ω)|2

=
2e2

3πc3
a2ω2

0

4

ω2

(ω − ω0)
2

+ γ2/4

≈ 2e2

3πc3
a2ω4

0

4

1

(ω − ω0)
2

+ γ2/4
(ω ≈ ω0) .

This is sometimes called susceptibility of oscillator.

discussion (1): Spectrum is a Lorentzian centered on ω0 with width γ.

discussion (2): Total energy radiated:

U = 2

ˆ ∞
0

dω
dU

dω

≈ 2
e2a2ω4

0

6πc3

ˆ ∞
0

dω
1

(ω − ω0)
2

+ γ2/4

1.
=

e2a2ω4
0

3πc3

ˆ ∞
−ω0

dω
1

ω2 + γ2/4

2.
=

e2a2ω4
0

3πc3

(
2

γ

)ˆ ∞
− 2
γ ω0

dx
1

x2 + 1

3.
≈ 2e2a2ω4

0

3πc3γ

ˆ ∞
−∞

dx
1

x2 + 1︸ ︷︷ ︸
π

=
2e2a2ω4

0

3c3γ
.

Let’s compare with initial oscillator energy:

U t=0
osc =

m

2
ω2

0a
2

=⇒ U =
U t=0
osc

m
2 ω

2
0a

2

2e2a2ω4
0

3c3γ

= U t=0
osc

4e2ω2
0

3mc3γ
.

Now, assuming the oscillator energy has totally gone into U , =⇒ U = U t=0
osc

=⇒ γ =
4

3

e2ω2
0

mc3
.

discussion (3): Compare this result with Problem #47:

=⇒ Uosc = U t=0
osc e

−t/τ

where we found τ = 2/γ. So the two approaches are consistent.

discussion (4): See Problem #53 for a more thorough discussion of the approximations made above.
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5 Cherenkov radiation

5.1 The time-Wigner function, and the macroscopic power spectrum
From § 4.3, the spectral distribution of radiation from a time-dependent current density:

d2U

dΩ dω
=

ω2

4π2c3
|x̂× j (k, ω)|2

=
ω2

4π2c3

(
x̂×
ˆ
dt e+iωtj (k, t)

)
·
(
x̂×
ˆ
dt′ e−iωt

′
j (k, t′)

∗
)

=
ω2

4π2c3
εijkx̂jεilmx̂l

ˆ
dt

ˆ
dt′ eiω(t−t′)jk (k, t) jm (k, t′)

∗

We can rewrite the integrals using the substitutions

t = T +
τ

2

t′ = T − τ

2

=⇒
ˆ
dt

ˆ
dt′ eiω(t−t′)jk (k, t) jm (k, t′)

∗
=

ˆ
dT

ˆ
dτ eiωτ jk

(
k, T +

τ

2

)
jm

(
k, T − τ

2

)∗
=

ˆ
dT

ˆ
dτ eiωτWkm (k;T, τ) ,

where
Wkm := jk

(
k, T +

τ

2

)
jm

(
k, T − τ

2

)∗
.

Remark 1. Wkm is an example of what is called a Wigner function (in our case a time-Wigner function). It
separates the two times into average time (or macroscopic time) T and relative time (or microscopic time)
τ .

Remark 2. Only relative times |τ | > 1/ω will appreciably contribute to the τ−integral, whereas all times T
during which the source is active contribute to the T−integral.

Remark 3. This makes sense if the two time-scales are well separated. E.g., a laser pulse of duration T � 1/ω.

Definition 1. The spectral distribution at time T is

d2P (T )

dΩ dω
:=

ω2

4π2c3
εijkx̂jεilmx̂l

ˆ
dτ eiωτWkm (k;T, τ) ,

called the macroscopic power spectrum.

Remark 4. We recover d2U
dΩ dω as d2U

dΩ dω =
´
dT d2P(T )

dΩ dω .

