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Chapter 1

Mathematical preliminaries

1 Vector spaces and tensor spaces

1.1 Vector spaces

Let V be an n-dimensional vector space over R.
We say that V has a set of basis vectors

{ej;7=1,....n}

and elements (that is, vectors) & expanded in this basis aaE]
n
T = ijej =2'e; , a2’ eR,
j=1
where the scalars z7 are called the coordinates or components of x.

Example 1. Define the set
R":=Rx - xR={(z",...,2") ;27 € R}.

R™ constitutes a vector space over R if vector addition and scalar multiplication are defined to be the
standard real vector addition and real scalar multiplication.
Furthermore, the Cartesian basis is

{e1 =(1,0,...,0),e3 = (0,1,0,...,0),...,e, = (0,...,0,1)}.

Remark 1. Two vector spaces V and W over the same field F' are said to be isomorphic, denoted V = W iff
there exists a bijection T : V' — W that preserves addition and scalar multiplication. That is,

T(x+y) =T (x) +T(y), and
T (cx) =cT(x)

forallw,yEVandallceFE]

Claim 1. All n-dimensional vector spaces over R are isomorphic to R™.

11 have adopted the notation that vectors are bold.

2Here, and throughout this document, one must be mindful of what type of variable and what type of operation is written,
because often the same symbols are used for addition between vectors and addition between scalars. In this case, & 4y is vector
addition, cx is scalar-vector multiplication, T (z) + T (y) is scalar addition, and ¢T'(x) is scalar-scalar multiplication.



CHAPTER 1. MATHEMATICAL PRELIMINARIES

Proof. In fact, all finite-dimensional vector spaces of the same dimension and over the same field are
isomorphic to one another. See Theorem 9 of this document. O

1.2 Tensor spaces

Let V' be an n-dimensional vector space over R with basis {e;}.

Definition 1. Linear forms. A mapping f: V — R is called a linear form iff

i) flz+y)=f(z)+f(y)
(i) f(cx) =cf(=)

for all z,y € V and all ¢ € R.

Definition 2. Bilinear forms. A mapping f:V XV — R is called a bilinear form iff

) fe+y,z)=f(=2)+ f(y,2)
(i) f(z,y+2)=f(z,y)+ f(z 2)
i) flex,y) =cf(z,y)

) f(zcy) =cf(zy)
for all z,y,z € V and all ¢ € R.

Definition 3. Bilinear form components. The scalars ¢ := f (e, ex) are called the coordinates or
components of the bilinear form f in the basis {e;}.

Proposition 1. The coordinates completely determine a bilinear form.

Proof. Let x,y € V. Then

flzy)=f (Cﬁjej?ykek) = !Ejykf (€j7€k) = tjk:xjyk'

and we see that knowledge of {t;} implies knowledge of f (x, y)ﬂ O

“Notice the importance of f obeying properties (i)-(iv) of a bilinear form.

Definition 4. 2-tensors. The n? scalars t;;, are called the coordinates of the rank-2 tensor (or 2-
tensor) t (which is equivalent to the bilinear form f).

Claim 1. Symmetric forms. A bilinear form, f, is symmetric if and only if the components of the
tensor with respect to the given basis are symmetric; that is,

fle,y)=fly,x)Ve,yeV < tjp=1t,Vi,k=1,...,n


http://math.kennesaw.edu/~sellerme/sfehtml/classes/math3260/isomorphicvectorspaces.pdf
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Proof. Assume f (z,y) = f (y,x) Yo,y € V. Then
tir = f(ej,er) =f(er,e) =ty Vi, k=1,...,n.
Now assume t;;, = tg; Vj,k =1,...,n. Then
flej,en)=f(ex,e;) Vi k=1,...,n.
Let «,y € V. These can be expanded as * = xjej and y = yjej. Thus,

2" f (ej,ex) =a7y" f (ex, €))
= f (a:jej,ykek) =f (ykek,xjej)
g f(:v,y) :f(yam)‘

2 over R.

Theorem 1. The set of rank-2 tensors forms a vector space of dimension n

Proof. (Problem #3) O

In a similar manner to how we constructed 2-tensors, one can consider multilinear forms f: V xV xV — R,
f:VxVxVxV =R, ete. to construct tensors of rank 3, 4, etc. with coordinates i1, tjrim, etc. Having
defined tensors in this manner, let us consider some commonly encountered tensors.

Example 1. The Levi-Civita tensor. Consider R? with its Cartesian basis {e1, ez, e3}. The Levi-
Civita tensor (or completely antisymmetric tensor) is the rank-3 tensor € : R? x R? x R? — R defined
by
+1 if (jkl) is an even permutation of (123)
e(ej,er, e) =tegjp =4 —1 if (jkl) is an odd permutation of (123)
0  if (jkl) is not a permutation of (123).

One example of its use is in representing the cross product x X y in Einstein notation:

(xxy); = iyl

Example 2. The FEuclidean Kronecker delta. Consider R” with its Cartesian basis {e1,...,ey}.
The FEuclidean Kronecker delta is the rank-2 tensor § : R™ x R™ — R, where

1 ifj=k
0 otherwise.

§(ej,ek) = 6jk = {

Note that §,; has the values 0 and 1 in the particular case of the Cartesian basis, but generally this is
not so. This is because the Kronecker delta is typically defined in terms of the mixed tensor, 4y, which
we discuss in the next section.

1.3 Dual spaces

Let V be an n-dimensional vector space over R, and let f be a linear form thereon. Let € V, and expand
x in a basis: © = x/e;. Now consider

f(:c):f(xlel+---+x”en):f(el):vl—l—---—l—f(en)x"

= w4 Fupa” = ujx’
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where u; := f (e;) € R. Every linear form on V' can be written in this way; the scalars u; uniquely determine
the form fﬂ Furthermore, the set of all w := (uy,...u,), and thus the set of linear forms f, constitutes a
vector space, denoted V*. Since V* is of dimension n, it is isomorphic to R™, and by extension, to V.

Definition 1. Dual spaces.

(a) The space V* of linear forms on V' is called the space dual to V.

(b) The elements of V* are called co—vectorsﬂ They are one-to-one correspondent to the vector
elements of V.

®Co-vectors are also called covariant vectors, in which case vectors are called contravariant vectors.

Since the co-vectors are defined via linear forms, and rank-n tensors are defined by n-linear formsE] we can
consider co-vectors as tensors of rank 1.

Definition 2. Natural pairing. The scalar f (x) € R is called the natural pairing or dual paz’m’nglﬂ of
the co-vector u (corresponding to f) and the vector . We write

(u, ) := f(x) = uja’.

%According to Dr. Belitz, this is called the scalar product and denoted u - @, though I have been unable to verify this.
If {e;} is a basis of V, there exists a canonical dual basis or co-basis {ej} of V* defined by

(e/,ex) = (¢7), (ex) =3,

- 1 ifj=k
5%::{

where

0 otherwise

is called the Kronecker delta. The basis {e;} and co-basis {ej} are said to be biorthogonalﬁ Any element
u € V* can be expanded in terms of the dual basis as

— u.el
u = ujse’ .

Definition 3. Contra-/co-variant and mixed tensors.
(a) Bilinear forms f : V* x V* — R acting on the co-basis define contravariant tensors of rank 2,

f (ej7 ek) = tjk7

and analogously for higher rank tensors[”] The tensors of Example [2] are then called covariant tensors.
(b) Multilinear forms acting on mixtures of basis and co-basis vectors define mized tensors. For
example, f: V* x V x V* = R defines ' = f (e7,ex, €') E|

“In this manner, vectors can be considered contravariant tensors of rank 1.

bThe Kronecker delta, 6%, is thus a mixed tensor of rank 2.

Definition 4. Tensor product. The contravariant tensor whose components are given by the product

of the components of two contravariant vectors & and y is called the tensor product of & and y, denoted
by

‘t:m@)yv tjk:xjyk

3The proof of this is analogous to that of Proposition

4As per §

5Tt can be proven that, for finite dimensional V, the co-basis is a basis of V*.
61f {e;} is the Cartesian basis, it can be proven that e; = €7 Vj € [n]
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Analogously, t;r = z;yk, tjk = :cjyk, and /), = 27yy.

2 Minkowski space

2.1 The metric tensor

Definition 1. Metric tensor. Let V be an n-dimensional vector space over R with basis {e;}, and
let g: V x V — R be a symmetric bilinear form[] Then ¢ defines a symmetric 2-tensor:

| 9ix = 9(e5,€x) = 985

1

Let g have an inverse ¢g~!, corresponding to a tensor g’%, in the sense

gikg" = &

Then we call the scalar

g(z,y) =27 gjry*

the generalized scalar product of x and y, with g;;, called the metric tensor, denoted

9@y =z y=ay

%That is, g (@, y) = g (y,z) Ve, y € V.

Since V is isomorphic to R™, we can consider R” in what follows.

Definition 2. Co-basis. Consider R" endowed with a metric tensor, g, and let {e;} be a basis. We

define an adjoint basis or co-basis {ej } by

It readily follows thaf[?]

ej = gjke

‘ej; = 5§Ez = gjrg*le; = gjrer

Proposition 1. The contravariant and covariant components of a vector are related by

k j ik
T = gjppx”, x) =g’y

k since x; are defined to be the components of = in basis {ej}. But

Proof. * = 2'e; = 2/g;re* = e
g is symmetric:

gik = grj = T = gr;a’. Therefore, 27 = 0¥ zk = ggtiak = 219, O

Remark 1. It can be proven[] that the metric tensor, operating on a general n + 1 rank tensor, has the effect
that it lowers or raises the index being summed over:

gathlln = 11l

"We proved it in class lol
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Remark 2. Note that §;; = g;i16F = gjx, which in general is not equal to (5%. However, gé- = gjrg" = 6;- is

always true. Only in Euclidean space is d;; = 5?;.
2.2 Basis transformations

Definition 1. Matrices.

(a) An n x n array of real numbers D7; (corresponding to the j** row and k" column) we call an
n X n matriz D with elements D7y,.

(b) A matrix D is invertible if a matrix D~! exists such that

D7y (D™Yk, = (D7), Dk = 5/

or, DD~! = 1,, with 1,, the n x n unit matrix with (1,,)7; = 5%.
(c) The matrix DT with elements

(D")x = Dy’

is called the transpose of D.

Proposition 1. The transpose of a product is the product of the transposes, in reverse order:

(AB)" = BT AT

Proof. ((AB)")). = (AB)y? = Ay'Bi7 = (AT)!x(BT)I, = (BT)7,(AT)!), = (BT AT)i}. O

Proposition 2. The inverse of a transpose is the transpose of the inverse:

()" = (07"

Proof. DT (D_l)T =

Definition 2. Basis transformation. Consider R with a metric tensor g; let {e;} be a basis and
let D be an invertible matrix. Then we define a new basisﬂ {&;} by the basis transformation

& =er(D7*; |

whose inverse transformation yieldd’]

— 2 k
e; = ¢e,D";

For proof that it is indeed a basis, see Problem 5.
bej = edy = ex(D~1)*D'; = & D!
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Proposition 3. Let © € R™ be a vector whose contravariant coordinates with respect to a basis {e;}
are 27. Then its coordinates with respect to the basis {€;}, denoted &’ and called a coordinate transfor-

mation, are
¥ =D'2a"| or |#=D=x

with inverse transformation

=D N, it =] or |x=D"'&

Proof. * = xjej = xjékaj = ijkjék =ghe, — k= achkj O]

Proposition 4. Let gji = e; - e}, be the metric in the basis {e;}, and let D~ be a basis transformation
such that &; = er(D~Y)*;. Then the metric § corresponding to g expressed in the transformed basis
{&;}, defined by coordinates

s given by

~ — m - ~ -n\T — ~
Git = (D) guu(D Ny | or |g=(D7") gD™'| or |g=D"D

Proof. Problem 6 O

Corollary 1. The covariant coordinates transform according to

zj = (D7")"

with inverse transformation

_ Dk .~
x; = D"y

Proof. x; = §jk£k = ijDkzﬂcl = ijDklglmem = (9Dg);"
~\T — m ’=1 “N\T\ m —1\m
= ((D 1) gD 1D9)j Tm = ((D 1) )j Ty = (D 1) iTm O

2.3 Normal coordinate systems

Lemma 1. For every symmetric n x n matriz M7, = M¥; that has an inverse, there exists a transfor-
mation D such thal¥ o ‘ _
M7y, = (DT MDY}, = m;01.

That is to say, there exists a transformation that diagonalizes M .

“When a sub- or superscript is in parentheses, no summation is implied.

Proof. This is called the spectral decomposition theorem, and is proven elsewhere. O
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Corollary 1. Let gji. be a metric on R"™. There exists a coordinate transformation D such tha{’]

Gik = A)0jk

“Here, for whatever reason, the Kronecker delta is the Euclidean one.

Proof. g can be considered a real symmetric matrix; by Lemmall] it can be diagonalized in this form. [

Theorem 1. There exists a coordinate transformation D that diagonalizes g such that

1

-1

with m elements of +1 and n —m elements of —1, where 0 < m < n.

Proof. From Corollary [I} we can write ... O

Definition 1. Normed coordinate systems. Basis sets in which the metric has the form of Theorem ]
are called normed coordinate systems. The number m is characteristic of the space; this is sometimes
called Sylvester’s Rigidity Theorem.

Example 1. Normed FEuclidean space. Let m = n. Then

1
g =
1
and we see .
gjk = 0y,
R"™ endowed with this metric is called n—dim Euclidean Space, E,. The normal coordinate systems
are called Cartesian. In the space FE,, we have x; = gjkxk = (%xk = z7. In this case, positive

semi-definiteness holds, and so also the Pythagorean Theorem.

Example 2. Normed Minkowski space. Let m = 1; (n > 2). Then

1
-1

-1

R™ endowed with this metric is called Minkowski space, M,,. The normal coordinate systems are called
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inertial frames. In the space M, we have z1 = 2! and z; = —27 for j = 2,...,n. In physics we label
T = (xo,azl,x27x3) with 20 = 29 = ¢t where t is called time and (wl,w2,x3) is called space. c is a
characteristic velocity, namely the speed of light in vacuum.

2.4 Normal coordinate transformations

Definition 1. Normal coordinate transformation. A normal coordinate transformation is one that
transforms a normal coordinate system into another normal coordinate system. That is,

g= (D) gD"|

=070

from which it follows

Example 1. For F,,, these transformations are called orthogonal and are a subset of unitary transfor-
mations:

g=1,=(D ") 1,07 = (D) D!

= D' =D

Example 2. For My, these transformations are called Lorentz transformations.

Lemma 1.
(i) If D is a normal transformation, then so is D~!
(i) If D1, Do are normal transformations, then so is the successive transformation D1 Ds.

Proof. Problem 7 O

Theorem 1. The set of normal transformations forms a group (not necessarily abelian) under matriz

multiplication.

Proof. Problem 7 O

Example 3. In E,, the group of normal transformations is called the orthogonal group O (n).

Example 4. In M,,, the group of normal transformations is called the pseudo-orthogonal group
O(l,n—1).

Proposition 1. Let D be a normal coordinate transformation. Then
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Proof. From Definition [1} det g = det (DT gD) = det g(det D)? = detD = +1. O

3 Tensor Fields

3.1 The concept of a tensor field

Let V be R™ endowed with metric tensor g, and let D be a normal coordinate transformation (say, from
coordinate system CS to C'S). That is, transformed coordinates take the form &/ = D7,z".

Definition 1. (Pseudo-)tensor fields. Vx € V, consider assigning a rank-N tensor t/1J¥ () to
x. The set of assigned tensorsﬂ {tjl”'jN (x);x € V}, is called a tensor field iff, under a coordinate
transformation,

N ((L’) _ Djlkl ,,,Dijthr“jN ((L’)

and is called a pseudo-tensor field iff, under a coordinate transformation,

‘gjl»»-m (@) = (det D) Dy, --- DIv 719N () ‘

@A tensor field t can be considered a tensor-valued function with domain V. That is, t : V — V V.

Example 1. Is the Levi-Civita tensor a tensor or pseudo-tensor? Recall that by Example [I| the
Levi-Civita is independent of a; that is[7]

gIMl = ¢ (éj, e, él) =c (e], e, el) = gIhkl,
Let D be a normal coordinate transformation. Thenl’]

DjaDngl,ye’:‘aﬁ'y = Z sgn (7T') Djﬂ.(l)Dkﬂ,(g)Dlﬂ.(g)
TES3

Di; Di, Dig

DF, DF, Dk

DYy D's Dl

1 2 3

g 1 — ikl 1 _
det D det D

sgn (j K l) det D = 7" det D

= &

As per Definition [I] the Levi-Civita tensor constitutes a pseudo-tensor field:

&Ikl = (det D) D7 ,,D* 3 D" e*P7

*This is the only justification I could come up with for this equation. I am not sure if the middle two parts of this
equation are the reason you can say this.
bA few remarks on the notation used here:

e S3 denotes the “symmetric group on 3 letters”, and represents the set of possible permutations of the set {1, 2, 3}.

Thus, © € S3 means 7 is some permutation of the numbers {1, 2,3} such as 312, and ) (---) represents a sum
TES3
over all possible permutations of {1, 2, 3}.

e sgn () represents the “sign” of the permutation; if it is an even permutation, sgn () = 1, and if an odd permutation,
sgn () = —1.
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e 7 (1) is the first number in the permutation, 7 (2) is the second, etc. That is, if the permutation is 312, = (1) = 3,
m(2) =1, etc.

o Wi t tati 312, with th tati 1 2 3 — (L 23 Th d f

e can represent a permutation, say , wi e notation ( 1) 7@ =@®)=\3 1 2) e order o

the columns doesn’t matter: (; f g) = (? g ;) However, the bottom row always represents 7 (1), 7 (2),

etc.

3.2 Gradient, curl, divergence

Let f (x) be a scalar-valued function f: V — R (that is, a scalar field).

Claim 1. Let D be a coordinate transformation. Then

- oz?
DN ==
( ) k= 5k
Proof. Take the partial derivative of z/ = (D~')4,Z* with respect to Z". O

Definition 1. Gradient. The gradient of f, denoted (Vf)(x) or (grad f)(x), is the vector field
defined by component]

(V5); () i= 5] (2)

which is often also Writterﬂ

0
0 f (x) = oz (z)
Analogously[]
] 0
o f(x) = T%f(x) p

“Note that when we begin discussing Minkowski space, the V symbol will be reserved for Euclidean vectors.
bA subscript is used because, as we will prove, the gradient transforms covariantly.
¢The superscript reflects the fact that this derivative transforms contravariantly.

Proposition 1. The gradient of a scalar field transforms as a covariant vector:

if (@) = (D7) *;0uf (2)

Proof. Let D be a coordinate transformation. Ther[]

57 @) = 5ui@=;
xk
- @)

017 Oz

= (D7) "0k (@)

0

[ ()

J
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aSince f is a scalar-valued function, f (&) = f (). The second line follows from the chain rule.

Definition 2. Curl. The curl of a vector field v (x), denoted (V x v) () or (curl v) (x), is the vector
field whose j*™ component isﬂ

(V x v)! () := ™™o (x)

“The superscript reflects the fact that the curl transforms as a pseudovector.

12

Proposition 2. The curl of a vector field transforms as a pseudovector:

—_~ ]

(V x v) (&) = (det D) D7}, (V x v)" (z)

Proof. Let D be a coordinate transformation. By Proposition [I] and Corollary [I] from §[2.2]

Vxo) @ = MG (@)

= (D7) ™0m (D7) *va (2)

— 525/%1 (Dil) m, (Dil) ¥ O ()

= DI (DY) (D7) ™ (D7) “10mva ()
(det D)evma

= (det D) D7.,"™*0,,v, ()

= (detD) D, (V x v)" ()

Definition 3. Divergence. The divergence of a vector field v (x), denoted (V - v) (x) or (div v) (z),
is the scalar field defined by

(V-v)(x):= 5'jvj ()

Proposition 3. The divergence of a vector field transforms as a scalar:

(Vo) (@) = (V-v)(2)

Proof. By Proposition [I] and Proposition [3] from §

—~—

(V-v)(2) = 0;% (@)
= (D™YY0D7 " (z)
(D) LD ok (x)
= §Lop” (x) = " (x)

= (V-v)(z)
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3.3 Tensor products and traces

We can generalize the concepts of the tensor product defined in Ch. [I| and the trace of a matrix.

Definition 1. (General) tensor product. Let s, t be tensors of ranks N and M, respectively. The
tensor product of s and t, denoted s ® t, is the rank N + M tensor defined by coordinates

(8 Q t)Jl"'JNJrM = gJU T INEIN+1I T IN+EM

Proposition 1. The tensor product of two tensors or pseudotensors is tensor, while the tensor product
of a tensor with a pseudotensor is a pseudotensor.

Proof. Easy (apparently) O

Definition 2. Contraction. Let t be a tensor or pseudotensor of rank N+2. We define the (1, 2) —trace
or (1,2) —contraction of ¢ as the rank N tensor or pseudotensor u with components

by — gjktjkll“'lz\f _ tjjll"'lN _ tjjll'”lN I

Note that the 15* and 2" indices were summed over; in general the (j, k) —contraction will instead sum
over the j* and k" indices, respectively.

Example 1. The curl of a vector field can be considered a (2,4) — and (3, 5) —contraction of the rank
5 pseudotensor e/ 9™y (z).

3.4 Minkowski tensors

Consider My; that is, R* endowed with the Minkowski metric tensor g = (4, —, —, —).
Let A* € M4. We adopt the following conventions:

1. We will often refer to the entire vector as A" = (AO, Al A2, A3) =: (AO, A)
2. In sums, lowercase Greek indices run over all four indices: p =0,1,2,3.

3. Latin indices run over the three Euclidean components: j = 1,2, 3.

A =0

—A =1,2,3

Euclidean vector in the subspace of M, spanned by {e;, ez, es}.
Now consider a rank 2 tensor F'. Analogous to the above conventions, we can write F' in an array as

In this notation, A, = g A" = Furthermore, A := (Al,Az,A3) can be considered a

FOO ; FOl F02 FO3

F,u.u — :

8Note that we also label the first index with a 0 instead of a 1.
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where F% and FJ° can be considered vectors in the Euclidean subspace, and F7* can be considered a
Euclidean 2-tensor ]

Definition 1. Symmetric tensors. F*¥ is called a symmetric tensor iff

e =F7]

from which it follows that F% = FJ0.

Definition 2. Antisymmetric tensors. F*" is called an antisymmetric tensor ift

=]

from which it follows that F7* is antisymmetric, F%9 = —FJ% and F** = 0.

Lemma 1. Antisymmetric Euclidean 2-tensors are isomorphic to Fuclidean pseudovectors.

Proof.
0 IR
h=—th — == 0 o
EE— 0
= IF =gk,
Since ¢ is a tensor and ¢ is a pseudotensor, v is a pseudovector[’] O

“For some reason, Belitz writes the components of v with subscripts instead of superscripts. I think they should be
superscripts, though.

Proposition 1. Any antisymmetric 2-tensor in Minkowski space can be written

‘
!
0 ! at a? a’
,,,,,,, e S SR A
—at! 0 vd —0?
= ‘
—a? | =3 0 vl
‘
a3 v =t 0

where a is a Fuclidean vector and v := (1}1,’[)271}3) is a Fuclidean pseudovector.

Proof. See Definition [2] and Lemma O

91 use a different notation that Belitz; in his notation, F%J = F}, and F70 = F,,.
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Example 1.

0 a 1.
B — RBE = e fmm—mm -
F v — F gK,V - < _a] : t]k > < : _]13 >

Follow an analogous procedure to compute

Example 2. F,, F" =2 (v? - a?). This is just a Minkowski scalar!



Chapter 2

Maxwell’s Equations

1 The variational principle of classical electrodynamics

1.1 The Maxwellian action

Axiom 1. Space and time are described by a four-dimensional Minkowski space with elements
xt = (cty, x) |,

where t, is called time, @ is the position in space, and c is a characteristic velocity.

Remark 1. We adopt the conventions outlined in Ch. [} §[3.4

Axiom 2. Empty space (“vacuum”) supports a Minkowski vector field
A (x)

called the electromagnetic 4-vector potential.

Definition 1. Flectromagnetic field tensor. The antisymmetric 2-tensor field constructed from the
4-gradients of the electromagnetic 4-vector potential via

| P (z) := 9" A" (z) — 9" A" (x) |

is called the electromagnetic field tensor.

Remark 2. By Ch. § FH (z) can be represented in terms of a Euclidean vector field and a Euclidean
pseudovector field.

Axiom 3(a). The physical field configurations in vacuum are those that minimize the action

— 1 4 n%
Svac 1= T6m d*z F,, (x) F* (z) |,

where d*z := edt dx .

Remark 3. The coefficient ﬁ is dependent on the unit convention used. In this class we use CGS.

Remark 4. Classical electrodynamics is governed by a principle of least action, as is classical mechanics. How-
ever, in electrodynamics we need to find field configurations A* (x) that minimize the action; in mechanics,
we only had to find paths x (t).

16
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Remark 5. As per Example F*E,, is a (Minkowski) scalar; therefore the theory is invariant under Lorentz

transformations (but not Galilean).
Axiom 3(b). Matter is characterized (in part) by an My vector J# (x) that couples to A* (x) by the action

Sinteraction =

—l/d%‘ JH(z) Ay (z) |

Cc

The field plus its interaction with a given J# (x) is described by the action

‘ S = Svac + Sintcraction .

Remark 6. J* (z) is called the 4-current.

Remark 7. J* (z) is “god-given”. We do not include the feedback from the field on the matter. One needs

another action term to account for this.

Definition 2. Dual field tensor. The dua/ﬂ field tensor, denotedﬂ FH is defined as

P = chvelF, |

where e#**8 is the completely antisymmetric 4-tensor.

“Not “dual” as in the dual vector space; this is just the conventional name for this tensor.
bThis tilde is not implying any transformation; it is merely conventional.

Proposition 1. R
O F* () =0

Proof. Problem #12.

1.2 Euler-Lagrange equations for fields

Recall that in classical mechanics, for a system with f degrees of freedom, we hadE]

Lagrangian:
L:L(ql (t)7...,Qf(t),Q1 (t),...,ij(t))

action: We varied q (¢) and examined §S:

Sz/ﬁLMU%Mm

extremals:
oL OL

!
0=465 = /dt {5q»+.54}
Zj: 8(]]‘ J 8(]j J

_ /dtz [aL d aL] 54,

— [9q; dt dg;
. oL d oL
dq; arbitrary = 0 = 8713 — %87(]]

1
1In this section and elsewhere, the symbol = represents an equation we assert must be true as part of a proof (such as “we

!
must set §S = 0 to obtain extremals” — “6S = 0”).
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In field theory, we follow an analogous procedure to obtain the Euler-Lagrange equations. A scalar field
¢ (z) = ¢ (x,t) can be considered a system with f — oo degrees of freedom by discretizing ¢; to do so, we
identify ¢ (x1,t) := q1 (t), ¢ (x2,t) := g2 (¢), etc. Imagine dividing space into cubes with the position vector
x; pointing to the j* such subdivision, then taking the limit that the number of cube subdivisions goes to
infinity.

We now need a “Lagrangian density” so that we can integrate over the volume elements. That is, we now
have

Lagrangian density:

L =2 (¢(z,t),0"¢(x,1)),
a function that depends on spatial gradients in addition to time derivatives.

Lagrangian: We obtain our Lagrangian by integrating over all space, such thaﬂ
L= /d:c.i’ (6 (2,1), 0" (2,1))
action:
§= c/dtL - /dazo /da:.i”(d)(sc,t),@"(b(w,t))
[ de 2 6@, @)

extremals: As before, we require

0+6S = /d4x {&%M Mé(c?m)]

d¢ 9 (0.0)
0% 0¥
= d*z |=— -0 } 1)
[t 5 - o) o
. 0L 0%
d¢ arbitrary — 0 = %* um’

where the second line follows from integration by parts and discarding the boundary terms.

Thus, we obtain the Euler-Lagrange equations

0.8 04

50,0~ 00 | 2

Remark 1. These are the E-L equations for a scalar field, ¢. See Problem #13 for a more detailed derivation,
in which the functional derivative of the action is used. For a functional S = S [¢ (z)], the functional derivative
is defined (for vectors x,y) as

56 (0 ebe

Remark 2. This can be generalized to tensor fields; in fact, you just append indices to ¢.

Remark 3. In general, .# will depend on higher order gradients. Our action depends on gradients of A* (z)
by Axiom 3(b).

Remark 4. Our E-L equations for fields are PDEs, in contrast to mechanics where we only had coupled
ODEs!

2We use the notation da to represent the volume element for R3 (in Cartesian coordinates, de = dx dy dz.
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1.3 The field equations

From Axiom 3(b), the Maxwellian Lagrangian density is

1 1
=——F, F" — —JrA
<z 16w " cJ "

=2 (A" (z),0" A" (x)) .
Therefore, our Euler-Lagrange system of equations (Equation (2.1))) becomes
0% 0L

5 = : 2.2
(040 @)~ 0(Aa (1)) (22)
Now, F*" is defined in terms of gradients of A* only, so
0L 1 0
— = —— J(2)A.(x
9 (A, () (A, @y 7 @ Au @)
1 «
On the other side of the equation,
0z 1 0
- = - R AV
8(35Aa (1‘)) 16m 8(85Aa) [Flwg g Fn}‘]
1 0
— T kM w Y o _
1677 9 g(opAn) Onde = 0 Ay) (Ondr = OrAL)]
1 K Av « « a B o
= —geog™e™ (6062 = 6167) (9un — 0rA) + (8705 — 0307 (9.4, — 0,4,
1
= 15 [0 = g7 g) (0.5 — 03 AL) + (679™ = 9™9™) (04 Ay — D, A,)]
= [(0PA% - 74P — 97 AP + 8P A) + (0P A% — 0% AP — 9" AP + 9P A%)]
167
1
- B po _ Ao AB
= 6 [4 (8 A 0“A )]
1
_ _ © mfa
= Tl (2.4)

Inserting Equations (2.3) and (2.4]) into our Euler Lagrange Equation (2.2)), we obtain

O, F () = %J" @ || (2.5)

Remark 1. All physical fields must obey these four equations.

Remark 2. Since F*” is defined in terms of A¥, these equations are differential equations for A¥, making A*
the “fundamental” physical object. Alternatively, we can augment Equations (2.5) by Proposition

D" " Fox (z) = 0], (2.6)

which contains the structure of F*¥ in terms of gradients of A*. We can then consider Equations (2.5) and
(2.6) to be field equations for F*”, regarding F*¥ as fundamental.

2 Conservation laws and gauge invariance

2.1 Continuity equation for the 4-current
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Proposition 1. The 4-current obeys the continuity equation:

O J! () =0\
Proof. From §[1.3] Equation (2.5)),
0y J" = —0,0, F" =—-0,0,F"" = —-"8,0,F" = —0,J"
47Tvv 47 N—_—— 47
sSym. a-sym. relabel p<v

== 0,J"=0
O

Remark 1. The 4-vector J* = (JO, J ) has a time-like component defined as J° =: ¢p and space-like compo-
nent defined as J =: 3. That is,

JH =:(cp, J) |

p is called electric charge density and j is called electric current density.

Remark 2. In terms of p and j, Proposition [1| takes the form cOyp + 8;5* = 0. But 8y = 6&) = %8,5 and

0; = (?x‘ =: V;; thus, the continuity equation is equivalent to

‘&gp(:c,t)—l—v-j(m,t) :0‘. (2.7)

Remark 3. Integrate Equation (2.7) over a spatial volume V' with surface boundary (V):

(')t/dgacp:ct /dng (z,t) /dS J(z,1).

Q)= [ Eapay

dQ / .
— = s -j.

In words, the total charge within V' can only change if there is a flux of charge current through the boundary
surface (V'), hence the name “continuity equation”E]

Define

to be the total charge within V. Then

2.2 The energy-momentum tensor

Definition 1. Electromagnetic energy-momentum tensor. The tensor field T#" (z), defined as

1 1
R ge—— Ly T A A
i + 1677 B )

is called the electromagnetic energy-momentum tensor.

Remark 1. It is not obvious what this tensor has to do with energy and momentum for now; see Problem
#16 for some hints and LL for details.

3This “conservation of charge” is a result of our field equations. The field equations are in turn a result of the actions we
have postulated through axioms.
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Proposition 1.

(1) TH is symmetric; | TH (x) = T"" (x) ‘

(2) T™ is traceless; | T, () = 0.

Proof.
(1) We know the second term in the definition of 7% is symmetric. For the first term,

FrOFY o = g*P Flgga  F*7 = 80 FHgFYT = FYP kg,
Thus the first term is symmetric and, in turn, T#" is symmetric.

(2) —4nT*, = FFoF,o — L g/, FogFoP =0 O

sh=1

Remark 2. By Ch. § T can be decomposed into T°°, Euclidean vector 7%, plus symmetric Euclidean
tensor T7%.

2.3 The continuity equation for the energy-momentum tensor

Proposition 1. In the absence of matter (J* =0), T obeys

0,T," () =0.

Proof. From Definition

9 T," [ O, F,“F" o + a S F, angB}

Il
|—|

1
— F,%0,F" + 4auFaﬁFaﬂ} :
But by Equation 1) o, F", = 7’“ o = 0. Furthermore, the last term can be rewritten as follows:

F,p0,F*P

ga’yg,@mF’YKaugaegﬁyFeu = 6:5;}7"‘/’96“}7‘6” = FEKaMFen
(auFaﬁ) Fer

= 0, FapF* =2 (aMFaﬁ) Fob,
1

= o1, = y

(O Yot 3 (BuFag) FO?
By Problem #12 (see Belitz’s solution),

0= GMFaﬂ + 8aF5M + aﬁFﬂ
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1 1
= 0,1, = in _(aVF#a)FV“_2(aaF5“+aﬂFHQ)FaB]

1 va 1 af3 1 Ba

= o |7 OFua) F™ + 5 (0aFus) F7 + 2 (03 F ) F
i a—v, foa B—v

10 va 1 va | 1 vo
= 1 |7 O Fu) B 4 5 (00 Fua) I + 5 (0, Fpua) F }
=0

Note that in the third to last line we used the identity that, for any tensor contraction,

t(...)a(.i.) () t(...)a(...)a(...).

[e%

That is, contracted indices can swap being upstairs or downstairs. O

¢In the first line, we use the notational convention that 0, F,“F", implies that the partial acts on everything to
the right; that is, 0, F “F" o 1= 0, (Fu,*F"4). If we wanted the partial only acting on F,*, we would have to write
(O F ) FY .

Remark 1. For any rank-(n + 1) tensor field ¢#*1~*» (z), the continuity equation 0,,t***~*» = 0 implies a
conservation law for the rank-n tensor t°®1--® (z) by the arguments from § OuJ* = 0 is the case where
n = 0; the proposition above is the case where n = 1.

Corollary 1. In the presence of matter, the continuity equation gets modified to

1
8VT#V - _EF:U'VJV g

Proof. Problem #17. O

2.4 Gauge invariance

Let x (z) be an arbitrary scalar function of spacetime.

Definition 1. Gauge transformation. A transformation of the potential A" (x) according to

AP AF — 9y

is called a gauge transformation.

Proposition 1. The action from Aziom 8 is invariant under gauge transformations.

Proof. F* = OFAY — Q¥ A* — OFAY — OFOVx — OV AP 4+ 00V = OFAY — OV AF = FH | 50 Syac 1S
invariant. 1
St = =L [d*zJ, A" — Sy — = /d‘%J,ﬁ“X = Sint + L [d*@(8"J,)X = Sint, S0 Sint is invariant.
c —_——
N =
integ. by parts 0
Therefore the total action is invariant. O

Remark 1. The potential is not unique. This is a result of the fact that FF#¥ depends only on gradients of
AH,

Remark 2. We may choose a gauge transformation to enforce a particular condition on A*.
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Corollary 1. A* (z) can always be chosen (gauge transformed) such that

9, AP =0,

called the Lorenz gauge.

Proof. Choose x () such that it solves the PDE 0*9,,x = 9, A" (Laplace’s equation).

— 9 AF 5 9, AM — 9,00 =0,

~——
=9, Ar

Remark 3. 0,A* is a Lorentz scalar, and so the Lorenz gauge is Lorentz invariant.

3 Electric and magnetic fields

3.1 The field tensor in terms of Euclidean vector fields

Since F*¥ is an antisymmetric Minkowski tensor, from Ch. [T} § 3.4 we can write it in the form

0 B By, E.
s _ | FETTOTTERTB,
w = | -E,{ B. 0 -B,

“E,\-B, B, 0

..with E (z) = (E; (z),E, (z), E, (z)) a Euclidean vector field,

..and B (z) = (B; (z), By (z), B, (z)) a Euclidean pseudovector field.

Beware! There are some subtle notational details here. The above definition uses Landau & Lifshitz’s
notation. In terms of the numerical indices used throughout the rest of this text, these vector fields are

E = (EmaEvaz) = (E1;E27E3) = - (El,EQ;EZS)
B = (B,,By,B.):=(B'B* B*) =—(Bi,Bs, D).

One must be careful to not identify E, with £;!
Definition 1. FElectric and magnetic field; magnetic field tensor.

(a) E () is called electric field; B (x) is called magnetic field.
(b) The antisymmetric Euclidean tensor

0 -B. B, _ _
By, B, 0 -B,|=B%=_-¢"p
-B, B, 0

is called magnetic field tensor.

Remark 1. What about the contravariant components F**?7
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Fi = grog O F = Fo

“w v

..with ¢ (z) := A° () = Ao (z) a Euclidean scalar field,
..and A (z) = (A" (z), A% (z), A% (z)) a BEuclidean vector field.

Definition 2. Scalar and vector potential. ¢ (z) is called scalar potential, and A (z) is called vector
potential.

Remark 2. This is analogous to J* (z) = (¢p (x),j (x)), with p the charge density and j the current density

(see §[2.1)).

3.2 Maxwell’s equations

From § Equation (2.6)), we have

,"" A Fop = 0.

What are these in terms of F (z) and B (x)?

Proposition 1. The field equation
aug‘“’M‘FM =0

is equivalent td)

V-B=0 (M1)

loaB+vxE=0 (M2)
C

%Belitz refers to these as (1) and (2) instead of (M1) and (M2), respectively.

Proof.
v =0: Note that for, say, u = 1, we obtain 0;1e'%"*F,.\ = —0,Fh3 + 01 F3p = —20; Fb3. Thus,

0=2 (—61F23 — OoF31 — 83F12) = 2(81390 + 8gBy + 6332) — V-B=0
V-B

v=1: Again, for a given choice of u, the above simplification applies. Thus,

1 1
0=2 (80F23 — 0o Fp3 + 83E)2) = 2(—Eath—82Ez + 83Ey) — EBth + (V X E)m =0
—_————

—(VxE),

v =2,3: Cyclically permute the v = 1 case. O
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Remark 1. These are the four homogeneous PDEs known as the first two Maxwell Equations.
Now consider, from § the Euler-Lagrange equation (2.5)):

v 471- v
BMFH = ?J .
What are these in terms of E (x) and B (x)?
Proposition 2. The field equation
4
OuF = I

s equivalent to

)

1 4
—ZQE+VxB="j (M4)
c c
Proof. _
v=0 9oFY+8;F°=4r J° — V.E=4mp
S~ N~ ~
0 V-E cp
v=1: O F"+o,F'=2] — -19,FE, +8,B. — 9B, =—-10,E,+ (Vx B), =j,.
v =2,3: Cyclically permute the v =1 case. O

Remark 2. Equations (M1)-(M4) are called Mazwell’s Equations. Their solutions determine physical field
equations for given charge and current densities.

Remark 3. Equations (M1)-(M4) are equivalent to Equations ([2.6) and (2.5)).
Remark 4. E and B are Euclidean vector fields, so the Lorentz invariance thereof is obscured.

Remark 5. Units: We use CGS (centimeter-gram-second) units, not SI units (see table below). At some
point when I have time I will write Maxwell’s equations in SI units here.

[unit] CGS SI
[charge] esu = g'/2cm?/2s~1 C
0] gl/2 cm—3/2 g1 Cm-—3
[j] g1/2 Cm_1/2 S_2 Cm—2 S—l
[E] gl/2em=1/2g71 NC!
auss = g'/Z2em!/?2s7! R
[B] i = ° esucm 2 NAT m™

Table 2.1: Comparison of CGS and SI units.
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3.3 Discussion of Maxwell’s equations
Gauss’ Law

Consider a localized charge density p in a larger volume V' with boundary surface (V). Integrate (M3) over
V:

/d3xV - E(xz,t) = 47r/d3xp(a:7t).