5.2 Cherenkov radiation
Consider a point particle as in § 3.3:

j (y, t) = ev (t) δ (y −R (t)) , where v (t) := Ṙ (t) .

We specialize to uniform motion along a straight line:

R (t) = vt, v (t) = v = const.
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Remark 1. We know that in vacuum this does not result in radiation.

=⇒ j (k, t) =

ˆ
dy e−ik·yevδ (y − vt)

= eve−ik·vt

= eve−ix̂·v
ω
c t

=⇒ Wkm (k;T, τ) = jk

(
k, T +

τ

2

)
jm

(
k, T − τ

2

)∗
= e2vkvme

−ix̂·v ωc (T+ τ
2 )e+ix̂·v ωc (T− τ2 )

= e2vkvme
−ix̂·v ωc τ .

Remark 2. The Wigner function is independent of T here, as expected from uniform motion.

=⇒ d2P (T )

dΩ dω
:=

ω2

4π2c3
εijkx̂jεilmx̂l

ˆ
dτ eiωτWkm (k;T, τ)

=
ω2e2

4π2c3
εijkεilmx̂j x̂lvkvm

ˆ
dτ eiωτe−ix̂·v

ω
c τ

1.
=

ω2e2

4π2c3
v2 sin2 θ

ˆ
dτ eiω(1− vc cos θ)τ

2.
=

ω2e2

4π2c

(v
c

)2

sin2 θδ
(
ω
(

1− v

c
cos θ

))
=

|ω| e2

4π2c

(v
c

)2

sin2 θδ
(

1− v

c
cos θ

)
1. Defining θ to be the angle between x̂ and v:

εijkεilmx̂j x̂lvkvm = (δjlδkm − δjmδkl) x̂j x̂lvkvm
= v2 − (x̂ · v)

2

= v2 sin2 θ

2.
´
dτ eiω(1− vc cos θ)τ = δ

(
ω
(
1− v

c cos θ
))

Remark 3. If v/c < 1, |cos θ| < 1 =⇒ 1 + v
c cos θ > 0

=⇒ no radiation, in agreement with § 3.3 unless v > c (“tachyonic particle”).

Remark 4. In matter, c→ c/n, with n the index of refraction

=⇒ v

c
→ n

v

c
=⇒ n

v

c
> 1 is possible!

Remark 5. Strictly speaking, this requires a theory for electromagnetic radiation in matter. Here we assume
c→ c/n and e2 → e2/n2 suffices to catch the main effects (the charge is screened; Fcoulomb = e2/r → e2/ (εr)
where n =

√
ε).

Also keep in mind we are applying a nonrelativistic approximation to a situation in which v/c is no longer
small (see Problem #54).

Remark 6. n is frequency dependent (n = n (ω))

=⇒ d2P (T )

dΩ dω
=
|ω| e2/n2

4π2c/n

(
n
v

c

)2

sin2 θδ
(

1− nv
c

cos θ
)

=
|ω| e2

4π2cn (ω)

(
n (ω)

v

c

)2

sin2 θδ
(

1− n (ω)
v

c
cos θ

)
.
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conclusion: a particle moving in a medium faster than the speed of light in that medium emits radiation
(Cherenkov radiation) on a cone with angle θ where

cos θ =
c

vn (ω)
.

Proposition 1. The total power emitted is

dP

dω
= |ω| e

2v

2πc2

(
1− c2

n2 (ω) v2

)
.

Proof.

dP

dω
=

ˆ
dΩ

d2P

dΩ dω

=
|ω| e2

4π2cn

(
n
v

c

)2

(2π)

ˆ 1

−1

dη
(
1− η2

)
δ
(

1− nv
c
η
)

=
|ω| e2

2πcn

(
n
v

c

)2 c

nv

ˆ 1

−1

dη
(
1− η2

)
δ
(
η − c

vn

)
=
|ω| e2v

2πc2

(
1−

( c

nv

)2
)
.