\% 1%
If we define the total charge within V to be

Q(t) = /d?’x p(x,t)
1%

then by using this and the Divergence Theorem above, we obtain

Dp = /dS-E:47rQ
")

In words, the flux of electric field through a closed surface is equal to the total charge contained therein.
Remark 1. This is called Gauss’ Law.

Remark 2. Electric charges are the sources of electric fields.

Magnetic field divergence
Integrate (M1) over V:
0:/d3:rV~B(w,t).
1%
Again, the Divergence Theorem yields

@B::/dS~B:O.
V)

In words, the flux of magnetic field through a closed surface is always zero.

Remark 3. The magnetic field has no sources; there are no magnetic monopoles.

Remark 4. In our Lorentz invariant formulation of 1, this comes from the asymmetry of the two field equations:
4 .
0, F" =2 gk and 9,F" =0,
c
Faraday’s Law

Consider a surface S with boundary (.5).
Integrate (M2) over S:

—l/dS’w’?tB(:ut) = /dS- (VX E)(x,t).
c
s s
By Stokes’ Theorem,
—bp = c§£dz E
(%)

In words, the circulation of the electric field around a loop is proportional to the time rate of change of the
magnetic flux through a surface bounded by that loop.
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Remark 5. This is called Faraday’s Law of induction.

Remark 6. Consider a closed E—field line. ¢dl - E >0 = dp < 0. So in a static B—field, there can be
no closed E—field lines!
Ampére-Maxwell Law

Integrate (M4) over S:

4 1
dS - (V x B)(xz,t) = — [dS - J (z,t) + - | dS - O, FE (x,1).

We define the total current to be

I ::/dS~J(x,t).
S

Using Stokes’ Law once more yields

c§£dl-B =dn] + dg
(s)

In words, the circulation of the magnetic field around a loop is proportional to the sum of the total current
and the displacement current.

Remark 7. This is called the Ampére-Mazwell Law.
Remark 8. Currents induce B—fields, and vice versa.
Remark 9. For static fields, we have Ampére’s Law:
c 515 dl-B =4nl.
The displacement current was later added by Maxwell.

3.4 Relations between fields and potentials

Claim 1. The electric and magnetic fields are related to the 4-potential by

E=-V¢-— %@A

Proof. From § [B.1]
Bl =—F% = -3°A7 4 97A° = —9yAT — 9, A° = —éatAj — 0j¢.
We also determined
Fio =B =045 — A, = (Vx A)y = — (V x A)°,

and cyclic for B2, B*. O
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Remark 1. In general, both the scalar and vector potentials determine E.

Remark 2. As a safety check, lets try gauge transforming the relation for E:

¢—  ¢— g0ix

AP — AF -y =
A— A+4+Vy

1 1

Thus, FE is invariant.

Remark 3. B is also invariant under gauge transformations since V x (V) = 0.

3.5 Charges in electromagnetic fields

So far, our attitude has been that the field equations determine E and B for given charges and currents.
What about the converse? For given fields, what is their influence on a point charge?
Let a point particle with charge e by at point y (¢) with velocity ¢ () =: v (¢).

charge density --- p(xz,t) =ed(x—y(t))
current density --- j(x,t) = p(x,t) v (t)
4-current ---  J' = (cp,j), Ju = (cp,—J)
4-potential --- A = (¢, A)

By Axiom 3,

Sint = —1/d4x Sy (z) A" ()

:——/dt/dmcpmt & (z,t) /dt/dwgmt A(x,1)

fe/dtqﬁ(y,t)Jrg/dtv(t)~A(y,t).

Now consider the Lagrangian of the point particle, Lint = Lins (¥, ¥, t), which is related to Siy via Siny =
[ dtLin (y,y,t). Comparison with the above equation reveals

Lint (y,9,8) = —c6 (y.1) + v (1) - A (y.1) |

Remark 1. These are the scalar and vector potentials from PHYS611 Ch2 1.3 Example 1!
Remark 2. Axiom 3 is consistent with our Mechanics axioms.

Remark 3. Ly must be augmented by the free particle Lagrangian L. Since the field equations are Lorentz
invariant, we must pick £o such that it is as well; we need the Einsteinian £{ for consistency. However, the
Galilean L§ works well enough if |v| < e.
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Remark 4. The momentum of the particle is p = % (not g—ﬁ; see PHYS611 Ch2 1.4), and Newton’s 2nd
Law takes the form (from PHYS611):
A F — FO 4RO
dt
= —Vep — (0 —vx) (§A>
o =
\%
1 e
= e(-Vop—--0,A)+ - VxA
(50— )+ o X (T4
—_———
E

d
_— —p:F:eE—&—E'va
dt c

which is the electric force plus the Lorentz force! In conclusion, all of this is consistent with what we did in
Mechanics.

3.6 Poynting’s theorem

Consider the continuity equation for the energy-momentum tensor
v 1 v
0,T" = —=F" ],
c

from § for p = OEI

)

1 1
TOO - _ 2F0aFOa - -F, FQB - _
— 8 2" 8

[2E® - (E* - B?)] = —% (E? + B);

1 1 . 1 1
T01:_7F0aF1a :—7FO]F1':—7 EBZ_EZB - (E Bl
4m +0 s J 471'( Y ) 47r( xB),
and cyclic.

— a1 = lp fi(EerBz) v (-LExB
c 87 47

=— FvJ,=-FY%];,=E-j.

We summarize this with some new definitions as follows.

Claim 1. Poynting’s theorem. Define the energy density of the fields u (x,t) as

L p
u.—Sﬂ(E —|—B),

and define the energy current density (or Poynting vector) P (x,t) as

P.=ExB|
4

Then

du+V-P=—E-j

1Recall that TH = — L FROFY o 4 (gt F, 3 F8 from §[2.2} and F,3F? =2 (E? — B?) from Ch.[1]§[3.4
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Proof. Follows directly from the above discussion. O

Remark 1. For j = 0, this expresses local energy conservation. It is analogous to § 2.1 with p — u, j — P.

Remark 2. Recall from § that since F' = eE + Sv x B, the work per unit time (power) done by the fields
on a charge e is v - F = ev - E. This implies
ev v-F
i E = (7 E=
J |4 ) v

is the work per unit time and volume, or power density. So for 7 = 0, Poynting’s theorem still expresses
energy conservation. In words,

(energy change) = — (energy transported by the energy current)
— (work done by the field on the charges)

Remark 3. We still need to show that u (x,t) can be sensibly interpreted as the energy density of the field.
Let j (x,t) be the current density due to just one particle, as in § (for many particles, we just sum
over them). Integrating,

/dwj~E:/dw B (2,1)] - [evd (x — y)) = ev- B (y),

where y is the position of the particle.
Consider a non-relativistic particle:

m
Eyin = v

2
d dv d
— aEmn:mv-E:v-%p:ev-E,
~—~
—eFE
where the last step follows from §[3:5] Now, integrating Poynting’s theorem over all space,
d d
—/dmu(m,t)+/di~P(m,t} :—/dmj-E:—ev~E:——Ekm.
dt dt
—_—
=[dS-P=0

(since P—0 at oo)

Defining the integral of u as

U () ::/d:cu(a:,t),

we see that
d
dt
U must be the field energy, since the energy of the particle plus the energy of the field must be conserved.
Hence, u is the energy density of the field.

(U + Eyin) =0.

Remark 4. If we integrated over a finite volume, the energy may change due to an energy current across the
volume boundary, and we see that, in general,

/di~P(az,t)7é0.

Thus, P should be interpreted as the energy current density of the field.

Remark 5. The remaining components of the continuity equation from §[2.3]
. 1.
0,1 = —=Fiv ],
c

express the fact that the energy current density is also conserved.
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4 Lorentz transformations of the fields

4.1 Physical interpretation of a Lorentz boost

Consider two inertial frames, C'S and CS.
Let C'S move with respect to C'S with a constant velocity V' = (V,0,0).

From Problems #8, 10, the transformation from C'S to CS is accomplished by a Lorentz boost:

ct = ctcosh ¢+ xsinh ¢,

T = ctsinh¢@ + x cosh ¢.

Consider the origin of CS as viewed by C'S. Then £ =0, an

zcosh¢ = —ctsinho,
= V:% = —ctanh.
tanh ¢ V/e 1

— sinh¢ = cosh ¢ = 1/1 4 sinh? ¢ =

V/1— tanh® ¢ - \/1 _ (V/C)Q’

Remark 1. First, observe that when ¢ — co, we recover the Galileo transformation

Vi- g

FT=x4+Vt, t=t.

Let us define the above quantities:

ﬂ::K, 7::# :>‘cosh¢:fy‘, ‘sinhgb:ﬂfy‘.

c N

With these results, the Lorentz boost can be written

cosh ¢ sinh ¢ vy By
DH— sinh ¢ cosh ¢ By

4.2 Transformations of F and B under a Lorentz boost

Consider the field tensor F*¥ in C'S. The field transformed field tensor@ Fr in CS is

FH = DM, D"3F*® and " = DM,a".

51 think there’s a sign error here.
6NOT the dual field tensor
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Now let D*,, be a Lorentz boost. Then, from § [3.I] we have

v = (DFDT)™
v By 0 -E, —-E, -E, v By
_ | Py E. 0 -B. B, By v
1 E, B, 0 -B, 1
1) \E. -B, B, 0 1
E.py  —E,y (=Ey—B.8)y (—E.+ByB)v\ [+ B
_ | Eay —EuBy (Ey8-B.)y (EB+By)v| By v
E, B. 0 -B, 1
E. -B, B, 0 1
_ Em 0 - (Ez - Byﬂ) Y= (Ezﬂ - By)’y
(B, — Byﬁ) v (BB - By) Y B, 0
0 -E, -E, -E.
_ [E. o -B. B,
B B 0 B
E. -B, B, 0
Thus,
E;c = Ex
E—{FE,= E,cosh¢+ B.sinh¢ = (E, + B.f)v
5, = FE.cosh¢— Bysinh¢ = (E, — B,S)y
(2.8)
B,= B,
B —{B,= B,cosh¢— E,sinh¢ = (B, — E.B)~
B,= B, cosh¢ + Eysinh¢ = (B, + E () v

Remark 1. The field equations were formulated in terms of Minkowski tensors; their Lorentz invariance is
guaranteed. Equations (2.8)) reflect this same Lorentz invariance of Maxwell’s equations, which are equivalent
to the field equations.

Remark 2. Let V < ¢, and keep terms to O (%)

= cosh¢p~1, sinhg~ —

= pere(f) oo (7)) meme (7)ro(())

Remark 3. Let E =0, so there is no E—field in C'S.

- 1%
== E;::—(>><B;
c

we see that in CS there s an E—field so long as B # 0!

4.3 Lorentz invariants

From the field tensor F*¥ we can form the following Lorentz scalar ﬁeldsﬂ

1

]' v @ v
W .= —5 " Fu | 1® .= 3¢ P g |.

"Belitz calls them scalars, but I think they are scalar fields.
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Remark 1.

IW is a scalar field — M = 1M in all inertial frames.

I? is a pseudoscalar field = ‘f(2)‘ = ‘1(2) in all inertial frames.

The absolute value signs are necessary since I® = (det D) I,

Claim 1. | 1V = E* — B2

0 —-F 0 E ,
Proof. I = -1 (E Bjk) (—E Bjk) =E’ - 1B/*By. ButH

1 . 1 1
§B]kBjk = §€jlel€jk-mBm =3 Sk Otm — OkmOu | BiBy = B?
3 Om

— 1M = %2 _ B2
O

%Note that when we write E2, we mean Eg + Eﬁ + EE Also, upper and lower indices don’t matter in what follows
(Euclidean).

Claim 2. |I® = —-E- B

Proof.

1
1% = 8 (€712 Fy1 Fas + €"1%% Fy1 Fiy

+€0213F02F13 + 50231F02F31
+EO312F03F12 + 50321F03F21
+ (4 x 6 = 24 other terms)]

1

= 1 (€212 Fiy Fos + "' Fop Fug + €% Fog Fia
+ (12 other terms)]
1

— {[-E.B.~E,B,~ E.B.]x4=-E-B

Proposition 1. The field combinations IY) and I® are invariant under (proper) Lorentz transforma-
tions; i.e., their absolute values have the same values in all inertial frames.

Proof. See above. O

Remark 2. If E 1 B in some inertial frame, then E | B in all other inertial frames

Remark 3. Ditto if E*> = B? in some frame.
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5 The superposition principle of Maxwell theory

5.1 Real solutions

Proposition 1. Let p(® (2), j(a) (x), with « = 1,2, be two charge and current densities. Let E©@ (2),
B (z) be solutions of Mazwell’s equations for p(®), 3, and let X(®) € R. Then

E = \VEW  \®OF®)
B = AWM L \@B®

are solutions for

AWM L A?) 2

p =
j = )\(1)3’(1) + /\(2)]'(2)_
Proof. V-E —4np=V - EW — 47Tp(1) +Vv-E® — 47rp(2) =0, etc. O
=0 =0

Remark 1. This is obviously true since the theory is linear!
Remark 2. If the action contained terms of higher than second order in F),,, this would not be true.

Remark 3. A field theory that leads to linear field equations is called Gaussian or free.

Corollary 1. Let E® (2), B (1) be solutions for p®) (z), j*) (z), where k € R, and let A (k) : R — R
be sufficiently well behaved. Then

&
S
~—

Il

U

el

>
=
~—"

Sk

z
S
S~—

oy
S
S~—
I
—
o
=
>
=
~—
oy
=z
S
S~—

are solutions for

Proof. Generalize Proposition[ljto a =1,..., N and let N — oco. [

Remark 4. This can easily be generalized to E®) (x), where k € R3.

Corollary 2. The most general solution of Mazxwell’s equations is obtained as

E(z) = E9(2)+EW (2),
B(z) = BY(z)+ B (z)

where E(O), B are the most general solutions of the homogeneous equationﬂ and E(p), B® s q
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particular solution in the presence of p, j.

“That is, when p =0, 7 = 0.

Proof. Let E, B be any solution for p, 3, and let E(p), B® e q particular solution.
By Proposition

EO . E_E(;D)7
B .— B_BW

are solutions for p =0 = 3.
Conversely, if E© B ig a solution for p=0=7, and E(”)7 B is some solution for p, J, then

E = E(O)—I—E(p),
B = B(0)+B(P)

is a solution for p, j. O

5.2 Complex solutions

All physical solutions to Maxwell’s equations must consist of real fields E, B. However, it is sometimes
convenient to find complex solutions and take the real part afterwards.

Proposition 1. Let E, B be complex solutions for complex sources p, j. Then E*, B* are solutions
for p*, 5*.

Proof.
V-E=4rmp = V-(Re E)+iV-(Im E) = 4x (Re p) + id7 (Im p)
= V- (ReE) = 47 (Rep)
= V:-(Im E) = 4r(Im p)
= V- (Re E—ilm E)=4n(Re p—ilm p) = V- -E*=dxp",
etc. for the other Maxwell equations. O]

Remark 1. This, again, is because of linearity.

Corollary 1. Let E, B be complex solutions for real (i.e. physical) sources p, j. Then Re E, Re B
are also solutions for p, j.

Proof. From Corollary (?), Re E, Re B are solutions for Re p = p, Re j = j. O

Remark 2. In this case, Im E, Im B are solutions in the absence of sources (since Im p = 0, Im j = 0).
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Static solutions of Maxwell’s equations

1 Poisson’s equations

1.1 Electrostatics

Consider Maxwell’s equations for static fields:

(M2) - VxE=0
(M3) — V-E =d4np.

(M1) - V-B=0
4
(M4) — VxB=-—j
c
Remark 1. (M2) and (M3) now contain E only! (M1) and (M4) now contain B only! For static fields, E
and B decouple!

Remark 2. From Ch. [2] § a static E—field is determined by ¢ alone:

#=-v3)

and (M2) is thus automatically satisfied, since (V x E), = —(V x V¢), = 0.

Proposition 1. The electrostatic potential ¢ (x) obeys Poisson’s equations for p (x):

V2p = —dmp|,

where V? := 8;07 =: A is the Laplace operator.

Corollary 1. In vacuum, ¢ (x) obeys the Laplace equation:

i)

Remark 3. Solutions of Laplace’s equation are called harmonic functions.

Remark 4. ¢ (z) = const., z, y, 22 — 3 (22 + y?) are all harmonic functions.

Remark 5. A harmonic function can have no extrema except at infinity; this is a theorem in analysis.

36
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1.2 Magnetostatics
From Ch.[2] § 34 B =V x A.

Remark 1. This is always true!

Remark 2. (M1) is automatically fulfilled, since V-V x A = 0.

Proposition 1. The static Euclidean vector potential A (x) obeys

VA =—-"j|
C

where j = j (x).

Proof.

(VxVxA), = €jrdickimOiAm = €rij€rim0j01Am = (810jm — 0imdj1) 0;01Am
—0;0,A; + 0,0, A,
= —V?4,;4+0;(V-A).

But by Problem #19, we can always choose the Coulumb gauge to make V- A = 0.
4, 9
c

O
Remark 3. Combining Propositions [l|and |1} we see that the components of the static electromagnetic poten-

tial obey Poisson’s equation with —47” times the components (cp, J) of the 4-current as the inhomogeneity.

Remark 4. Poisson’s equation is linear; thus, the most general solution is a particular solution plus the most
general solution of Laplace’s equation (see Ch. [2]§ Corollary [2)).

Remark 5. From § Remark [5] the only solution of Laplace’s equation that vanishes at infinity is the zero
solution; in an infinite system, there is only one physical solution of Poisson’s equation.

Remark 6. Things get more complicated in a finite system with boundary conditions.

2 Digression: Fourier transforms and generalized functions

2.1 The Fourier transform in classical analysis

Let f:R™ — C be a complex-valued function of n real arguments that is absolutely integrable:

[t 1t @) <.

Remark 1. The space of these functions, denoted (), forms a vector space over C under addition of functions.

Notation:

x=(x1,...,2,) € R,

[dx = [dxy---dx,,
Rn

k-x=kx+- - +kyx, (k€R").
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Definition 1. Fourier transform. The Fourier transform of f (x) is defined as

f k)= / dz e~ f () = F[f ()] (k)

Remark 2. f : R™ — C is another complex-valued function of R™.
Remark 3. The Fourier transform is a linear integral transform.

Remark 4. F [A1f1+ Aaf2] = MF [fi] + Mo F [fo] VA1,2 € C due to this linearity.

38

Proposition 1. f (k) is bounded and continuous.

Proof. To show that f is bounded,

Fw| =| [ awetes @

S/dw e f ()] :/da: I ()] < o0,

where we have used the triangle inequality.
To show that f is continuous,

‘f(kl) —f(kg)] - ’/dw -k _ gmika@) £ ()

— 0 for ki — ko,

< [dafere - ek f @)

where, again, we have used the triangle inequality. O

Proposition 2. Let x;f (x) be absolutely integrable. Then f(k) is differentiable with respect to k; and

9 .

o (k) = F [~iz f] (k) |

Proof. a%lf(k:) = 8%1 [dxe=*®f(z) = —i [ dee”*®z, f (x) = F [—iz, f] (k). Note that we needed to
stipulate that z; f () was absolutely integrable to proceed with the last step. O

Proposition 3. Let f (x) be differentiable with respect to x;, and let diﬂf be absolutely integrable. Then

Fouf] (k) = ik f (k) |.

Proof. For n =1,

/dw e_““%f (x) = etk y (x)‘iooo — /dm (—ik) e~k f () = zk:f(k’)
—_———

=0
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Remark 5. The Fourier transform turns derivatives into products! Prospect: turn differential equations into
algebraic ones!

Remark 6. This also works for n > 1 and higher derivatives. For instance, for n = 3,

F[V2f] (k) = —K*f (k) |

Proposition 4.

Proof. F[f*] (k)= [dze 2 f*(x) = ([ dze*=f (x))" = (f(—k))* O

Theorem 1. Convolution theorem. Let fi, fo be absolutely integrable, and let their convolution
J1* f2, defined as

(1% f2) (y) = /dm fily—x) fo (@)

exist and be absolutely integrable. Then

Flfr* fo] (k) = f1 (k) f2 () |

Proof.
Flfixfol (k) = ./dy e*““'y/dw fily —=) f2 ()
- / do e / dy e F W) i (y — ) f ()
[ s [

Remark 7. Convolutions in real space turn into products in Fourier space.