Remark 7. This is nonzero only for the range of frequencies (if they exist) such that vn (ω) > c.
=⇒ total radiated power, P =

´
dω dP

dω is finite.

Remark 8. This is radiated energy per time and frequency, whereas a Cherenkov radiation detector observes
the energy radiated per distance traveled by the particle. Now,

P =
dE

dt
=

ˆ
dω

dP

dω

=
e2v

2πc2
2

ˆ ∞
0

dω ω

(
1− c2

n2 (ω) v2

)
Θ

(
c2

n2 (ω) v2
< 1

)
,

where Θ
(

c2

n2(ω)v2 < 1
)
is the theta function.

=⇒ dE

dx
=
dE

dt

dt

dx
=

e2

πc2

ˆ ∞
0

dω ω

(
1− c2

n2 (ω) v2

)
Θ

(
c2

n2 (ω) v2
< 1

)
.

Remark 9. Each photon has energy E = ~ω
=⇒ the number of photons per distance and frequency is

d2N

dx dω
=

e2

~πc2

(
1− c2

n2 (ω) v2

)
Θ

(
c2

n2 (ω) v2
< 1

)
=

α

πc

(
1− c2

n2 (ω) v2

)
Θ

(
c2

n2 (ω) v2
< 1

)
,

with α := e2

~c ≈
1

137 the fine structure constant.
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6 Synchrotron radiation
idea: Discuss motion of charged particle in a homogeneous B−field, as in Problem #46, but

• do it relativistically

• discuss the power spectrum

6.1 Relativistic motion of a charged particle in a B−field
From PHYS611,

dp

dt
=
e

c
v ×B , (∗)

with p = γmv the momentum
(
γ := 1/

√
1− (v/c)

2

)
.

Remark 1. (∗) holds for relativistic motion.

Remark 2. Force is purely transverse =⇒ E = γmc2 = const., and p = E
c2v with E the particle’s energy.

=⇒ (∗) can be written

E

c2
dv

dt
=
e

c
v ×B =⇒ dv

dt
=
ec

E
v ×B = −ec

E
B × v.

Definition 1. Larmor frequency.

ω0 :=
|e| cB
E

,

is called Larmor frequency.

Remark 3. In nonrelativistic limit, ω0 ≈ |e|cBmc2 = |e|B
mc , called cyclotron frequency.

initial condition: v ⊥ B =⇒ v ⊥ B for all times.

conclusion: particle moves on a circle perpendicular to B−field of radius

R =
v

ω0
=
v

c

E

|e|B
,

and the momentum is related to the radius by

p =
E

c2
v =

1

c
|e|BR .

6.2 The power spectrum of synchrotron radiation
Consider motion in the x− y plane with an observer at point x and θ = � (x, ẑ). Choose coordinate system
such that x = (x, 0, z)

=⇒ x̂ = (sin θ, 0, cos θ) .

and initial conditions such that y (t) = R (cosω0t, sinω0t, 0)

=⇒ v (t) = v (− sinω0t, cosω0t, 0) with v = ω0R.
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current density: j (y, t) = ev (t) δ (y − y (t))

=⇒ j (k, t) =

ˆ
dy e−ik·yev (t) δ (y − y (t))

= ev (t) e−ik·y(t)

= ev (t) e−i
ω
c x̂·y(t).

charge density: ρ (y, t) = eδ (y − y (t))

=⇒ ρ (k, t) = ee−ik·y(t)

= ee−i
ω
c x̂·y(t)

Lemma 1. The power spectrum from § 5.1 can be written

d2P (T )

dΩ dω
=

ω2

4π2c3

ˆ
dτ eiωτ

[
j
(
k, T +

τ

2

)
· j
(
k, T − τ

2

)∗
− c2ρ

(
k, T +

τ

2

)
ρ
(
k, T − τ

2

)∗]