2.2 Inverse Fourier transforms

Let f1, fo be absolutely integrable.

Lemma 1. [dz f; (z) (f2 (:E))* = [dy f1 (~y) (f2(y))".
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Proof.

/dm fi () (fz (:c))* = /da: fi(z) (/dy e Y[, (y)>*

/dw h (SB)/dy =Y (fa (y))

N /dy (f2 (y))*/d“’fl (z) ™Y
l

fl(—y)

/ dy fi (~y) (f2 ()"

Theorem 1. Inverse Fourier transform. Let f(x) and f (k) exist and be absolutely integrable.
Then the inverse Fourier transform is

fz) = #/dk e f (k) = 7 [ ] (@)

Remark 1. This means F [F [f]] = (27)" f; i.e., the Fourier transform is its own inverse apart from a factor
of (2m)".

Proof. Consider Lemmawith fi=7f f2ly) = e~ W e where a > 0.
= fo(k) = /dy ek vy’ iy
/dy e~y (k—x) ,—ay®

()t e

where the last step, that Fourier transform of a Gaussian is a Gaussian, is the result of Problem #27.
By the Lemma,

n

/ dy f(y) e = / dh (k) (5) " emi =R

o
(f2¥))"

(f2(k))"
Consider the limit as o — 0.
On the left hand side,

lim /dy f(—y) eV T T /dk f (k) e
a—0
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On the right hand side, by the Intermediate Value Theorem,

n

tim [ ak g (k) (7)o" = @) 1 (T) / ke o (o—k)?
- s (5)° (faeme)
= @i (5) v ()"

"f (@

2.3 Test functions

problem: In classical analysis, very few functions are Fourier transformable, and even simple functions are
not Fourier transformable

solution: “Generalized functions” (sometimes called “distributions”)

In order to define generalized functions, we first consider function spaces in addition to ).

Definition 1. Test functions. A function F' : R — C is called a test function iff
(i) F is differentiable arbitrarily many times, and

(ii) F and all of its derivatives go to zero faster than any power? || — oc.

aThat is, limg—eo 2V F (™) (z) =0 for all N,n € N.

Example 1. F (z) = ¢~ is a test function, So is ze~™*" for all m,n € N.

Definition 2. Weakly increasing functions. A function ¢ : R — C is called a weakly increasing
function iff

(i) ¢ is differentiable arbitrarily many times, and

(ii) ¢ and all its derivatives do not grow faster than |z|" for |z| — oo, where N € N may depend on
the order of the derivative.

Example 2. Any polynomial is a weakly increasing function, but e* is not.
Remark 1. The derivative of a test function is a test function; so is the sum of two test functions, as well as
scalar multiples of test functions. Thus, the set of test functions forms a vector space; we call it ~.
Remark 2. Let F be a test function and let ¢ be a weakly increasing function. Then
G (z):=F ()¢ (x)

is a test function.

Now, test functions are all Fourier transformable since they are absolute-integrable (they die off at in-
finitely very fast). But is the Fourier transform of a test function also a test function?
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Proposition 1. If F () is a test function, then so is its Fourier transform, F (k) := [ dze " F ().

Proof. Consider the p*™* derivative of F' (k):

E® (k) = j%ﬁ (k) = (_Z')P/dx 2P F (z) o—ike _ (—i)P F[2PF (2)] (k)

By the two remarks above, 2P F' (x) is a test function, and so F [2PF (z)] (k) exists.

E® (k)’ ‘/dar 2P F (z) e~ ke

1 d _;

Integrating by parts (the boundary term vanishes since F' is a test function):

1

— |F® (k)) = / dz e*ikwdi(m (;L-))‘.

—ik T

We can do this again to pile on more derivatives onto zPF (x) at the cost of a term }M Doing this
N — 1 more times (where N € N is arbitrary), we get

‘F@) (k)‘ - ‘ (Z{)N/dx e—im% (P F (m))‘ .

By the triangle inequality, this becomes

v _o L

<oo since Fevy

)F@) (k)‘ < U:N/dx

Since N can be made arbitrarily large, | F(®) (k)‘ falls off faster than any power. Thus, F'®) (k) is a test
function [ O

aSpecifically, F(9) (k) = F (k) is a test function, so the proposition is true.

Remark 3. The inverse Fourier transform is given by the theorem in §

Proposition 2. Parseval’s equation. Let I (z) and Fy(z) be test functions, and let Fy (k) and
Fs (k) be their Fourier transforms. Then

/ K G (k) By () = / dx Fy (z) Py (—7) .

27

Proof. [4EFy (k) Fy (k) = [ 4 [dze ™ Fy () F (k) = [daFy () [ & F (k) e~ = [daFy (2) F> (—x).
O

2.4 Generalized functions

Definition 1. Regular sequences. Let n € N, and let {f, (z)} be a sequence of test functions. The
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sequence is called regular iff
lim [ dz f, (z) F (x) (3.1)

n—0o0

exists for all test functions F (z).

Remark 1. The integral exists for all n, so the only issue is whether the limit exists.

22 22
Example 1. Consider the sequence {6_72} , where n € N. This sequence is regular since lim,,_, o [ dze” »* F (z) =
[ dxF () for all F € ~. For proof, see Problem #30.

Definition 2. Equivalence of regular sequences. Two regular sequences of test functions are called
equivalent iff their limits from Equation (3.1)) are equal.

2

x z2 z2
Example 2. {6774} is equivalent to {677172 }; so is {6_7 }

Definition 3. Generalized functions, regularizations. The set of all equivalent regular sequences
{fn ()} defines a generalized function (or distribution)? f (z), and we define the integral

/ do f (@) F(2) == lim_[ da f, (2) F (2)

by the limit on the right hand side, which exists for all F' € v and is the same for all of the equivalent
sequences.
Any of the equivalent sequences is called a regularization of the generalized function f (z).

%In other words, if we let L € C, then f(z) = {{fn (%)} : limp_s00 [ da fn (z) F () = L}. (Note to reader: I am not
sure if this is correct, gotta double check)

]

22 2
Example 3. {6_72} and its equivalent sequences define the generalized function f (z) = 1. {e n }

|

is a regularization of f (z) = 1.
Remark 2. The properties of the generalized function f () = 1 coincide with those of the ordinary function.
Remark 3. Differentiation, addition, multiplication with weakly increasing functions, and Fourier transforms

of generalized functions can all be defined in terms of their regularizations; doing so yields generalized
functions. However, multiplication between two generalized functions can not be consistently defined.

Proposition 1. Let f (z) be a function (in the ordinary sense) such that there exists an N € N such

that (11?2))N 18 absolutely integrable.

Then one can construct sequences of test functions {fn (x)} such that lim, . [dz f, (z) F (z) =
[ dx f(x) F (x) for all test functions F (z).

Proof. See books (e.g., Lighthill Chapter 2.3). O

Remark 4. This result says that a large class of ordinary functions can be considered generalized functions.
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Example 4. Consider the ordinary function sgn x := %l This function fulfills the premise of Propo-

sition [I| for N = 1. Thus, sgn z is a generalized function. One regularization is {tanh (nz)} (for proof
see Problem #31).

Remark 5. Such constructed generalized functions are called regular generalized functions. The derivative of
any regular generalized function exists, but in general it is not regular.

Example 5. %sgn x exists as a generalized function, but it is not regular (see Problem #32).

Definition 4. Distribution limit. Let f; (z) be a generalized function for any value of the parameter
t, and let f (x) be another generalized function such that

ti [ do f, (@) F () = [ do f () F @

for all test functions F' (x), where ¢ may be finite or infinite, and the set of parameters ¢ may be continuous
or discrete. Then we say

lim f; () = f (x).

t—c

Remark 6. This is sometimes called a distribution limit.

Example 6. lim_,q || sgn = sgn 2. See Problem #31(c) for more.

Example 7. Counsider the test functions f, (z) that make up a regular sequence (in the sense of
Definition [I) to be generalized functions (math books say we can), and let f (z) be the generalized
function that is defined by this sequence and its equivalence class. Then

lim f, () = f (x).

Proposition 2. Under the conditions of Definition [}, we have
(1) lmye fi (x) = f' (2)
(i) lims,. fi (ax +b) = f (ax +b)

(i5i) limy_. ¢ (z) fi (x) = ¢ (x) f (x) for any weakly increasing function ¢ (x).

Proof. Math books. O

2.5 The é—function

Definition 1. Dirac delta function. The generalized function 0 () is defined as the set of equivalent
regular sequences (of test functions) for which

/dm&(x)F(m):lim dz fn () F (x) = F(0) VFe~y|

n—o0
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Remark 1. There is no ordinary function that has this property.

Proposition 1. One regularization of § (x) is the sequence defined by

fae) = [ e,

Proof. First, note that f,, are test functions, as required by Definition [3| Also note that

/dx o (2) = \/Z/da: e = %/dz e =1

— |[asfu @ P @)= PO)| = | [ 2010 0) - P 0)
< [ e fu@IF @ - F O = [ do @)l

x
< (supF')/dm |z| fn (z) = 2(supF’)/ dx ac\/%e""’”2
0 s
2 > 2

= (supF’)/ dx xe™™
NI ——— ] 0
—

const.

F(m)—F(O)‘

indep. of n

— 0 for n — oo,

where the first inequality is the triangle inequality, and the second inequality comes from the fact that
F’ is bounded, allowing us to pull out the (finite) supremum of F’. O

Proposition 2. The Fourier transform of 6 (x) is

§(k)=1|

~ 2
Proof. Consider the regularization f, (z) = %e_"”Q. From Problem #27, f, (k) = e~ fn. But from
§ Example [3] this is a regularization of the generalized function that is identically equal to 1. O

Corollary 1. The d—function can be written

Proof. From the theorem from §
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Remark 2. This integral does not exist in classical analysis!

Proposition 3. Let ¢ () be a weakly increasing function Then

¢ (x)6(z) = (0)6 (x).

*As per § Definition

Proof. [dz6(z)¢(z)F (z) = ¢ (0)F(0)=¢(0) [dzd(z)F (z) VF €. O

test fct.

Corollary 2. Let ¢ (x) be a weakly increasing function. The@

/dx6<x>¢<x>=¢<o>.

@This result says we can now use the §—function with weakly increasing functions!

Proof. [ da 5 (x)(x) = ¢ (0) [ ded(x) = 6 (0)8 (k= 0) = 6 (0). O

Remark 3. This is consistent with & (k) = [ dz e="*3 (z) = 1.

Remark 4. We can define even and odd generalized functions in analogy to the definitions for ordinary
functions:

Example 1. 6 (z) = §(—=2) is even, since § (—z) = [ e~the = [k cikz — §(z). Accordingly,

§ (z) = L5 (z) is odd.

X

Remark 5. The d—function makes Fourier back transforms easy:

/%f(k;)eikz: %eikm/dye—ikyf(y):/dyé(y—x)f(y):f(gg),

We can now Fourier transform weakly increasing functions, not just absolutely integrable ones!

Proposition 4. The d—function has the properties

ﬁa(x) Va € R — {0},

(i) d(ax) =

() 0(f () = Y7oy (o= ).

where the x; are all real zeros of f (x) and we assume they are simple and isolated.
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Proof.

a

Q) /de(x)(S(ax):sgna/d—xF<x>5(x)=SgnaF(O) - 1lro

(i) /d:rF(x)f(x)é(x—a):/dxF(x+a)f(x+a)5(x) = F(a)f(a)

(iii) Let f(z) =1y, = z=f"1(y),dy=f (z)dz. Then

zj+e f(zj+e)
Flz=["®)
/dxF(x)é(f(x))—Xj:I/EdIF(x)fS(f(x)) - | speEEery
_ ()
7 @)
— o F (2 6 (z — ;)
- D[ eroTE re

Example 2. § (z? —a?) = 77 [0 (z + a) + 6 (z — a)].

lal

3 Solutions of Poisson’s Equation

3.1 The general solution of Poisson’s equation

Proposition 1. Every Fourier transformable solution of Poisson’s equation is uniquely determined by

the inhomogeneity p via
dk  p.p4m
o@)= [ ot ®)

Proof. From § [L. 1]}

V2% =—drp L —KQ(k) = —drp(k)

— k) = ok T @)= [“ﬁ(k)] ().

“Here and elsewhere, the symbol %, is used to indicate a Fourier transform is taken.

Remark 1. Thanks to the theory in §[2| the class of solutions that can be constructed in this way is much
larger than before, since weakly increasing functions are allowed.
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Remark 2. §[L.2] Remark [5] follows immediately:

V=0 <= Kk’¢(k)=0
— $(k)=0 VE#0
< ¢ (x) = const.

Remark 3. All of this is consistent with § Remark [4]

3.2 The Coulomb potential

What is the potential from one charge?
Consider a point charge: p () = ed (x), where § (x) := 6 (z) 0 (y) 6 (2).

Theorem 1. The electrostatic potential resulting from a point charge is the Coulomb potential[7]

Proof.
p (k) = Fled (a)] (k) = e
~ 4 F-l e
:>¢(k):?€ ¢(w):;
(For derivation of this inverse Fourier transform, see Problem #28). O]

Remark 1. We have now derived the Coulomb potential from a least action principle, whereas it was postu-
lated in PHYS 611.

Corollary 1. The electric field of a point charge is

Proof. E =—-V¢ = —eV% = ¢ (_%Zj) —eZ

3

s
|

Remark 2. The electric field of a point charge is purely radial and isotropic.

3.3 Poisson’s formula

Proposition 1. Let p (x) be a charge distribution whose Fourier transform exists. Then

o) = [y 2

lz—yl |

This is known as Poisson’s formula.
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Proof. From § 31}

o) =F | 5o )| (@
——
b(k)
We know that
_q |4 _ i
e =
Flp®)](x) = p(=)

s@) = (7[5~ pw) @

Remark 1. For p(y) = ed (y), we get

1 e
o (x :/dy ed(y) = —.
(=) o=y P Rl
weakly
inc.

Remark 2. Vg ( L ) = _(z—y)

[z—y] lz—y[®

= | E(z) :/dy ;:5'3/7(3/%

3.4 The field of a uniformly moving charge

Consider a charge e that moves with constant velocity with respect to an observer. Finding the fields are
potentials is much easier if one starts in the frame of the charge!
Let CS’ be the inertial frame in which the charge is at rest. From § [3.2]l']

¢ (@)=,
and
At = (¢/ (wl) 70) .

Let CS be the inertial frame of the observer, and let v = (v,0,0). Then C'S and CS’ are related by a
Lorentz boost; from Ch. [2|§ 4.1

¥ = y(z—ot)
=Y
27 = z

1The primes are not derivatives!

2Recall that v := 1 =.
-2
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and, by boosting A'#,

e e
\(b,:ﬁy\(b/,:vi/ T VT m o
AU AIO " x +y +Z
e
(72 (z — vt)2 +y2+ 22>
e

N

((x —ut) + (1- L’—;) (y%2 + 22))

This is the scalar potential due to the moving charge, which we can rewrite as

e . 9 v2 7
(b(m,t):ﬁ, where | R .:\/(a:—vt) —&—(1—02) (y2+z2):;.
What about A? v »
_v,_ Y
At =120 = Yo a.1)
v e
A=<
— c R*

We calculate the fields using the same procedure. In C'S’, we have

E' (') =e—, B'(z')=0.
r
We boost these, using the results from Ch. [2] §
ex’ e x— vt
B, = E, = N3 ~2 o3
(r)" 77 (RY)
ey’ ey
E, = ~E = = —
LT T A wY
e =z
E, = — -
7 (R
Thus,
R
E = % (R*)3 , where ‘ R (xz,t) := (z — vt,y, 2) ‘
Note that R is the Galilean transformed .
What about B? Again, from Ch.[2]§[4.2]
v v
B, = —y-El=—--E,
v
B. = 4-E,=<E,

Discussion of E (x,t):
Let 6 be the angle between v and REI
/y2 + 22
R

3Reminder: in this section and elsewhere, a bold letter represents a vector, and the unbolded letter represents the magnitude
of that vector: R vs. R:= |R)|.

= =sinf = y?+ 22 = R%sin%0
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*\2 2 v? 2 2 2 U2‘~2
— (R =R = 5 (" +2°) = R* (1 - 5sin’0

e R(z,t) 1
72 R3 (:B7t) [1 _ ZésinZQ(t)]E

= |E(x,t) =

Thus, for a fixed distance R from the charge, E is minimized for § = 0, 7; i.e., in the direction of the motion.
The minimal value is
e v?

We can maximize E by taking 6 = £7; i.e., in the direction perpendicular to the motion. The maximal value
is

1
E, =2

R? v2 '

V-~
The field is no longer isotropic, but squeezed in the direction of the motion.. This is a manifestation of the
Lorentz contraction.

Remark 1. We could have solved for the fields in this way: The 4-current in C'S’ is

J* = (p ('), 5" (2), withp'(2) =ed(z'),j =0.
Thus, the observer in C'S' sees

charge density: p(x,t) = vp' (&',t') = ved (v (x — vt)) 6 (y) 6 (2) = ed (R).

current density: j(x,t) = v%cp’ = vp = evd (R).

Then we solve Maxwell’s equations for this time-dependent 4-current. This is equivalent, but much harder
to do!

3.5 Electrostatic interaction

Consider a time-independent charge density.

Proposition 1. The energy of the electric field produced by p = p (x) is

1 1
U:f/dmd x .
5 yp(x)p(y) Fy—y
Proof. From Ch. [2] § [3.6]
U = i/dacEZ(a:)
8w
v
1
= ——/da}E-V(b
8
_ —i/di(E¢)+i/dm(v E)
B 8 8 N——
N e’ 4mp
[ds-E¢

—0 as V—oo

5 [der@o@

%/dwdyp(w)p(y) !

|z —y|’
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where the last line follows from Poisson’s formula (§ O

N
Remark 1. Let p(zx) be composed of N localized charge distributions:p (z) = 3 p(®) (z).

a=1
1 N 1
— U = §Z/dwdyp( e P9 (y)
" lz -yl
= ZU(a) + ZU(a,B)7
« a#f
where )
U@ . ,/dw dy p@ (2 2@ (y
is called the electrostatic self-energy of charge distribution «, and
1 1
U@ .= (1 -4, f/dscdyp(a) x) —p? (y
(1= ba8) 5 @) gy W

is called the electrostatic interaction energy of localized charge distributions o and 8 via the Coulomb inter-

action. As we shall see, the ﬁ term in the self-energy is an issue.

Remark 2. Consider charged point particles: p(®) () = eqd (:c - :E(O‘)) .

1 €nts

s TP = (1 6op) 2 [ — 2|

(Coulomb interaction)

But U(® does not exist since we get % once the ¢ functions are applied to the integrals.

Remark 3. Thus, the concept of a point charge leads to an infinite self-energy and makes no sense in classical
electrodynamics. Only the interaction energy of point charges is physically meaningful.

Remark 4. One solution is to propose that maybe there aren’t point charges; particles have some spacial
extension. Let’s estimate the smallest extension ro of a charge e that still makes physical sense.

Let fj ~ mc?. Then rg = Wf; For electrons, r§ := e’ =~ 98 %10~ 3 cm. This is called the classical

5 =
electron radius. But experimental results place an uppgeiimit on the radius of the electron to be r. <
10720 cm.

We see that something is wrong with classical electrodynamics. Quantum mechanics is needed to resolve
this issue. Ultimately, perfectly point-like things are not likely to be physical though. The Planck length

may be the limit.

3.6 The law of Biot & Savart

Proposition 1. A stationargﬂ current density distribution j = j (x) leads to a vector potential

A:}/dy ity |
c |z — y

*That is, a “macroscopically stationary” or “steady” current.
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Proof. From § each component of A obeys Poisson’s equation. The solution for each component is
given by Poisson’s formula. O

Remark 1. The proof in § Proposition [1| required the use of the Coulomb gauge (V- A = 0)!