Proof. From § 5.1, the integrand (ignoring eiωτ factor and coefficients) is

εijkεilmx̂j x̂lWkm (k;T, τ)
1.
= εijkx̂jεilmx̂ljk

(
k, T +

τ

2

)
jm

(
k, T − τ

2

)∗
2.
= j

(
k, T +

τ

2

)
· j
(
k, T − τ

2

)∗
−
(
x̂ · j

(
k, T +

τ

2

))(
x̂ · j

(
k, T − τ

2

)∗)
3.
= j

(
k, T +

τ

2

)
· j
(
k, T − τ

2

)∗
−
(
cρ
(
k, T +

τ

2

))(
cρ
(
k, T − τ

2

)∗)
1. By definition (see § 5.1).

2. From § 5.2 Remark 2.

3. At asymptotic distances away from source, x̂ ≈ k̂. Using |k| = ω
c and continuity eq. yields

∂tρ (x, t) = −∇ · j (x, t)
F−→ iωρ (k, ω) = i

ω

c
x̂ · j (k, ω)

F−1

−→ cρ (k, t) = x̂ · j (k, t)

Lemma 2.

v
(
T +

τ

2

)
· v
(
T − τ

2

)
= v2 cosω0τ

Proof.

1

v2
v
(
T +

τ

2

)
· v
(
T − τ

2

)
1.
= sin

(
ω0

(
T +

τ

2

))
sin
(
ω0

(
T − τ

2

))
+ cos

(
ω0

(
T +

τ

2

))
cos
(
ω0

(
T − τ

2

))
2.
= cos

(
ω0

(
T +

τ

2

)
− ω0

(
T − τ

2

))
= cosω0τ

1. v(t)
v = (− sinω0t, cosω0t, 0)
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2. Angle difference formula.

Lemma 3.

e∓
ω
c x̂·y(T± τ2 ) =

∞∑
m=−∞

(∓i)m e∓imω0(T± τ2 )Jm

(ω
c
R sin θ

)
,

with Jm (x) a Bessel function of the first kind.

Proof. The Bessel functions obey

eiz cosϕ =

∞∑
m=−∞

imeimϕJm (z)

and x̂ · y (t) = R sin θ cosω0τ

=⇒ e∓i
ω
c x̂·y(t) = e∓i

ω
c R sin θ cosω0t

=

∞∑
m=−∞

(∓i)m e∓imω0tJm

(ω
c
R sin θ

)
.

=⇒ d2P (T )

dΩ dω

1.
=

ω2

4π2c3

ˆ
dτ eiωτ

[
j
(
k, T +

τ

2

)
· j
(
k, T − τ

2

)∗
− c2ρ

(
k, T +

τ

2

)
ρ
(
k, T − τ

2

)∗]
=

ω2e2

4π2c3

ˆ
dτ eiωτ

[
v
(
T +

τ

2

)
· v
(
T +

τ

2

)
− c2

]
e−i

ω
c x̂·[y(T+ τ

2 )−y(T− τ2 )]

2.
=

ω2e2

4π2c

ˆ
dτ eiωτ

[
v2

c2
cosω0τ − 1

]
∞∑

m=−∞
(−i)m e−imω0(T+ τ

2 )Jm

(ω
c
R sin θ

) ∞∑
n=−∞

ineinω0(T− τ2 )Jn

(ω
c
R sin θ

)
=

ω2e2

4π2c

∞∑
m,n=−∞

in−me−i(m−n)ω0T

ˆ
dτ eiωτ

[
v2

c2
cosω0τ − 1

]
e−i(m+n)ω0τ/2Jm

(ω
c
R sin θ

)
Jn

(ω
c
R sin θ

)
1. Lemma 1.

2. Lemmas 2, 3.

Remark 1. For the macroscopic power spectrum, we are not interested in how the emission varies on the
microscopic time scale given by 1/ω0.

=⇒ average over one oscillation period.

Lemma 4. Let f (T ) be a time average over one oscillation period. Then

e−i(m−n)Tω0 = δmn .
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Proof.

e−i(m−n)Tω0 =
ω0

2π

ˆ 2π/ω0

0

dT e−i(m−n)ω0T

=
1

2π

ˆ 2π

0

dx e−i(m−n)x

= δmn

=⇒ d2P (T )

dΩ dω
=

ω2e2

4π2c

∞∑
m,n=−∞

in−me−i(m−n)ω0T

ˆ
dτ eiωτ

[
v2

c2
cosω0τ − 1

]
e−i(m+n)ω0τ/2Jm

(ω
c
R sin θ

)
Jn

(ω
c
R sin θ

)
=

ω2e2

4π2c

∞∑
m=−∞

ˆ
dτ eiωτ

[
v2

c2
1

2

(
eiω0τ + e−iω0τ

)
− 1

]
e−imω0τ

(
Jm

(ω
c
R sin θ

))2

=
ω2e2

2πc

∞∑
m=−∞

[
v2

2c2
(δ (ω − (m− 1)ω0) + δ (ω − (m+ 1)ω0))− δ (ω −mω0)

](
Jm

(ω
c
R sin θ

))2

1.
=

ω2e2

2πc

∞∑
m=−∞[
v2

2c2

((
Jm+1

(ω
c
R sin θ

))2

+
(
Jm−1

(ω
c
R sin θ

))2
)
−
(
Jm

(ω
c
R sin θ

))2
]
δ (ω −mω0)

2.
=

ω2e2

2πc

( ∞∑
m=1

+

−∞∑
m=−1

+
@
@
@@

∑
m

δm0

)
[· · · ] δ (ω −mω0)

=
ω2e2

2πc

∞∑
m=1[
v2

2c2

((
Jm+1

(ω
c
R sin θ

))2

+
(
Jm−1

(ω
c
R sin θ

))2
)
−
(
Jm

(ω
c
R sin θ

))2
]
δ (ω −mω0)

(∗)

1. Distributed the Jm factor, shifted the sum indices so that δ (ω − (m± 1)ω0)
(
Jm
(
ω
cR sin θ

))2 →
δ (ω −mω0)

(
Jm∓1

(
ω
cR sin θ

))2.
2. The summation can be split into three summations.

(a) The
∑
m
δm0 term does not contribute since ω2δ (ω) = 0.

(b) J−m (x) = (−)
m
Jm (x), so the remaining two summations yield equivalent contributions.

Remark 2. The frequencies emitted are the Larmor frequency (ω0) and all of its harmonics.

Theorem 1. The macroscopic power spectrum averaged over a microscopic period is

d2P (T )

dΩ dω
=

∞∑
m=1

δ (ω −mω0)
dPm

dΩ
,
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with the power radiated to the mth harmonic

dPm

dΩ
:=

ω0e
2

πR

(v
c

)3

m2

(J ′m (mv

c
sin θ

))2

+

(
Jm
(
m v
c sin θ

)
v
c tan θ

)2
 .

Proof. From (∗), the argument of the Bessel functions is (applying the δ−function)

x :=
ωR

c
sin θ = m

ω0R

c
sin θ = m

v

c
sin θ

and the Bessel functions obey the recursion relations

Jm−1 (x)− Jm+1 (x) = 2J ′m (x)

Jm−1 (x) + Jm+1 (x) =
2m

x
Jm (x) .

=⇒ 1

2

(
J2
m+1 + J2

m−1

)
− c2

v2
J2
m =

1

2

[(m
x
Jm − J ′m

)2

+
(m
x
Jm + J ′m

)2
]
− m2 sin2 θ

x2
J2
m

= (J ′m)
2

+
m2

x2
J2
m −

m2 sin2 θ

x2
J2
m

= (J ′m)
2

+
m2

x2

(
1− sin2 θ

)
J2
m

= (J ′m)
2

+
c2

v2

1− sin2 θ

sin2 θ︸ ︷︷ ︸
1/ tan2 θ

J2
m

discussion (1): Integration over Ω yields the total power radiated into the mth harmonic (see Problem
#56): ˆ

dΩ
dPm

dΩ
= Pm =

e2

R
mω0

[
2β2J ′2m (2mβ)−

(
1− β2

) ˆ 2mβ

0

dx J2m (x)

]
.