Proposition 2. Law of Biot & Savart
The magnetic field generated by a static current density is

c -y’

Proof. B=V x A, and

(v @), = o
Z (mzyz)2>

_1> 2 (z; — ;)
2) Jz—yl’

1
lz -yl

= -y x i), ——s
|z — y

R
e

— "

l

= cijrir (¥)

= —egik(x— y)j Ik (y)

Remark 2. Notice the analogy between electrostatics and magnetostatics.

Remark 3. See 4.6 below for a discussion of the concept of a stationary current density

3.7 Magnetostatic interaction

Consider a time-independent current density.

Proposition 1. The energy of the magnetic field produced by j = j (x) is

1

1 . .
Uzzcg/dmd’yj(m)d(y)m_y-

Lemmal. V-(AxB)=B-(VxA)—A-(VxB)

Proof.

V- (AxB) = 0;jrA;By
= €ijk (0:4;) By + €ijrAj (0;By)
= Bieri;0iA; — AjejindiBy
B-(VxA)—A-(VxB)
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O
Proof. (Of Proposition[1])
From Ch. [2] §
1
U = o [de B? (x)
v
1
= —/d:cB~(V><A)
8T
.1 1
= —[deV-(AxB)+— [dxA-(VxB)
8T 8 N——
P
[ds-(AxB) o
—0 as V—oo
= i/alwA(alc) j ()
2 J
2. 1 . 1 J(y)
s g [t [y
1 i(x)-j(y)
a 202/dmdy [z —y|
1. From the lemma above.
2. From § [3.6] Proposition [T}
O

N
Remark 1. Let j (@) be composed of N localized current distributions: j () = 3. 5 (z).

a=1
1 1
- dx dy (% . 4(B) -
= U 202(;/ xzdy 3 (z) -3 (y) g
S YRS WA
a a#p
where ) )
U@ . 7/d duy i@ () . 3(@)
5z | dxdy i () 3 (y) Ty
is called the magnetostatic self-energy of charge distribution «, and
U = (1005 [ dwdy i (@) 37 ()
2 |z —y|

is called the magnetostatic interaction energy of localized current distributions o and 8 via the magnetostatic
interaction.

4 Multipole expansion for static fields

4.1 The electric dipole moment

Consider a localized charge distribution p = p (y).

question: What are the potential ¢ (x) and the field E (x) at a point @ far from the charges?
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Let p(y) = 0 for |y| > ro; let || =: 7> ro.

1 1 1 2\
- (1—2“"'y+ Y )

- |$—y|:\/r2—2x- T2 T r2 r2
yry ~—— N

1 x-y 1\]
= —|1 0]
T + r2 + (7’2>_ ’
where the last step follows from the binomial approximation. Poisson’s formula (§ gives
p(y) L[ zy 1]
= d =[d -1 O —=
¢ () / Yyl / yp(y)r_ to T (7,2 |

1 T 1
= —|d —- | d O —=
T/ yoy)+ 3 / yyp(y)+ (7‘3>
Proposition 1. For large distances r from the localized charge distribution, the scalar potential has the

form
¢(33):%+ dr-gcc —|—O(1,> , where

r3

Q := [dy p(y) is the total charge, and
d:= [dyyp(y) is the electric dipole moment.

Remark 1. Analogous results hold for the gravitational potential of a localized mass distribution (PHYS
611).

Remark 2. If Q = 0, then d is independent of the origin of the coordinate system:
Let ' = ¢ + a with a = const. Then in the new coordinate system we have p' (y) = p(y — a)

= d = /dyyp’(y)

= /dyyp(y—a)=/dy (y+a)p(y) =d+Qa

Q=0 = d =d.
If you ever get confused about this, consider a collection of point charges e, at locations x:

p(y) = Z€a5 (¥ — za)
Transform CS — CS’ such that !, = ¢, + a. Then
pl (y) = Zea5 (y —a—= ma)

= ply—a).

Corollary 1. The field at large distances is
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Z

where T := .
El

d-x 1 1
d 3 1
d 3d-a)i
T r3

Remark 3. For @Q = 0, the leading contribution to the field falls off as T%

Remark 4. We can continue the expansion, with the next term being the quadrupole moment (a rank-2
tensor; see PHYS 611 and Problem #35). However, it is advantageous to introduce a more general concept.

4.2 Legendre functions and spherical harmonics

Note: the proofs in this section are omitted; see math books for proofs.

Definition 1. Legendre polynomsials. The polynomials of degree [ defined by

1 d\' l
131(:1:):_21“<dx> (z°—1) |, where 1=0,1,2,...

are called Legendre polynomials.

Remark 1. The first few Legendre polynomials are
PO (ZL’) =1
P (z)=x
Py (z) =3 (32 - 1)

Remark 2. The P, (x) have the following properties Vi:

0) pP1)=1

(i) P(-2)= (=) Pi(x) parity

(i) (1—a?) P (z) —22P/ (z)+1(+1)P(z) =0 differential equation
(iii) Py1(x)=@Ql+1)zP (z)—1P_1(x) recursion relation
(iv) fil dx P (x) Py (x) = o ﬁ orthogonality

Remark 3. P, (x) are members of a larger family of orthogonal polynomials known as the classical orthogonal
polynomials.

Theorem 1. Completeness of the Legendre polynomials
Any piecewise continuous and continuously differentiable function f : [—1,1] = R can be expanded
in Legendre polynomials as

f@)=> fibi(x)}
=0
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(from orthogonality).

Definition 2. Associated Legendre functions. The functions (which are not polynomials now)

moa ()" Nz N 1=0,1,2,...
P (@) := 20! L= dx =1 m=—l,—-l+1,...,1—1,1

are called associated Legendre functions.

Remark 4. PP (x) = P, (z) are the Legendre polynomials.
Remark 5. For fixed [, there are 2[ + 1 functions P/™.

Remark 6. The first few P/™ (x) are
P(z)=Py(z) =1

(x) =
Pl (z)= I 2%
Pl () = W= a?

Remark 7. The P have the properties:
(i) P (£1)=0 zeroes

. —m m (I—m)! pm
(i) P (@) = ()" G P (@) m—symmetry

(i) o [(1-22) P (@) + L0+ 1) - 25

} P (z)=0 differential equation

(iv) f_11 dz P (z) P (z) = éw ﬁ% orthogonality
—_—— :

same m

Definition 3. Spherical harmonics. Consider a unit sphere. Let Q = (6, ¢) be a point on the sphere,
and let 7 = cos@ (=1 < n < 1). The C—valued functions defined on the sphere by

2L+ 1) (I —m)!] 2

Yim (V) = | =0

¢me Py (1)

are called spherical harmonics.

Remark 8. Different books define the normalization differently!

Remark 9. The first few spherical harmonics are
Yoo (R2) = \/%
Yio () = /2 cos 6

Yl,il (Q) =F %eii@ sin 6
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Remark 10. The Y}, have the propertiesﬂ
1) Y5 @Q)=(=)"Y_n () complex conjugate
(11) - Z%}/lm (Q) =mYum (Q)
Ai/lm (Q) =-1 (l + 1) Ylm, (Q)
(iil)  [dQYE () Y (Q) = 0w orthogonality

} differential equations

Theorem 2. Completeness of spherical harmonics
Any piecewise-continuous and continuously differentiable function on the sphere, f (), can be ex-
panded in spherical harmonics:

£ =S fimYim ()|

l,m

where the coefficients are given by

,m:/Mfmnmm

Remark 11. This is often referred to by saying “the Y;,, form a complete set on the sphere.”

Proposition 1. Addition theorem
Let Q= (0,0), O = (0',¢"), and let v be the angle between the two points:

cosy = cosf cos @ + sinfsin b’ cos (p — ¢').

Then

l

4am N
P)l (COS fY) = m Z 1/l’m, (Q/) 1/5771/ (Q) .

m=—

Corollary 1. Sum rule

!
For v=0, we have Q =Q' and P, (1) =1 = 22‘% Z: lYlfn () Yim ().

s 2+1

l
= | D MmO = =

m=—I

4.3 Separation of the Laplace operator in spherical coordinates

Consider the Laplace operator:
V2ol o + L
= = ——F7T —_—
r or2 P2

with
1 0 . 0 0 N 1 02
sin 6 06 S 00 ' sin® 6 Op?

4The symbol A represents the angular part of the Laplacian V2 in spherical coordinates:
1 0 D 192 9 (1 _,2)0 19

A= g ee sinfgp + gomg 9p2 — O (1-n7) an T 152 9g7

where we have defined 7 := cos 6.
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from § Remark

2

2 _(to 1 _ 1 1
— V11000 = (3 grar 50 £n09) = 0S4 G

—— —~—
acts on acts on
r only 0,
only
Theorem 1. The differential equation for the function 1 (x)
[_v2 +V (T)} 17/) (Ta 97 (P) =a (T, 9, <p) (*)
1s solved by
T 9, 90 Zulm 1/lm )
l m
where Uy, (1) is the solution of the ODE
d? *%
d2+Vl() U (1) = Ta1m (1) (**)
with 1)
+
Vi(r) =V () + -y
and

Remark 1. The Poisson Equation has the form (x).

Remark 2. This theorem is also very useful in Quantum Mechanics.

Proof. (Of Theorem|[1])
ansatz: v (r,0,¢) = 1Zulm( ) Yim (Q)

(*) = CL(T,Q) = _782 Zulm Yim - *7Zulm AYEm Zulm }/lm

l ,m Lm “U(4+1)Yim

Z |:—82 (l:‘ 1) + Vﬁ’f’)] Uim, (7,) nm (Q)

lm

l m

(see § . By § Theorem [2} any reasonably well behaved a (r,€) can be expanded in spherical

harmonics:
E alm lem )
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with aj, () given by (f). Inserting this into the above equation:

1 Il+1 V(r
lz:alm (T) Yim (Q) = IZ: |:_Ta,% + % + 7E ):| Ulm (T‘) Yim (Q) 5
l{l+1 d2
= ray, (r) = {—83 + +y 2 ) +V (r)} Upm (1) = (—er +V (r)) U (1)
which follows from the orthonormality of Yj,,. O]

4.4 Expansion of harmonic functions in spherical harmonics

Consider harmonic functions, i.e., solutions of
V2 (x) =0, (*)

and assume that ¢ is twice continuously differentiable.

Proposition 1. The most general solution of (x) has the form

d(x) =Y [, () + ép (2)] |

lm

where
5 = g Vi (Q) —
Im (w) T qlm Im ( ) ’I“IT
G (@) =, Yim () 7!

with constant coefficients qufn.

Proof. Since V2¢ = 0, we can expand ¢ using the theorem in § [4.3| with V' (r) = 0, a (z) = 0.
= QPupm (r) =

U, (1) .

ansatz: uy, (r) =r".

Lm
with A, B arbitrary constants. O
Remark 1. ¢ (x —0) =00 VI, G (® — 00) = 00 VI >0.

Thus, the only harmonic function that is finite at r = 0 and r — oo is the constant [ = 0 contribution

(see § [1.2] Remark [5] §[3.1] Remark [2).
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4.5 Multipole expansion of the electrostatic potential

Lemma 1.
1 1 —
- Y (= Yim (Q) Y7, () |,
|w—wl| T+lz:; <T+) 2l+1 Z ! lm )
where
x=(rQ)), r+ = max (r, 1)
' =), r_=min(r1)

Proof. Let cosy = f;’f/ (that is, v is the angle between x, x').

= |z — 2| = \/r2 — 2r1' cosy + 12,

_1
1 1 / 7N\ 2 2
— L 2l ol syt (E
|le — x| r T T
1 2
12c03’y+( >
T+ T+ T+

—Z ( >Pz (cos)

,
=0

Case 1: v >1'

[

oo

iz21447:1 < )ZYZ’" ) Yim ()

1. Note that it is only possible to factor 1/r if r > /.

Il

2. From Theorem [I]in § we can expand the square root in terms of Legendre polynomials since
cosy € [—1,1].

3. From the Addition Theorem in § [4.2]

. . . . rT_—
Remaining question: What is f; (H)‘?

From § Flml\ is harmonic for r > 7’ since

s 1l 1,1
Tl — x| Ty Ty

Furthermore, W =0 (}) for r — co. By § we know

 has the form ¢;" since it falls off as
71. Thus,

1
|x—a’

1 ! 1/
r r T
for some constant ¢;. For v =0,

1

1 1 AN | 1 P\ 1
N == = - ) == )P ),

ot ()] () e (H)ew
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where the second to last step is the geometric series. Comparing the two equations above, — ¢; = 1.

Case 2: 1’ > r analogous. O

Proposition 1. The electrostatic potential of a localized charge distribution p = p (x) (that is, p (x) =0

for |x| > 1) can be written, for |x| > ro,
Q:
Zrlﬁ Yim ()

4m
Qim = ”2l+1/ dr r2r de(rQ)Ylm(Q)

are the multipole moments of the charge distribution.

where

Proof. From § [3.3 and inserting the lemmal[7
Yy
ol@) = [y 2

|z — y|

= /dyp(y)li (%)ZQZJrl Z Yim () Yoy, ()

m=—1

=0
= ZL\/ 2)\/ /dyy 2 p (y, Qy) Yii, (2y)
lmrlﬂ 2l+1 2l+1 Y Tim ATy

=:Qim

“Note that |z| :=r, |y| :=y.

Remark 1.
For [ = 0, the moment is

e 1
:\/47r/ dT‘T’Q/dQ rQ)— =0Q,
@ 0 p( )\/ZE Q
~——
YO*O
the total charge.
For [ =1, we have Q1,-1, Q10, Q11:

47 o 1 — . 1 i . 3
Qim = 1/?/0 drrg/de(r,Q) {57”00089—5,,”1\/5@ ¢s1n0+5m,_1\/§e‘psm9} ”E
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= Qo = / drrz/de(r,Q)rcosez/dm:cgp(a:):@
0

1 e .
= Qu = 5 der/de(r,Q)e_wrsine
0
= 7\2 dzx p (x) [rsin 0 cos p — ir sin § sin ¢
-1 dzx p (x) [z —ix]——i(d — ids)
I D
1 .
— Q17_1 = ﬁ(dlﬁL’LdQ)
1
== d = E(Ql,—l*@u),
1
d = E(Ql,qﬁ-Qn).

4.6 Multipole expansion of the electrostatic interaction

Consider a charge density p< () confined to a region R. inside a sphere of radius ry. Let p< () be subject
to a charge density ps (y) confined to a region R~ outside a sphere radius Ry > ro. What is the electrostatic
interaction energy U between these charge distributions?

From §[3.5]

1 1
U = §/dwdyp(:c)p(y)m

where )
= d _—
o @)= [y 2 W)
>
is the potential generated by the charges in R~ at :JsEI
If Ry > ro, ¢~ (x) will vary slowly within R., so we can Taylor expand:

82

1
¢ () =¢> (x=0) + - V(15>|m:0 + al’ixj m

sl 4.

=0

From §[L.1] ¢~ (x) obeys Laplace’s equation V& € R..

82

e =0
J 856231‘3

=0

)

o>

2 32
= ¢s () =¢> (x=0)+x- V¢>|w:o+} (mixjméij) > + ...

2 3 axiaxj

x=0

5Note that the choice to use ¢~ as the source and p< as the test charge is arbitrary; we could have written U in terms of ps
and ¢<.
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Definition 1. Define the following:

oo := ¢ (x =0) ...the potential ¢~ at the origin
E := V¢ (x =0) ... the field due to ¢~ at the origin
Gij = #;xj¢> (x =0) ...the field gradients of ¢~ at the origin

1 1
= ¢> (@) =¢o—x - E+5 (xiiﬂj —3$25ij> Gij+ -
Now drop the subscripts, and denote p := p., ¢ := ¢~.
— U = [des@)oa)

1

1 .
= U:¢OQ_E'd+3¢”QU+...

where

¢o0, E, ¢ ..are the potential, electric field, and field gradient tensor due to p > evaluated at the origin.

Q, d, Q;; ...are the total charge, dipole moment, and quadrupole moments of p..

Remark 1. Alternatively, we can use the spherical harmonic expansion from § [£.4] to expand the potential:
¢ (@)= G (@) =Y i Yim ().,
lm lm
where we have disregarded the ¢ltn terms because they blow up at the origin.
— U = [des@)oa)
= [ dwp(@) Y a Vi ()
lm

= Zq;n/dr T‘QTZ/de(T,Q) Yim ()
Im
=V,

_ j204+1
= |U= qum ?sz )
lm

where, as per § Qim are the multipole moments of the charge density p (x) := p< () and the g, are
the coefficients of the expansion of the harmonic function ¢ () := ¢~ (x) in spherical harmonics.
Which one is used depends on the symmetry of the problem.

4.7 The magnetic moment

From § the Biot & Savart law gives the magnetic field resulting from a stationary current density.
This requires an interpretation, as currents are produced by moving charges and hence are intrinsically time
dependent.
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Definition 1. Stationary current density. By stationary current density j (x), we mean the time
average taken over a time T large compared to all microscopic time-scales:

T
i@=T@0 =7 [ ai@y

Example 1. Current in a wire loop.
T must be much larger than the time it takes an electron to complete one revolution.

Remark 1. With this definition, M4 reduces to its static version upon time averaging, provided the electric
field E as a function of time is bounded. That is,

‘9E($vt>_l/ o8 _ 1 _ Torgo
b =T A = B @) - EB@0) =,

if E (x,t) is bounded.

(M4) = —%atEJrvXB_ V><B_41j.

0

Now consider the time averaged vector potential A (x) := A (x,t) at large distances from a localized static

current density given by
= Zea'vaé (y — o).
«@

From § [3.6] the Biot & Savart law gives
1 i)  €aUa
A(x) =- /dy = -
@ =2 ¥y Eznfwa
T T,
75 eavaf[lJr 5 +}
c r r

35 eava T-Ty)
cr

=

ar

1. Expanding 1/ |z — @,| as per § [4.1]

2. The monopole contribution is zero by Remark
d
Zeava = £Zeawa =0
« [e%

since a static current density is assumed to be bounded. Here we also drop higher order terms.

We can rewrite the dipole term as follows:

> ava (@ -m) = Zeag'ca (%o - )
- 2 dtzeama Lo x %Zea [’Ua (CBQ ’ CB) — La (va : ZB)] )

[e3

by the product rule. Taking the time average,

— Zeava (o -x) = %Zea%wa (To - ) + %Zea [va (T ) — Ty (Vo - T)
o o ~——— «

0 (bounded)

= ;%:ea [va (Lo x) — Ty (Vg - 93)}
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11
= QT—SZBQ ['ua (o x) — Ty (Vo - @) .

= A(x)

Definition 2. Magnetic moment. The magnetic moment of the charges is defined as

1 _
m = %za:ea(wa X Vq) |-

Proposition 1. The vector potential for large distances from the current density is given by the magnetic
moment via

rd

A(:B):Tigmxaz +o(1>.

Proof.

1 _
mxx = ?cza:ea(maxva)xm

- %Zea {’UO[ (iBa iE) - (:Ea . va) = TSA.

O
Corollary 1. The magnetic field for large distances from the current density is
_3(@-m)xz—m 0 1
Proof. Analogous to § [4.1] O
Proposition 2. If all of the moving charges have the same charge-to-mass ratio —~o =: = and if the

motion is non-relativistic (v, < c), then the magnetic moment is proportional to the 5ngular momentum
of the system:

e
= *
m 2me )
Proof. L =) @q X Py = > Maa X Vg.
— mim > ea(@a X 0a) = =3 (@ % va) = L
= €alLq a) = 5 — Mo (Lo a) =
- 2c — 2c — Mg 2mce

Remark 2. The proportionality factor 55— is called gyromagnetic ratio.
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Remark 3. (x) holds for orbital momentum L of particles, but not for the magnetic moment related to spin.
For electrons,

with S, = %FL the spin of the electron, m the electron mass, and g = 2.0023 - - - the so-called g-factor.

Remark 4. The g-factor was a mystery until the development of the Dirac equation, which predicts g = 2.
The rest is accounted for by loop corrections in QED.



Chapter 4

Electromagnetic waves in vacuum

1 Plane electromagnetic waves

1.1 The wave equation

Consider vacuum: J#* (x) = 0 everywhere.

Remark 1. Any solutions to Maxwell’s Equations must be time-dependent since in Ch. [3] § §[1.2] we saw
that in vacuum, static potentials obey Laplace’s equation, which has only the trivial (zero) solution.