An analysis (Problem #56) shows that Pm peaks at

m = mc ≈ γ3, γ :=
1√

1− β2
.

=⇒ For relativistic electrons, power goes into a high harmonic.
=⇒ Synchrotrons are good x-ray sources.

discussion (2): In the orbital plane, θ = π/2, and we get

dPm

2πdθ

∣∣∣∣
θ=π

2

=
ω0e

2

πR
β3m2

[
(J ′m (βm))

2
+ 0
]

β≈1
≈ ω0e

2

πR
m2 (J ′m (m))

2

Pm =
e2

R
mω02β2J ′2m (2mβ)

β≈1
≈ ω0e

2

R
2mJ ′2m (2m)



CHAPTER 5. ELECTROMAGNETIC RADIATION 105

But J ′m (m) ∝ m−2/3 for m� 1

=⇒ dPm

dθ
≈Pm ·m ·m−2/3 = Pmm

1/3

=⇒ dPm

Pm
≈ dθ

m−1/3

=⇒ The radiation is confined to a cone about θ = π/2 with opening angle ∆θ ∝ 1
m1/3 ∝ 1

γ .

6.3 Qualitative explanation of the main features
From § 6.2, synchrotron radiation is characterized by

(i) a narrow angle close to the orbital plane

(ii) high frequencies.

For a point particle with trajectory X (t), we have the Liénard?Wiechert potentials (Problem #44)

A (x, t) =
ev (t−) /c

|x−X (t−)| − v (t−) · (x−X (t−)) /c

=
ev (t−) /c

|x−X (t−)|
1

1− n̂ · v (t−) /c

where t− = t− 1
c |x−X (t−)| and

n̂ :=
x−X

|x−X|
.

Let ϕ = � (v, n̂) .

=⇒ 1

1− n̂ · v/c
=

1

1− β cosϕ

1.→ 1

1− β
(
1− 1

2ϕ
2 + . . .

)
≈ 1

1
2 (1 + β) (1− β) + 1

2ϕ
2

=
2

1− β2 + ϕ2

(i) Let β → 1 and consider small ϕ.

=⇒ A is appreciably nonzero for ϕ .
√

1− β2 = 1
γ . This explains (i).

Consider a particle in a circular orbit. The light reaches the observer only during a section ∆s of the
orbit, where

∆s

2πR
≈ ϕ

2π
=⇒ ∆s ≈ Rϕ.

=⇒ The observed signal is emitted only during a time interval
∆t

2π/ω0
≈ ∆s

2πR
≈ ϕ

2π
=⇒ ∆t ≈ ϕ

ω0
.

=⇒ The typical frequency emitted is

ωe ≈
1

∆t
≈ ω0

ϕ
≈ ω0γ. (∗)

This explains one factor of γ.
This hold in a co-moving reference frame, but from the observer’s point of view, ∆s gets Lorentz contracted

by 1/γ =⇒ ωe is larger by a factor of γ.
Finally, the observer sees a Doppler shifted frequency (as discussed in Ch. 4 § 1.6) which provides the

another factor of γ.
=⇒ ωobserverd ≈ ω0γ︸︷︷︸

(∗)

· γ · γ = ω0γ
3

This explains (ii).
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6.4 The polarization of synchrotron radiation
Polarization is measured via the effect of the E− field.

=⇒ Express the power spectrum in terms of E.
From § 4.3,

dU

dΩ
=

c

4π
r2

ˆ
dω

2π
x̂ · [E (x, ω)×B (x,−ω)] .