Theorem 1. Wave equation. In vacuum (and with the Lorentz gauge), the 4-vector potential A" (x)
obeys

9,0" A" (2) = 0], (*)

Proof. From Ch. [2]§
4
P = ZJ'EQ
Oy (OMAY — 9" A*)
0, 0* AV — 99, A"

[

e
= 0,0"AY
1. We are considering vacuum.
2. In Lorentz gauge, 0,,A* = 0.
O
Remark 2. (x) is called wave equation.
Remark 3. The operator
is called d’Alembert operator. Explicitly,
0,0” = g¢""0,0,, = g"” o = iaf - V2

OozHoxv 2

Some books define it as the negative of this.

68
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Remark 4. The Lorentz gauge implies a Lorentz invariant relation between ¢ and A:

0 1
0=0,A" = @A” = E&gqﬁ +V.-A

Corollary 1. The electric and magnetic fields also obey the wave equation:

OFE =0B =0| (**)

Proof. From Ch. 2| §
OB = O(VxA)=Vx(OA) =0
0 <—v¢ - iatA) — _V(O¢) - %at (0A) =0

UE

O

Remark 5. The Lorentz gauge still does not determine the potentials uniquely; in vacuum, one can always

choose a gauge such that
p=0 = V-A=0

(see Problem #39). However, this choice is not Lorentz invariant.

1.2 Plane waves

Definition 1. Plane waves. Solutions of the wave equation that depend on only one spacial coordinate
are called plane waves.

Let f (z,t) be any component of E or B or A*. From §[L.1] (x) or (xx),
(07 = *02) f (x,t) =0} (*)

This is called the plane wave equation or 1D wave equation.

Theorem 1. d’Alembert solution. The most general solution of (x) is

X

@) =filz—ct)+ fo(w+ct)

where f1, fo are arbitrary twice continuously differentiable functions of their arguments.

Proof. We can write () as

Cat - am> <iat + am> f(z,t) = 0. (1)

Define £ :=x —ct, n:=x+ct. = z=73(E+n), t=—2 (£—n). Also define ¢ (£,n) := f (z,1).

— Caf L (0w) L0+ (00) 0
= =0+ O,
= 0+ 0.

1. Inserting f (x,t) =: ¢ (£,n) and using the chain rule.
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Inserting these relations into (1), we see
0 = —20:20, (£, 7).
——
=:a(n)

The bracketed term must not be a function of ¢ since, after a £ —derivative, the result is 0. Integrate:

n ~ ~

— () = [ dia()+b(6).
7o

Note that both terms above are arbitrary functions. Let fi (£) := b (&), f2(n) := 1;; dnja (7).

= YEn) =N+ faln)=fi(z—ct)+ fo(w+ct) = f(2,1).

Remark 1. PDEs in general have whole classes of functions as their solutions, in contrast to ODEs.

Remark 2. (Gotta insert this figure)
f1 moves in the +z direction with velocity c,
f2 moves in the —z direction with velocity c.
f is a superposition of fi, fa.

1.3 Orientation of the fields

Proposition 1. Consider a plane electromagnetic wave propagating in some direction nn. Then E, B,

n are mutually perpendicular, and
EErEY

Proof. By Problem #39, in vacuum we can always choose a gauge such that
V-A=0and ¢ =0.

Let n = (1,0,0). = A(«,t) = A(z,t), and have the wave travel in the +z direction.
x

— A(:mt):A(x—ct):A(t—Z) = Au),

where v :=t —%. Now, V- A =0 = 0,4, = 0. We also know
OA=0 = 0;A,=0
—  0;A, = const.
If the constant were not zero, E, would not be zero since E = —0; A. This would not fall off at infinity.

Thus, assume 0;A, = 0 = A, = 0. The wave solution does not fall off either, but its average

vanishes.
= A(u)=(0,4,(u),A, (v) --- Ln

B _loa-"Yo4 ... La
C C
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— B=VxA = (0,-0,A.,0,A,)
= 10,(0.-4..4,)

= —%(% (nx A)= —%ﬁ xO0A=nxFE
O
Corollary 1. The Poynting vector is given by
(P (x,t) = cu(z,)n|
where u (x,t) is the energy density of the fields.
Proof. From Ch.[2] §
— B:iExB - iEx(an)
L ﬁ}f 2
Z 8% (E*+ B n
= cu(z,t)n
1. Since E L n.
2. Since E* = B2
O

Remark 1. The energy contained in the wave propagates with velocity c¢ in the direction n perpendicular to
the wave fronts.

1.4 Monochromatic plane waves

Consider the wave equation:

(61233 - v2> f(x,t)=0.

Definition 1. Monochromatic plane wave. A solution of the form

f (wat) = fOei(k.w_Wt) ) fO S (C>

is called a monochromatic plane wave with frequency w.

Remark 1. Problem #40 = w? = ®k? <= f solves wave equation.

Remark 2. By the superposition principle from Ch.[2|§ 5l if f : R* — C is a solution, then so are Re f, Im f.

What about k7
Case 1: ky ky,k; €R = weR.

We can write fo = |fo| e~%, where § € R. Then Re f, Im f yield the two solutions:

| f (2, t) = [fo| cos (k- @ — wt — 0)

)

’f(w,t):|f0|sin(k-w—wt—5)‘.
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Remark 3. For fixed @, f is periodic in ¢ with period T := %’r

Remark 4. For fixed ¢, f is periodic in space. Define

p=k-x—wt—9

to be the phase of the wave.

f =const. <= p=const. <= k-x=wt+J.

Thus, the surfaces of constant field are planes perpendicular to k. k is called wave vector; A := |2—’T is called

wavelength.

Case 2:
At least one of k; is not real, e.g., k, = a + if3.

— f (m,t) _ eia)\efﬁxfoei(kyy+kzszt)
= f—ooif x = Foo for g 2 0.

Thus, the solution is physically meaningful at most in a restricted space (e.g., total reflection at a surface).

Case 3: wé R = k ¢ R3.
This is the same as case 2, since w? = ¢2k?.

1.5 Polarization of electromagnetic waves

Nothing we have derived prohibits E, B from rotating about k. We can express a monochromatic plane
wave as

E (x,t) = Egeitkz—wt)

where w? = ¢?k? with k? := |k|*.

B (z,t) = Byeilkz—wt)

Remark 1. The direction of propagation n from §[L.3]is

. k k
n=k:=—=—.
k[ w/e

From §[1.3] we also have
[Eo| = |Bo

and FEgy, By, k form a right-handed coordinate system.
Consider E Let E2 = |E0|2 e~2% and define b := Eye'® with the property b? = |E(2)| € R. Consider
the physical solution
E (x,t) =Re bei(k'w_m_“)} ,

where b = by + iby with by L by since b> € R. Let k = (k,0,0). = by, = (0,b1,0), by = (0,0,bs),

E,= bcos(k-z—wt—a) E2 E?
E,= —bysin(k -z —wt—a) by = b3

Proposition 1. The E—field vector moves on an ellipse; the same is true for the B—field. This is
called elliptic polarization.

1This discussion is analogous for B—field.
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Proof. (above) O

Remark 2. Monochromatic plane waves are, in general, elliptically polarized.

Remark 3. Special cases:
by = by circular polarization

b1 =0 or by =0 linear polarization

Remark 4. Visualization:

1.6 The Doppler effect

Define the 4-wavevector k* := (%, k:) = (ko, k). From problem #40, k* transforms as a Minkowski vector.

Proposition 1. The 4-wavevector has zero length in Minkowski space:

=)

Proof. k,k* = “g—j — k? =0, from the wave equation. O

Remark 1. This implies our 4-wavevector lies on the light cone given by k° = |k|. .

Consider an observer in a moving frame whose velocity forms some angle 6 with propagation direction k.
What frequency does the moving observer see?

Theorem 1. Doppler effect. If w is the frequency of the wave observed in the rest frame, then the
moving observer measures a different frequency w' such that

W =yw (1— E0059) i
c

Proof. Lorentz boost 4-wavevector along x:

But k, = |k|cos = £ cos 6; insert this and factor . O

Remark 2. The frequency shift given by (1 — Zcos 9) is called linear Doppler effect. The shift from -y is
called quadratic Doppler effect.

Remark 3. The quadratic Doppler effect is nonzero even for cos § = 0; a manifestation of time dilation.

Remark 4. Consider a non-relativistic wave, e.g. a sound wave (density wave) in a fluid. The density

fluctuation can be written

i(k-x—wt)

on (x,t) = ae , where w = ¢ok
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and ¢ is the phase velocity. Under a Galilean transformation,

r = xz—ut
/ _ y
t/ = t
= on(x,t) = aei (ke +hovt +hyy —wt')

_ aei(kzx'+k:yy'7(w7kzv)t')
But w— kv =u'

€o

v
= W =w <1— 0059).
Only the linear Doppler effect is observed, and there is no frequency shift for motion perpendicular to k.

2 The wave equation as an initial value problem

2.1 The wave equation in Fourier space

From § the general wave equation is

0 (@.0) = (508 - ) F (@) =0} )

Take a spacial Fourier transform (Ch. [3|§ [2), where

f(k,t) = /dm e~k (z,t)

with back transform

1 . ~
J@t) = —— /dk ¢ih f (1 1),
(2m)
Remark 1. The generalized function concept implies this can be done for a large class of functions.

0 =0 = (Got-v?) Ly faeerei

(2m)”

_ (271)3/dk <;8§—k2)f(k,t)

But this integrand is positive definite.

— (k,t)+ K2 f (k,t) = 0| (**)

2 ~
ae!

An alternative way to see this is to multiply (x) by e~**® and take the = integral:
- 1
= 0 = /da: e ik (283 - V2> f(z,t)
c
Loz 122
= ?atf—*— kE°f
(integrating by parts twice).

Remark 2. (xx) is an ODE for a harmonic oscillator with frequencyﬂ

wg = clk| =: ck.

Remark 3. The Fourier back transform theorem implies () is equivalent to (xx).

2In this section, the notation wy implies w is a function of k.
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2.2 The general solution of the wave equation

The general solution of (xx) for f is

~ .O
f (k,t) = al cos (wgt) + 9k gin (wit) |,
Wk

where

ay = f(k,t=0)= /dwe’ik'mf(w,t:())

- /da: R 0, (2,1)],_,

Theorem 1. The general solution of the wave equation is uniquely determined by the field and its time
derivative at some initial time (WLOG t = 0)[%] and is given by

1 : ad
[z, t) = 2 /dk etk [ag cos (wgt) + Z—Z sin (wgt) | |,

with wg, = c|k| and a, c’z% defined above.

%That is, f (x,t =0) and Oy f (x,t)|,—¢-

Corollary 1. The solution can also be written

1 i(k-x—wgt - _ilkx—w
[z, t) = (277)3/dk {f;je'(k k) + fre (k k:t)i| :

where

1 1.

+ 0 . 0
=—|al,xi—a .
fk 2 ( +k Wk :tk)
Proof.
al cos (wit) + a—z sin (wgt) a01 (ei‘”’“t + e*i“’kt) &—%l (ei‘*”“t — e*i“”“t)
k Wi k9 Wi 2i
L] L[]
1 0 . 012 —iwpt 1 0 . a% Wit
= 2<ak+zwk e +§ ak—zw—k e
—_— —_—
I £
1 _ . .
= f (ZC,t) W /dk etk [flj-efzwkt + f__kezwkt}
_ i dk f+etk~:c—twkt + i /dk f*e—zk-m—&-twkt’
(27)3 k (277)3 K

where in the last line, in the second term wy = w_g is inserted. O

Remark 1. The general solution of the wave equation is a linear superposition of monochromatic plane
waves with superposition amplitudes that are uniquely determined by the initial conditions f (x,t = 0) and

f(z,t=0)
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Electromagnetic radiation

idea: we have discussed
e static solutions of Maxwell’s equations with sources (Ch.
e dynamic solutions of Maxwell’s equations in vacuum (Ch. .

Now we discuss

e dynamic solutions of Maxwell’s equations with sources.

1 Review of potentials, gauges

1.1 Fields and potentials

Recall in Ch. [2| § the fields E, B (which are observable) can be obtained from potentials (that are not
observable) via

E(z,t)= -V (z,t) - %&A (z,1)
B (z,t) =V x A(x,t)

Remark 1. The homogeneous Maxwell equations are automatically fulfilled by these.

Remark 2. From Ch. 2] § ¢, A are the components of the 4-vector A* (z) = (¢ (z), A (2)).

Proposition 1. The inhomogeneous Mazwell equations (M3, Mj) are equivalent to four PDEs, which
are the equations of motion (or field equations) for A" (z)[%|

@wwwyﬁﬁﬁumz%ﬁ@) (%)

*Compare with Ch. 4] §

Proof. From Ch. 2] §

L= g
= 0,0MAY — 070, A",

76



CHAPTER 5. ELECTROMAGNETIC RADIATION 7

Corollary 1. In terms of ¢, A, (x) takes the form

47

1
DA+V<CBt¢+V-A) ==

1
—V%p — Eatv <A =Admp

where O := 587 — V2.

C

Proof. J" = (¢cp,j), O* := % = (lat, fV), Oy = 2 = (lat,v).

= J,0" = 02 -Vi=10,

e
1
o A* = Eatgzﬁ +V-A.
v =1, 2,3 in (x) yields the first equation.

v=20 in (x) yields

I
|
|

06— Lo, <1at¢ +V- A)
C C

1
:}2\&@* V3¢ f%\af‘gf —ONV-A = dmp

Remark 3. In the static case, (") simplifies to
V2¢ =4np ... Poisson’s equation (Ch3 §1.1)

4
~V2A+V(V-A) :%j . Fourth Maxwell equation

=Vx(VxA)=VxB

Remark 4. In vacuum and using Lorenz gauge, (x) simplifies to

0A” —0"9,A" =0 ... wave equation (Ch4 §1.1)
=0

1.2 Gauge conventions

From Ch.[2]§ the potentials are not unique. We can choose certain constraints, called gauge conventions.

Popular choices:

1
(1)  Lorenz gauge 0AM (2) =0=-0p+V-A Lorentz invariant
c

(2)  Coulomb gauge |V -A =0|/(cf. Problem #19) not Lorentz invariant

Remark 1. Some books call (2) the transverse gauge, since k - A (k) = 0 (from Fourier transforming), which
implies A | k. Others call it radiation gauge.

Remark 2. Another possibility is to choose | ¢ (x) = 0| This is also sometimes called radiation gauge.
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Remark 3. 4 potentials and 1 constraint (our choice of gauge) implies 3 potential fields uniquely determine
the 6 fields F, B.

Proposition 1. In Lorenz gauge, the field equations for the potentials § (*) becomes

4
O0A=—j 4
¢’ or, | OA* = ly 7 (*)
O = 47p €
Proof. Lorenz gauge — 0,A* =0, .". § (x) = (%). =

Corollary 1. Once we choose Lorenz gauge, it is maintained under time evolution.

Proof. 00, A" = 9,0A" =42 9, J" =0 . ]

continuity eq.

Remark 4. From Ch. [2] § 9y J* = 0 is not an independent condition; it follows from the field equations.

Proposition 2. In Coulomb gauge, the field equations become

OA = 4—7Tj — lathb
c c . (k)

V2¢p = —4np

Proof. §[L.1] (+') with V- A =0 = (*x). O

Corollary 2. Coulomb gauge is maintained under time evolution.

Proof.

1=

O(V-A) =V (0A)

4
z Ty Jj+ iafp
c c
4 1
= = (V J+ atcp>
c c
4
= T 9, =0
c

continuity eq.
1. Inserting OJA from (x').
2. Inserting —V?2¢ from (x').
O

Remark 5. Which gauge to pick is a matter of choice. Different choices are convenient for different problems.
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2 Green’s functions; the Lorenz gauge

2.1 The concept of Green’s functions

Consider an inhomogeneous wave equation:

Of (,1) =i (1) (%)

with i (x,t) a given inhomogeneity.

Definition 1. Green’s function. A Green’s function G (z,t) for the PDE (x) is a solution of

100G (,1) =6 (2) 6 (1) ] ™)

Remark 1. This is (x) with a special inhomogeneity

i(2,t) = 0(x)d(t) =0 ()5 (y) 5 (2)d ().

Proposition 1. Let G (z,t) be a solution of (+x). Then

[ (z,t) :/d:c’dt’G(:c—w’,t—t’)i(ac’,t’) =: (G x1) (z,1t)

is a solution of ().

Proof.

af (z,t) = /da:’dt’DG(acfa:’,tft/)i(a:’,t’)

/d:c’ dt’ 6 (x—x' )6 (t —t')i(z',t)
= i(x,t).

Note that this assumes we can interchange [, [ which is allowed if G is sufficiently well behaved. O

2.2 Green’s functions for the wave equation

To find the form of Green’s functions, take the Fourier transform of § (x+) with respect to time. That is,
take [ dt et (s5){]

. T _
. 5(x)/dt et s (1) :/dte“’tgéfG(:c,t)—VQ/dte“’tG(w,t)

—_—
=1 (Ch.3 §2.5) define =:G,, ()

— §(z) + V3G, ()

1 _
C—2/dt e“tOlG (x,t)
. 2

(ZZ‘;) / dt €' G (z, 1)

S —
=G (@)

[|=

INote that, by convention, we use +i instead of —i here.
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1. Integrating by parts twice and assuming G (x,t) falls off at +o00, or, using Ch. (3| § Proposition
Thus, G, (x) obeys
2
- <v2 + ‘;) G (x) = 6 ().

We solve this by taking the spacial Fourier transforms. Define

G, (k) := /d:c e kg, (x).

To find G (x,t), we must back transform.

spatial:
dk
Golw) - [ o TG B)
T
_ / ak w1
3 o 2
(2m) K+ (%)
Lo
C 4m
1. From Problem #28, [ d:S gtkw___dm e_rﬁ , where 7o = £5, 7 = ||
w3
temporal:

Gt = [52e6@)

11 / dw —jwtt
= —_— — e c
4 r 2w
1 d ) r
_ - 7“) 6—zw(tI;)
477 2

- El=D)

Theorem 1. The defining equation for the Green’s functions (§ (x%)) has two solutions:

1 .
Gy (z,t) = m& t where r := |z|.

Proof. (above). O

Remark 1. Consider a point-like, time-dependent source

i(2,t) =0 ()i (t).
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From the proposition in § the two solutions of the wave equation with this source are
fe(zt) = /dw’dt’ éé t—t'F 1 e —'| )6 (x')i(t)
—_— A7 |z — x| c
1 r
= — dt’é(t—t’ 7)'t’
4mr / + c it
1 T
= —ift+ 7).
47r7’l ( c
This implies that if the source i (') does something at a time ¢, then the 4-potential response at position x
occurs at a time ,
t=t+-
c

for the solutions fi.

Definition 1. Define:
G4 as "retarded Green’s function"

G_ as "advanced Green’s function"

Axiom 4. Causality; a physical response cannot precede the action of the source.

consequence: only the retarded solution is physical.

2.3 The retarded potentials

We can obtain the potentials by applying the proposition from § and results from § to the wave
equations for A, ¢:

1 1
= L = _ 24 ’ogr
6 (@,1) /dm dt 4W|w_w,|5(t — :c|) p (@, t)
1 1
= ¢(w,t)=/dy7p yt——lz—yl|| (%)
|z — y| c
Analogously,
1 1. 1
— |a@o =2 [dy i (wt-cla-vl)| (5)
c |z — vy c

Remark 1. (x), (xx) are called retarded potentials.

Remark 2. The time delay At = @ corresponds to the time it takes the wave to travel from point y to @
with velocity c.

Remark 3. (x), (xx) are analogous to Poisson’s formula in the static case (cf. Ch.[3|§[3.6). The new concept
from time dependence is retardation from finite speed of propagation.

3 Radiation by time-dependent sources

3.1 Asymptotic potentials and fields
Consider retarded potentials (§ (%), (xx)) at large distances r = |&| from the sources.
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We can expand |z — y|:

le—yl = Vvrr-2z-y+y?
— .
r\/12wy+0<2>
T T
~uo()
= r—z-y+0|-],
;

= ¢(w,t)=%/dyp(y7tr) +O(1>7

where & := %

where t, :==t — 1|z —y| ~t— L+ L& .y. Analogously,

— A(m,t):é/dyj(y,tr) +0<).

Remark 1. We keep only leading terms for r — oo, which are of O (%)

Remark 2. How many terms to keep in the time argument ¢, of p, 7 depends on how rapidly the sources
are changing. If L is the linear dimension of the source, and the source changes appreciably on a time scale

At = %, then the term %:1: -y may be important.

Before deriving the asymptotic forms of E, B, we prove two useful lemmas.

Lemma 1.

1 1.1 1
V;f(tr) = —Em;atf(tr) +0 (73)

Note: In this section, O, f (t,) == (0if)|,, and Vif(t,) =V (Lf(t)).

Proof.

=

vlf () (vi) f(t) + %V (f (tr))

O(1/r2)

Lon v +o (%)
% () ) <_i> VVa? 4y + 2240 (;)

= f—;atf (tr)+ O (;)

(|8

[l

1. Product rule.

2. Chain rule.

3. Vi, = —1Vy/a? 4+ ¢2 + 22
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Lemma 2.

Op (Y, tr) = =Vy 3 (y,tr) + %w 03 (y,tr) |+ O (i)
Proof. By the continuity equation (Ch. [2] § [2.1)),
= Op(x,t) = —Vg -7 (x,1)
= (Op (Y, 1))y, = — (Vy -5 (¥,1),—,,
But
Vy (G (t) =

(vy .7 (yvt))t:tr + (atj) (yvtr) : VytT
(vy J (yvt))t:tr

1. ' 1
+ 22 (0) (y, ) + O (r>
. 1. '
= (00 (Y1), = O (ystr) = —Vy - (J (y,tr))JrCw~(8t3)(y,tr)+0<)
. N . 1
= =Vy J(yty) + -2 0j(y.t) +0 <r> .
1. Chain rule.
2. Recall t, ==t — 1|z — y
1
= Vyt, = _Evy ly — |
- ly-e 1 z oy 1
cly=ol e i aay s Vo

Proposition 1. Far from the sources, the fields are

+(0(2))+o(5)

B (x,t) = 21

& :
2;X/dyc’)w(y,tr) _

E(x,t) = —& x B (x,t)

o

o(2).

Remark 3. This implies E?> = B?, and & 1. E 1 B, forming a right-handed orthogonal set.
Remark 4. The fields fall off as 1 as opposed to

1
Proof. (of proposition).

,,,2

in static solutions.

83
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From §[I.0] B =V x A, so by the equation for asymptotic A,

11
= B, = El]ka /dy.]k (y, )
_ 1.1 ;
= €ijk (—2> :’Ej*/d’y (Oedr (Y1) 1
c T
1z
— B(zt) = —5— /dyau y,tr)

1. By lemma 1, 0;1 f (t,) = —=12;20,f (¢,).

From § E=-V¢— %@A, so by the equations for asymptotic ¢, A,

— E = -—-V- /dyp Y, tr) — *@t*/dyj(yﬂfr)
L 7—/dy op (y,tr /dy 03 (y, tr
2 ———/dyvy 7y, tr) +7—/dy —Z-0ij (y.tr /dy@t] Yty
= o5 dS-5—0
1 . .
= [y @@ 05 (y.tr) - 0 (y,1r)]
3. 1
= @ | Ex(@x0(ytr))
= - x B(x,t).

1. By lemma 1, and since 0; = 0;,..
2. By lemma 2.
3. Using the vector identity:
(ax(axb)), = €ijraicrmaibm

= (0u0;m — Oim0j1) ajarbm,
a; (a-b) — a’b;

O

Remark 5. A time-dependent localized current density leads to time-dependent fields everywhere in space
(with proper retardation to account for signal travel time). This phenomenon is called radiation.

Remark 6. Far from the source, the radiation fields E, B ...

(1) falls off as 1
(i1) are perpendicular to one another and to the radius vector from source to observer (because we
are far enough away that the waves are approximately plane waves).

Remark 7. The source must provide the field energy; there is steady power loss at the source.

3.2 The radiated power
From Ch. 2§ [3:6] the energy-current density of the fields is given by the Poynting vector:

P (x,t)= iE(w,t) x B (x,t).
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Remark 1. E1L Bl& = P | &.

Remark 2. [P] = energy per time and area = ergcm™

85

2 1 3

sTH =gcmsT°.

Remark 3. & - P = power per unit area. Denote by & the total radiated power. Then the power radiated

per solid angle is given by

i
dQ2

But

- (B x (& x B))

z - PdA

(#- =B = B) (%)
&

—r?% - (B x (& x B))

47

Zi€ijkBiekimT1 Bm
(0i10jm — 6im0j1) T;Bj&1 By,

B? - B~#)

N—_——
Bla
— B2
dgzi C 9.9
o - wm B
c 1

4rr
1

g

627)2 (w < [y <y,tr>)2

4med

f (:ix/dy&tj (y,tr)>2

Theorem 1. The power radiated by the source per solid angle is

iz 1

A9 4med

(:& x /dy 0j (y,tr)>2 .

Proof. (above).

Remark 4. Power  (fields)® , and fields o 1

there is nonzero power per solid angle even as r — co.

Corollary 1. The total power radiated is

d
ds?

@:/dQ

3.3 Radiation by an accelerated charged point particle

Consider a point particle with charge e moving with non-relativistic velocity v < ¢, on a trajectory R (t).

current density: j(y,t) =ev (t)0 (y — R(t))

R(t)

where v (t) :
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retarded time:

by = t——|z -y
1
A t—f+¥-R(t’)
& &
,
~ t——-=:t,
Cc

1. t' is the solution of t' =t — 1 |z — R (t')| (from §
2. 1z R(t') is small of order 2 if v < c.

Remark 1. t. is the time of emission for a signal received at time ¢.

To find the power radiated, we will need the following quantity:

/dy 03 (y,tr) /dy 0:3 (y,te)

Q

e [dvv)dw-Rw)
dv

e —
dt |,—;.

= e (te).

Inserting into (& x [ dy 9,3 (y7t,,))2 yields (disregarding e):

2

(xV(te))” = €ijpljUu€itmTiOm
- (5jl5km - 5jm§kl) i]jlvkvm
= ¥ (&-9)°
A& e? . ..
o~ s [0~ @9 ()]

Let 6 be the angle between the acceleration at time ¢, and the radius vector to the observer.

— & - (t.) = v>cos’ 0

ar €2

o = oy (i (1)) sin? [0 1) |

Proposition 1. Larmor formula. The total power radiated by the accelerated charge is

2 2
P = 3%1';2 (for v < ¢).

This is called the Larmor formula.

Proof. [ d sin® 6 = 27 fildn (1 - 772) = 8?“_ 0
Remark 2. This is called the Larmor formula, valid for non-relativistic particles.

Remark 3. This is the physics behind synchrotron radiation (see Problem #46).

Remark 4. This implies that a classical atom cannot be stable (see Problems #47, 48).
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3.4 Dipole radiation

Consider a system of many slow moving (v < ¢) charges that is still small compared to r. We will still use
the approximation ¢, = t..

Proposition 1. In this situation the radiated power per solid angle is

%:4;&3 (s&x&)Q,

where d is the dipole moment of the charge distribution, given by
d(t) := /dy yp (y,1)

and d is its second time derivative.

Remark 1. With 6 the angle between d and &, this becomes

% = 47303 sin? § (d)2

Remark 2. For one point charge, p (y,t) = ed (y — R (t))
— d(t) = [ dyyes (v~ R() = eR (1)

== a:eb,

so it works for one particle.

Lemma 1.
d

Gd0 = [dyiw.

Proof. Charge conservation implies

Integrating over space,

= 0 = /dyy[Vy~j(y7t)+atp(yat)]

1=

/dy Vy(y-3) =3 +yop(y,t)]
—/dyj(y7t)+%/dyyp(y,t)

- [y + G,

[

1. Product rule

2. [dyVy(y-j)— 0if y-j falls off fast enough.
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Proof. (of proposition)

From §[3:2]

1. Replacing ¢, with ..

2. From the lemma above.

(|

Remark 3. This contribution is called electric dipole radiation.

88

Now we keep corrections to the approximation we made (¢, = t.). From §E to find dQ we need

. r 1
/dyJ(y,tr) = /dyy(y,t—erE y+>
t
1. . 1 . .
~ /dyJ (y,te) + E/dy (@-y) 0J (Y, )=y,
2 d)+iE| Sy [ t@wi o+ 1@y
+ 3@y - 5@y
= ()55 [ @ )~ 3@ )+ (other temm)
= e 5 di v, ylyx-73)—3x-y other term
& d(t)—ii /d Z X (y x j) + (other term)
- <" acdtl, | Y yrJ
: o dy 1
= d(t)—z dyy X j (y,t) + (other term)
dtt2
4. . . d
= d(te)—ocxa m + (other term)
te

[

1. Taylor expanded.

2. Used the lemma to replace [ dy j (y,t.), split the integrand (& - y)j into 3 (Z - y)j +
added to the integrand 0 = % (-J)y—

d(t.) — & x m (t.) + (other term)

s(@-9)y.

3. Used vector identity a x (b x ¢) =b(a-c)—c(a-b).

4. By definition Ch I§. the magnetic dipole moment is m (t) := 5 fdy y X j(y,t).

5. In this and the following sections, we use the notation -2

at|, ™= m (t.).

Therefore, in this approximation, the power per solid angle is

iz
dQ)

1

T 4xed

ER (d—ﬁ:xm)r,

%(ﬁ:y)]v and
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with d and m the electric and magnetic (respectively) dipole moments of the source. Note that the “other
term” in the proof that we have neglected is of the same order as the & x (& x ) term in v/c. We will
discuss this later.

Corollary 1. The total radiated power is

Proof.

dZ
47 3 = 4r 3/ QO—
P Cc d Q

/dQ [ﬁ:x (El—ﬁ:xm)r

_ /dQ{(:ﬁx&)Q—z(:ﬁx&)-(;ax(:zxm))ﬂ:zx(:zxm)f

We consider these terms separately:

1
/dQ(ﬁ:x&)Q L 27(/ dn (1—2)d’
J - 0007 1

- 4w<1—1>&2
3

81 -2
= —d
3

1. Choosing our coordinate system such that d || # (using notation 7 := cos ).

/dQ(ﬁ:x(ixm))Q L /dQ[ﬁ:(ﬁ:-m)—m]Q

[

/ dQ [?? — 22rn? + 1]

1
= 277/ dn(l—nz)'ﬁzz
1

8
—W'th
3

1. Vector identity @ x (b x ¢) =b(a-c) —c(a-b).
2. Choosing our coordinate system such that 7 || 2 (using notation 7 := cos ).
/dQ(:&x&)~(ﬁ;x(§:x7h)):0,
since the integral is odd in n (to see this, let & — —&). O

Now, what of the other term we’ve been ignoring?

Remark 4. The other term, given by

te/dy [y(@-j)+5(@-y)]+...
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has the structure (for the i** component):
L 1. ,
/dy (idj +Jwys) = —/dy YiyiVy *J

/ dy yiy;O¢p

[

d
= d 193] 7t
pr Y yiyip (Y,t)

d
= —Qy(t )
Qi ()
where Q;; (t) :== [dy yiy;p (y,t) is the electric quadrupole moment of the charge distribution.

1. Integrating by parts “in reverse”.

2. Continuity equation.

Thus, the contribution to & from this term is of order %QQ

Remark 5. The magnetic dipole moment has an extra 1/c in its definition. Thus, the magnetic dipole and
electric quadrupole radiation terms are of the same order in v/c (see Landau & Lifshitz 71).

4 Spectral distribution of radiated energy

In § [3] we calculated the total power radiated by a time-dependent source.

question: How is this energy distributed over different frequencies?

4.1 Retarded potentials in frequency space

From §[2.3]
1 [z — y|
¢ (x,t :/dy (y,t— )
(1) g’ .

Define a temporal Fourier transform (cf. §[2.2)f]

fz,w) = /dt et f (x,t)

d A
— @t = [ @),

! 1 dw/ —iw’ (t—|x— c
/dtezwt/dy |w_y‘/ge (t—lz—yl/ )p(y7w/)

=p(y,t—|z—y|/c)

1 / . ’ .
— /dy /dip(y,w’)/dt ez(w—w )tezw lx—y|/c
le—yl/) 27
[ —

=275 (w—w’)

1 .
— dy ezw\m—y‘/c Y, w
= Pl

= ¢ (x,w)

2In this notation, the argument of the function indicates if it is a Fourier transform or not (the same symbol f is used to
refer to the Fourier transformed function and the original function).
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Proposition 1. The retarded potentials in frequency space are

1 teuire
i T

and, analogously,

1 1 teeuire.
Alw) = [y e ),

where p(y,w) and j (y,w) are the temporal Fourier transforms of p (y,t) and j (y,t), respectively.

Proof. (above) O

4.2 Asymptotic potentials and fields
For large distances r := |&| from the sources, the expansion from § applies:

e —yl~r—d-y

= e = Jodfpso (D]

1. .
~oe / dy e~ V/p (y, ) + O (1/72)

definition: | k := —x | is called wave vector.

SRS

Remark 1. This is consistent with Ch. [ § [.5] Remark

Remark 2. Far from the source, the wave fronts are approximately plane waves, so Ch. [4] applies.

1 . )
= d(@,w) ~ *e“"/dy e p(y,w)
T
1 ikr
= —e"p(k,w),

r
with p (k,w) the spacial Fourier transform of p (z,w), and k := |k|. Note that Le’*" represents a spherical
wave.

Analogously,

Proposition 1. Far from the sources, the fields are

iwr/c
B (z,w) ~ 2

& T

1
25k
wxcg( ,w) |,

’E(m,w) ~ —& X B (x,w) ‘

Remark 3. The expression for E in terms of B follows instantly from the proposition in § (by taking
Fourier transform).
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Proof. (of proposition)
Taking the temporal Fourier transform of B (x,t) =V x A (x,t) yields

B (z,w) =V x A(z,w)

= B (m,w) = EmnOmAn (m,w)

1 ,.\1
= glmnam (7’6“”) E]n (kvw)

kT
1. e 1
~ 5lm7ﬂk7xm5]n (ka UJ)

ikr

= ik (ﬁcxlj(k,w)>.
T C l

1. The product rule yields two terms:

1 - ( _
Om— = 71—2 +0 (1/r*) =0 (1/r?)... discard this term
r r — 7
1 ) 1 . ikr 1 ikr
—Ome™™ = Ze*Tik,, r = 1tk—2x,, = ik Tm =0 (1/7)
r r r 2r r

4.3 The spectral distribution of the radiated energy

Theorem 1. The total radiated energy per solid angle dS) and frequency dw is

d2U B w? |:7n><'
dQdw  am2e3 T I

(k, w)|* |

Remark 1. Check a static source: j (k,t) = j (k)
— Jj(k,w) o0 (w)

. d?U B
dQdw

Proof. (of theorem)
The instantaneous flux of energy is given by the Poynting vector (Ch. [2]§[3.6):

P(z,t) = iE(m,t) x B (z,1).
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Then the total energy U radiated into a solid angle is (see §:

% = /dtr2 (& P (x,1))

— r?i/dm-[E(m) x B (z,)]

- e ([ )« ([ )]

2 !
Lo [ [ ) ¢ B () 206 4 )

47 | 27 ) o
cr? dw .
2 er? [ dw . . «
= —— | =& [(&xB(z,w)) x B(z,w)"]
47 27
2
3. c¢r dw 5
= — | —|B
47 2 ‘ (a:,w)|
2 o0
4. cr 2
5. 1 o 2ia 2
5 W/o du o? |2 x § (k,w)|

1. [dt e i)t — 9ng (w+ ).
2. Since B; (z,t) € R, B (z, —w) = B (x,w)". Also, by § E(z,w) = —& x B(z,w).
3. Since & | B.

4. Since integrand is even in w.

5. From §propositi0n7 B (z,w) ~ i%ew:/cfc x 15 (k,w).
d2U (.L)2 ~ . 2
= Tdw i 2 IRl

4.4 Spectral distribution for dipole radiation
From § f;—d[{u is given by the Fourier transform of the current density:
. w
j (k,w), where k = |k| = — = —
c

with A the wavelength of the radiation.
Consider small sources in the limit that |y| < .
Example 1. For an atom radiating visible light, we have

ly] < afew A
A &~ thousands of A

93



CHAPTER 5. ELECTROMAGNETIC RADIATION
In this limit,
j(k,w) = /dy e*““'y/dt ety (y,t)
L /dy [1fik~y+...}/dtei“tj(y,t)
/dt eiwt/dyj (y,t) + O (a/N)

iwtd
/dte £d(t)+0(a/))
= —iwd(w)+ O (a/N)

[|&

[

1. Taylor expand e~ *¥,

2. Define a := |y|.
3. By §lemma, 4d(t)= [dyj(y,t).

Proposition 1. If a is the linear dimension of the source, and A the wavelength of the radiation, then
to lowest order in a/\ < 1 the energy radiated per unit solid angle and unit frequency is given by the
Larmor formula:

d*U w? e 2
- e |
i0ds e 04
where 0 is the angle between d, &
0=<(d,x)

and d (w) is the Fourier transform of d (t). That is,

d(w) = —iwd (W) = F, [d (t)} ().

Proof. In the dipole approximation, d || j = |& x j|* = sin®6 |5|>. O

Corollary 1. The total energy per unit frequency is

dU 2 w? . 2
o= 3ma 4@ |
Proof. [dS sin®6=2r [1 dy (1-n?) =4r (2) = &2 -

Example 2. Consider a point charge e on trajectory y (t) with velocity v (t) = y (t) < c.
= J(@t)=ev(t)é(z—y(t))
— d(t):/da:j(a:,t):ev(t)

— d(w) = Flev(t)] (w) = ev ()
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L TP
dv 373
262 . 2

= gﬁh’(w)\

[0 (w)[?

dU/dw is given by the Fourier transform of the acceleration.

Remark 1. This is consistent with the Larmor formula from § [3.3] (see Problem #52).

Example 3. Consider a slowly moving charge (v < ¢) on a circle.
= v is purely radial
—> power is maximal in the direction perpendicular to v (9 = :l:g)
= no radiation emitted in direction of ¥ (§ = 0)
= in the orbital plane, the radiation has a butterfly shape
= in 3-D, it has the shape of a torus

4.5 Example: radiation by a damped harmonic oscillator
Consider a charge e in a harmonic potential (oscillator frequency wg) with damping constant +.

equation of motion:

i = —wdy — i (+)

Remark 1. We think of the damping as due to the radiation emitted.

Remark 2. This is a simple model for an electron in a classical atom.

initial conditions:

Lemma 1. For weak damping (7 < wy), the solution of (x) is

y (t) ~ acos (wot) e 2| (t>0).

Proof. See Problem #53. O

= g (t) = —awp sin (wot) e 721+ O (y/wo)] =: v (t)

Q

o0
= v(w) —awy / dt ™! sin (wot) e~ 7H/?
0

— _% > dt eiwt {eiwot—'yt/Q _ e—iwgt—'yt/Z}
2t Jo
_ awg -1 -1
2 L’(Wrm)) —7/2  i(w—wo) —7/2]
awo 1 1

-2 L}—wo—kz‘y/Q a w+w0+i'y/2}
Let w > 0 (discussion for w < 0 is analogous). Then v (w) is dominated by the first term when w ~ wy.

a“wg 1

2N
= [v(w)|]" =~ 4 (w—wO)2+’YQ/4
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au 2e? 2
_— — =
i el LAC)]
_ 2¢? a’w3 w?
3rc® 4 (w—w)® +12/4
2¢% a’wi 1
~ 0 7 (w=wp).