From § 4.2 Proposition 1,
B (x, ω) ∝ x̂× j (k, ω) ,

E (x, ω) ≈ −x̂×B (x, ω) ,

=⇒ E (x, ω) ∝ −x̂× (x̂× j (k, ω)) .

=⇒ our previous expressions remain valid if we substitute

x̂× j → −x̂× (x̂× j)

Now, from § 5.1,

d2P

dω dΩ
(T ) =

ω2

4π2c3

ˆ
dτ eiωτ [−x̂× (x̂× j (k, T + τ/2))] ·

[
−x̂× (x̂× j (k, T − τ/2))

∗]

Definition 1. Set our coordinate system as in § 6.2: orbit in x− y plane, x̂ = (sin θ, 0, cos θ).
Define parallel polarization as E ‖ ê‖ where ê‖ = (0, 1, 0).
Define perpendicular polarization as E ‖ ê⊥ where ê⊥ = (− cos θ, 0, sin θ).

We can express the radiated power in terms of these polarizations.
Power radiated into parallel polarization state:(

d2P (T )

dω dΩ

)
‖

=
ω2

4π2c3

ˆ
dτ eiωτ [· · · ]y [· · · ]y

1.
=

ω2

4π2c3

ˆ
dτ eiωτ jy (k, T + τ/2) jy (k, T − τ/2)

2.
=

ω2e2

4π2c3

ˆ
dτ eiωτeikx̂·[y(T+τ/2)−y(T−τ/2)]vy (T + τ/2) vy (T − τ/2)

(i) [−x̂× (x̂× j)]y = [j − x̂ (x̂ · j)]y = jy since x̂ has no y−component.

(ii) j (k, t) = ev (t) e−ikx̂·y(t).

But in § 6.2, the power had the factor
[
v2 − c2

]
where here we have vyvy.

Lemma 1.

vy (T + τ/2) vy (T − τ/2) =
1

2
v2 [cos 2ω0T + cosω0τ ]

Lemma 2.

eikx̂·[y(T+τ/2)−y(T−τ/2)] =

∞∑
m=−∞

(Jm (kR sin θ))
2
eimω0τ ,

with f (T ) averaged over one T−period.
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Lemma 3.

cos (2ω0T ) eikx̂·[y(T+τ/2)−y(T−τ/2)] = −
∞∑

m=−∞
Jm+1 (kR sin θ) Jm−1 (kR sin θ) eimω0τ

Substituting these into expression for power radiated into parallel polarization yields(
d2P (T )

dω dΩ

)
‖

=
ω2e2

4π2c3

ˆ
dτ eiωτeikx̂·[y(T+τ/2)−y(T−τ/2)]vy (T + τ/2) vy (T − τ/2)

1.
=

ω2e2

4π2c3

ˆ
dτ eiωτ

1

2
v2eikx̂·[y(T+τ/2)−y(T−τ/2)] [cos 2ω0T + cosω0τ ]

2.
=

ω2e2

4π2c3
v2

2

ˆ
dτ eiωτ

∞∑
m=−∞

[
cosω0τJ

2
m − Jm+1Jm−1

]
eimω0τ

3.
=

ω2e2

4π2c3
v2

2

∞∑
m=−∞

[
1

2
J2
m+1 +

1

2
J2
m−1 − Jm+1Jm−1

]
δ (ω −mω0)

(i) Inserted Lemma 1.

(ii) Inserted Lemma 2, Lemma 3. Arguments of the Bessel functions are kR sin θ.

(iii) Replaced cosω0τ using Euler’s formula.

=⇒
(
dPm

dΩ

)
‖ is given by the expression for dPm

dΩ in § 6.2 with

1

2

(
J2
m+1 + J2

m−1

)
− c2

v2
J2
m → 1

2

(
J2
m+1 + J2

m−1

)
− Jm+1Jm−1

=
1

2
(Jm+1 − Jm−1)

2

1.
=

1

2
4 (J ′m)

2

= 2 (J ′m)
2

(i) Recursion relation.

Theorem 1. The power radiated into the mth harmonic with parallel polarization is(
dPm

dΩ

)
‖

=
ω0e

2

πR

(v
c

)3

m2
(
J ′m

(
m
v

c
sin θ

))2

.

This is the first of the two terms in dPm

dΩ from § 6.2.

Corollary 1. The power radiated into the mth harmonic with perpendicular polarization is

(
dPm

dΩ

)
⊥

=
ω0e

2

πR

(v
c

)3

m2

(
Jm
(
m v
c sin θ

)
v
c tan θ

)2

.
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This is the second of the two terms in dPm

dΩ from § 6.2.



Appendix A

Glossary of notation

Scalars

x · y := g (x,y) = xjy
j

Vectors

(x× y)j := εjklx
kyl

Tensors

(1n)jk := δjk

(x⊗ y)
jk

:= xjyk

Matrices

(AT )jk := Ak
j

S. fields transforms as...

(∇ · v) (x) := ∂jv
j (x) scalar

V. fields transforms as...

(∇f)j (x) := ∂
∂xj f (x) =: δjf (x) covector

(∇× v)
j

(x) := εjkl∂kvl (x) pseudovector
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Appendix B

Transformation identities

Let D be a coordinate transformation. By Claim 1,

Dj
k =

∂x̃j

∂xk
,
(
D−1

)
j
k =

∂xj

∂x̃k
.

In what follows, transformation identities have been tabulated for various mathematical objects.

1 Scalar fields
CS C̃S

(∇ · v) (x) = (̃∇ · v) (x̃) “”

2 Vectors
CS C̃S

ej = Dk
j ẽk ẽj = (D−1)kjek

xj = (D−1)jkx̃
k x̃j = Dj

kx
k

xj = Dk
j x̃k x̃j =

(
D−1

)
k
jxk

3 Vector fields
CS C̃S

∂jf (x) = Dk
j ∂̃kf̃ (x̃) ∂̃j f̃ (x̃) =

(
D−1

)
k
j∂kf (x)

(∇× v)
j

(x) = (detD)
(
D−1

)
j
k

˜(∇× v)
k

(x̃) ˜(∇× v)
j

(x̃) = (detD)Dj
k (∇× v)

k
(x)

4 Tensors
CS C̃S

gjk = Dm
j g̃mlD

l
k g̃jk = (D−1)mjgml(D

−1)lk

εjkl = (detD)
(
D−1

)
j
α

(
D−1

)
k
β

(
D−1

)
l
γε
αβγ ε̃jkl = (detD)Dj

αD
k
βD

l
γε
αβγ
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Appendix C

Electromagnetic field tensor

In what follows, we define

E :=
(
E1, E2, E3

)
=: (Ex, Ey, Ez) and Bjk :=

 0 −B3 B2

B3 0 −B1

−B2 B1 0

 =:

 0 −Bz By
Bz 0 −Bx
−By Bx 0

 .

Note the (confusing) convention that upper numerical indices correspond to lower “Cartesian” indices. Also
note that Bjk = Bjk.

1 Covariant components Fµν

Fµν =:

(
0 E
−E Bjk

)

2 Contravariant components F µν

Fµν = gµαgνβFαβ =


+
−
−
−


µ


+
−
−
−


ν

Fµν =

(
0 −E
E Bjk

)

3 Mixed components F µ
ν

Fµν = gµαFαν =

(
1 0
0 −13

) (
0 E
−E Bjk

)
=

(
0 E
E Bjk

)

4 Mixed components F µ
ν

Fµ
ν = gµαF

αν =

(
1 0
0 −13

) (
0 −E
E Bjk

)
=

(
0 −E
−E −Bjk

)
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