31 4 (w—wo) +12/4

This is sometimes called susceptibility of oscillator.
discussion (1): Spectrum is a Lorentzian centered on wy with width ~.

discussion (2): Total energy radiated:

o dU
U = 2/ dw —
262a2w3 dw 1
6mc? ) A2
met Jo (W—wo)” +72/4
e?a’wy / do 1
3med J_,,  wr492/4
e2a’wd (2 °° d 1
3med ; ., +1
~ 2w,
02020l
2e*a’wy da:
37rc3 x2 + 1

2e2a’w;

3c3y

Q

1=

(1%

Qe

Let’s compare with initial oscillator energy:

m
t=0 2 2
Usse = 5 wo

Ut02e224

_ osc
v = mpda?  3c3y
2 Wo

2,2
t=0 4€°Wg

osc 3mc37 °

Now, assuming the oscillator energy has totally gone into U, = U = UZ°

osc

_462w(2)
T3 |

discussion (3): Compare this result with Problem #47:

t O —t
- UOSC - Uosc /T

where we found 7 = 2/~. So the two approaches are consistent.

discussion (4): See Problem #53 for a more thorough discussion of the approximations made above.
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5 Cherenkov radiation

5.1 The time-Wigner function, and the macroscopic power spectrum

From § the spectral distribution of radiation from a time-dependent current density:

d*U w?
©ds = e oI Eel

= %2263 (w % /dte“wf (K, t)) : ( /dt’ et j (K, t') )

= Iz Sawkxjszlmxl/dt /dt' i (t= jk (kyt) jm (K, )"

We can rewrite the integrals using the substitutions
t = T+

t = T-

/dT /dm“”jk (k,T+g) i (k,T— g)

= /dT /dTeWW,m (k;T,7),

= /dt/dt’ w(t=t) 51 (K, t) i (ks ')

where

L (k:,T+ %)jm (k:,T— %)

Remark 1. Wy, is an example of what is called a Wigner function (in our case a time-Wigner function). It
separates the two times into average time (or macroscopic time) T and relative time (or microscopic time)
T.

Remark 2. Only relative times |7| < 1/w will appreciably contribute to the 7—integral, whereas all times T
during which the source is active contribute to the T'—integral.

Remark 3. This makes sense if the two time-scales are well separated. E.g., a laser pulse of duration 7' > 1/w.

Definition 1. The spectral distribution at time 7" is

PP (T § '
( ) — w Eijk‘%jsilmil/dT eszka (k;T7T) )

dQdw = 4n2e3

called the macroscopic power spectrum.

d2U d> 2 (T)
Remark 4. We recover o s de de O da

5.2 Cherenkov radiation

Consider a point particle as in §
jy,t)=ev(t)d(y— R(t)), where v (t) := R(t).
We specialize to uniform motion along a straight line:

R(t) =wvt, wv(t)=v = const.
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Remark 1. We know that in vacuum this does not result in radiation.

= j(k,t) = /dy e~ R Yeps (y — vt)
_ eve—ik»vt
_ 61)67i:i'v%t
. TN . T\ *
— Wi (:T,7) = i (k,T—i— §)gm (k,T— 5)
_ e2vkvme—ifc~'v%(T+%)e+ifc‘v%(T—g)

_igve
_ e%kvme VT

Remark 2. The Wigner function is independent of T" here, as expected from uniform motion.

dQE@ T WQ T 7 Wt
s ng) = 128 €ijkT;EImTy /dT T Wi (k; T, 7)
w2e?

— T e . A iwT  —i v T
= 4W26351jk51lmxjxlvkvm/dTe e c

2,2
w’e . io(1—2 cos
—5 3 3v281n29 dr (1= cost)r
4dméc

% (%)251112 06 (w (1 — %cos@))

2 2
= |w|: (E) sin? 68 (1 v cos 9)
4mc \c c

1. Defining 6 to be the angle between & and v:

1=

[

€ijkEilmTjB1VEVm = (0j10km — OjmOkt) T L1V,
2 4 2
v — (- v)
= ov%sin%0
2. [dr giw(l=2cost)r _ 5 (w (1 — Zcos 9))

Remark 3. If v/e < 1, |cosf| <1 = 1+ 2cosf >0
= no radiation, in agreement with § unless v > ¢ (“tachyonic particle”).

Remark 4. In matter, ¢ — ¢/n, with n the index of refraction
[ v v . .
= — - n— = n— > 1 is possible!
c c c

Remark 5. Strictly speaking, this requires a theory for electromagnetic radiation in matter. Here we assume
¢ — ¢/n and e? — €2 /n? suffices to catch the main effects (the charge is screened; Feoulomb = €2/r — €2/ (er)
where n = \/e).

Also keep in mind we are applying a nonrelativistic approximation to a situation in which v/c is no longer
small (see Problem #54).

Remark 6. n is frequency dependent (n = n (w))

d*2 (T) lw|e?/n? /1 v\2 ., v
dQdw  4n2c/n (ng) sin” 00 (1 e 9)
B |w]| €2 v\2 . v
= Infen(@) (n (w) E) sin® 60 (1 —n(w) — cos 9).
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conclusion: a particle moving in a medium faster than the speed of light in that medium emits radiation
(Cherenkov radiation) on a cone with angle 6 where

cosf =

on (w)’

Proposition 1. The total power emitted is

a7 e?v ?
— = |w] 1- !
dw 2mc? n? (w) v?

Proof.
d >
dw /dede
s (nv>2(27r)/1d (1=n%)6 (1= nsn)
4dm2en \ ¢ -1 g g "
o wle? f u\2 e ! 9 c
= e (0) s [ 0o (- )

 |w|€ev L (i)2
27 nv '

Remark 7. This is nonzero only for the range of frequencies (if they exist) such that vn (w) > c.
= total radiated power, 2 = [ dw 22 is finite.

Remark 8. This is radiated energy per time and frequency, whereas a Cherenkov radiation detector observes
the energy radiated per distance traveled by the particle. Now,

dE 47

v & 2 2
= 2 d 1-—— )10 —5 <1/,
2mc? /0 ww ( n? (w) U2> (712 (w) v? )
where © (Wj)vz < 1) is the theta function.
dE  dE dt ez [ 2 c?
dx  dt dx 7w /0 we ( n? (w) 112) (n2 (w) v? < )

Remark 9. Each photon has energy E = hw
= the number of photons per distance and frequency is

d*N e? c? c?

= —|1- (C] <1
dx dw hmc? n? (w)v? n? (w)v?
a 2 c?
— | 1- 1
’7TC< n2(w)v2)@<n2(w)v2 < )’

the fine structure constant.

e o1
137
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6 Synchrotron radiation

idea: Discuss motion of charged particle in a homogeneous B—field, as in Problem #46, but
e do it relativistically

e discuss the power spectrum

6.1 Relativistic motion of a charged particle in a B—field
From PHYS611,

dp

dt

v X B (*)

e
c
with p = ymwv the momentum (7 =1/4/1—(v/e) )
Remark 1. (x) holds for relativistic motion.
Remark 2. Force is purely transverse = E = ymc? = const., and p = C%'u with F the particle’s energy.
= (%) can be written

F dv e dv ec
?E:E’UXB :>£:E’UXB7**BX'U

Definition 1. Larmor frequency.

le| cB
w - b
0 E
is called Larmor frequency.
Remark 3. In nonrelativistic limit, wg = ‘Zl;f = ‘fylf, called cyclotron frequency.

initial condition: v | B = v 1 B for all times.

conclusion: particle moves on a circle perpendicular to B—field of radius

E
p_ U _Y
wo cle|B

)

and the momentum is related to the radius by

E

1
p=—v=—le[BR|
c c

6.2 The power spectrum of synchrotron radiation

Consider motion in the x — y plane with an observer at point « and § = < (x, 2). Choose coordinate system
such that = (z,0, 2)

= ‘:fc = (sind, 0, cos 0) ‘

and initial conditions such that y (t) = R (cos wot, sinwot, 0)

= ‘v (t) = v (— sinwgt, coswpt, 0) ‘ with v = woR.
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current density: j(y,t) =ev (t)d (y —y (t))

— ) = [aye ety -y o)
ev (t) e ky(t)
charge density: p(y,t) =ed (y — y (¢))

= p(k,t) = cetkut)

— iy

Lemma 1. The power spectrum from §[5.1] can be written

s~ a4 T ) (T 5) o (e D)o (T )]

Proof. From § the integrand (ignoring 7 factor and coefficients) is

PN 1. . .. TN . T\ *
€ijkEilmTiTiWhm (B;T,T) = €ijk@j€iumTidk (k,T + 5) Jm (k,T - 5)

e sl 3) - alers D) sl D)
T B YRS [
1. By definition (see §[5.1).
2. From §[5.2] Remark

3. At asymptotic distances away from source, & ~ k. Using |k| = £ and continuity eq. yields

Orp (:Ij,t) = -V-j (mat)
F. . W
— iwp (k,w) = &g (k,w)
oeplkt) = @-5(kt)

Lemma 2.

v(T+g) -v(T—%) = v? coswoT

Proof.

Fo(r+3) v (r-3)

1=

sin (s (T )Y sin (s (7= 2)) + cos (s (7 + 7)) cos (o (7~ 7))
cos i (7 + )~ (- 7))

COSwWoT

1. 2@ _ (— sinwopt, cos wpt, 0)
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2. Angle difference formula.

Lemma 3.

6qi%i-y(T:|:§) _ i (:Fl)m e:Fim‘*’O(Ti%)Jm (%RSIHG) R

m=—0o0

with Jp, (x) a Bessel function of the first kind.

Proof. The Bessel functions obey

o0
ez cosp _ Z imeime g (Z)

m=—oo
and & -y (t) = Rsinf coswyr

eIi%ﬁ:-y(t) — eIi%RsinGcoswot
0o

= Z (Fi)™ eFimeot g (%Rsin 9) .

m=—0o0

O

&2 (T) 1.

dQdw 471'2 3/

dr e™T [J k T+ 2) -3 (k:,T— g)* —p (k,T—I— g) P (k:,T— %)*]
47r203 dr e'" [ T+ 2) ‘v (T—I— %) — cz} eis# [y(T+3)-y(T-3)]

4 —5 /dre {U—coswor—l}
T

i (—i)mefim‘”o(TJr%)J ( Rsme) Z inetnwo(T—3) In (%Rsinﬂ)

1%

m=—o00 n=-—00
2 o0
_ w-e § Z-n—me—i(m—n)on
4m2c

/dT et [f COSWoT — 1} e~ imEn)wor/2 5 (%R sin 9) Jn (%Rsin 9)

c2

1. Lemma 1.
2. Lemmas 2, 3.

Remark 1. For the macroscopic power spectrum, we are not interested in how the emission varies on the
microscopic time scale given by 1/wy.
= average over one oscillation period.

Lemma 4. Let f (T) be a time average over one oscillation period. Then

e—i(m—n)Two — Smn
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Proof.
- 27w
e—i(m—n)Two — @ ’ dT e—i(m—n)on
21
1 27 ]
- dx 671(m7n):z:
2
= 5mn
O
22 (T) U —
— n—m ,—i(m—n)weT
dQ dw 47720m7;wz € ’
2
/dr e {1}2 COSWwoT — 1} e~ imAn)wor/2 5 (gR sin 9) JIn (ERsin 9)
c c c
= i /dTe U—l( iwoT —&—e_i‘“(”) — 1| gmimwor (J (gRsin9>)2
7726 2 2 m c
m=—oQ
WP G 0 o (= 1)) 46 (w0 — (m+ 1) wo)) — 6 )| (Jn (L 9))2
= - - - - — T m | —Rsin
2me — 2¢2 @ o w—m wo W e " \e
2 9 o
1. w-e
T 27c Z
m=—oQ

52 (s (2ms00)) " (s (£000)) = 30 (S 0000)

) w2€2 00 —o0
e (N X S Tt )
m= m=—1 m
wQeQOO
N 271'07”2::1

e (s (2R000)) "+ (3ms (L5100))7) = (9 (£R50)) ] 510 )
(+)

1. Distributed the .J,, factor, shifted the sum indices so that § (w — (m=£1)wp) (Jm (%Rsinﬁ))2 —
8 (w—mwo) (Jmz1 (%Rsin@))Q.

2. The summation can be split into three summations.
(a) The > dmo term does not contribute since w?d (w) = 0.
m

(b) J_sm () = (=)™ Jpm (2), so the remaining two summations yield equivalent contributions.

Remark 2. The frequencies emitted are the Larmor frequency (wg) and all of its harmonics.

Theorem 1. The macroscopic power spectrum averaged over a microscopic period is
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with the power radiated to the m*™ harmonic

dPm, :: woe? (E)i”mg (J;n (m% Sin&))2+ (W)Q

dQ) TR \c “tand

Proof. From (%), the argument of the Bessel functions is (applying the d—function)

wR . woR . v
T := —sinf = m——sinf = m—sinf
c c c

and the Bessel functions obey the recursion relations

Jm—1 (l) - Jm+1 (l) = 2‘]1,71 (‘L)
2m
Jmfl (.T) + Jm+1 (x) = 7Jm (.’L') .
B SIS Bl TR (B =, )2+ (2 + 7, )2 _ om0 g,
2 m+1 m—1 p2 7™ - 2 T m m T m m 2 m
2 2 oin2
2 m° 5, m°sin“f ,
= (J;n) + ?Jm - 2 m
2
2 m .
= (J,) + =) (1 —sin®6) J2,
21 —sin%0
_ J/ 2 i J2
(Jm)” + v sin?0 ™

1/ tan2 0
O

th

discussion (1): Integration over ) yields the total power radiated into the m'™ harmonic (see Problem

#56):

dt@m 62 5 ) 2mp
dQY —=" =| Py, = —muwy |28%J5,, 2mpB) — (1 - B7) dx Jom (z)] |
Q) R o

An analysis (Problem #56) shows that &2, peaks at

3 1
m=me=y>, 7i=-——

I

= For relativistic electrons, power goes into a high harmonic.
= Synchrotrons are good z-ray sources.

discussion (2): In the orbital plane, § = 7/2, and we get

APy, B W0€2 3 9 / ’ 2
bl = wem Um0

Brl wpe?

Y 2
0 (7, (m)

2
<@m = %mwOZBQ‘]é'm (2m6)
w062

R

R

2m.J3,, (2m)
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But J!, (m) oc m~2/3 for m > 1
—— % >~ '@m .m.m_2/3 — L@mml/g
APy, _  do
2, =~ m-1/3
1 1

= The radiation is confined to a cone about § = 7/2 with opening angle Af a7 X 5

6.3 Qualitative explanation of the main features
From §[6.2] synchrotron radiation is characterized by

(i) a narrow angle close to the orbital plane

(ii) high frequencies.

For a point particle with trajectory X (¢), we have the Liénard?Wiechert potentials (Problem #44)

B ev(t-)/c
A, t) = le— X (t_)] —v(t-) (x— X (t-)) /c
_ev(t) /e 1
o — X (t)|[1-n-v(t)/c

where t_ =t — 1|z — X (t_)| and

ho z—X
o X|
Let o = < (v, n).
1 1
— =
1-n-v/c 1—PBcosgp
1 1
1-B(1—3¢2+...)
N 1
3 (1+8) (1= )+ 5¢°
_ 2
O 1-B2 42

(i) Let 8 — 1 and consider small .

= A is appreciably nonzero for ¢ < /1 — 2 = % This explains (i).
Consider a particle in a circular orbit. The light reaches the observer only during a section As of the
orbit, where
As %)
— =~ — = As= Ryp.
2rR 27 s v
= The observed signal is emitted only during a time interval

At As %) )
—n——r— — Atx —.
27wy  2wR 2w wo
= The typical frequency emitted is
1 wo (*)
We R — &R — & Wp.
e At © 07

This explains one factor of ~.

This hold in a co-moving reference frame, but from the observer’s point of view, As gets Lorentz contracted
by 1/v = w, is larger by a factor of ~.

Finally, the observer sees a Doppler shifted frequency (as discussed in Ch. 4] § which provides the
another factor of ~.

== Wobserverd =~ WoY * 7Y Y = wO’VS
—~
()

This explains (ii).
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6.4 The polarization of synchrotron radiation

Polarization is measured via the effect of the E— field.
= Express the power spectrum in terms of F.

From §

From § Proposition

dUu c o5 [dw
E_ET /gw[E(m,w)xB(w,—w)]

B(z,w) x & X j (k,w),
E(r,w)~ —& X B(z,w),
= FE(z,w) x —& x (& x j(k,w)).

— our previous expressions remain valid if we substitute

Now, from § [5.1}

<2 :ﬁ/dTeiw[—ﬁ:x(ﬁ:xj(k,T+T/2))]-[—ﬁ:x(ﬁ:xj(k,T—T/Q))*]

dwdQ( )

TXJ——&X(Zx])

Definition 1. Set our coordinate system as in § orbit in z — y plane, & = (sin 6, 0, cos 9).
Define parallel polarization as E || &) where & = (0, 1,0).
Define perpendicular polarization as E || €, where é; = (—cos6,0,sin@).

We can express the radiated power in terms of these polarizations.
Power radiated into parallel polarization state:

(i),

OJ2 TWT
W/dTe [, 0],

1=

("-}2 TWT 2 -
m/dT@ Jy (k, T+ 71/2) j, (k, T —7/2)
w?e?

i / dr T eth® WTHT /D=y (T=1/D]yy (T 4 7 /9) 0, (T — 7/2)
e

[[%

(i) [-&x (@ xj)l, =[j —2&(2-Jj)], = Jjy since T has no y—component.

(ii) 7 (k,t) = ev (t) e~ @&v®),

But in § the power had the factor [v2 — 62] where here we have vyv,.

Lemma 1.

Lemma 2.

1
vy (T +71/2)vy (T —7/2) = 51)2 [cos 2woT" + cos woT]

oo

k@ Tt/ DvT /2] = N~ (J,, (kRsin0))” e™o |

m=—0oo

with f (T) averaged over one T—period.

106
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Lemma 3.

107

cos (2woT) etk [y(T+7/2)—y(T—7/2)]

Z Jmt1 (kRsin®) J,,—1 (kRsinf)e imwoT

m=—0o0

Substituting these into expression for power radiated into parallel polarization yields

22 (T)

(),

1=

[

Il

/dT T ik ly(THr/2)=y(T=7/2)]p, (T 4 7/2) v, (T — 7/2)

47r 423
w?e? , _
473‘/d7_ el ,UQezkm-[y(T+‘r/2)7y(T77'/2)] [COS 20JOT 1 cos on]
7T C

2,2 .2 00
w e” v . .

dr ™7 Z [coswoT J2, — Jm—1] €07
Ar203 / m m+1Jm—1

4r2c3 2 =

2,2 .2
we v 1
471'203 ? Z |:2J727L+1 +5 Jm 1 JM+1']m—1 ) (W - mwO)

m=—o00

(i) Inserted Lemma

(ii) Inserted Lemma[2| Lemma [3] Arguments of the Bessel functions are kR sin 6.

(iii) Replaced coswoT using Euler’s formula.

= (d‘f—g’”) ! is given by the expression for

(J2 + J? )—iﬂ
—+1 m—1 UQ m

(i) Recursion relation.

dPm
dQ2

in § with

— (J2 —+1 + Jm. 1)

Jm+1<]m71
1

2

1 2
—4(J!

2(J;,)°

(Jm+1 - Jm,fl)2

Theorem 1. The power radiated into the m*™

harmonic with parallel polarization is

v

Cc

( )3m2 (s (m%sin@))Q .

d2,, B woe?
ds2 I TR
This is the first of the two terms in ’" from

6.3

Corollary 1. The power radiated into the m'™®

harmonic with perpendicular polarization is

dL@’H’L
dQ

OJ()€2

)J__ TR

(

(,

v

m (mlc’ sin 9)

) m (2
m %’tan@

c

;
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daz

o from §

This is the second of the two terms in




Appendix A

(Glossary of notation

Scalars Vectors Tensors Matrices
z-y:=g(®y) = wy (zxy); = g™y (L)k = & (AT = A
@oy™ = oy
S. fields transforms as... V. fields transforms as...
(V-v)(z) = 0,07 (x) scalar (V) (@) = 2 f(z) =:6;f (x) covector
(Vxv) (z) = eIk O () pseudovector
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Transformation identities

Let D be a coordinate transformation. By Claim

oF’ “1y g Ox?

D= (D7) = g |

In what follows, transformation identities have been tabulated for various mathematical objects.

1 Scalar fields
s s

(Vo) (x) = (V-v) (@) “”

2  Vectors
cs CS
e; = D" ey, e; = (D7 1)jey
2l = (D7) ,a" 3 = DIk
T = ij:ik ZTj = (D_l) k'ja:k

3 Vector fields
cs cs
0;f () = D*;0,.f (%) i f (&) = (DY) *;0.f (x)

(V x v)! (z) = (det D) (DY) 74 (V x v)l€ () (V x v)j (Z) = (det D) D7y, (V x v)* ()

4 Tensors

cS cS

gjk = D™ ;G D'y, Gjk = (D™H)™;gm (D7),

&M = (det D) (D~1) 7o (DY) k5 (D) Le®® & = (det D) DY, D* g D!, e
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Appendix C

Electromagnetic field tensor

In what follows, we define

4 0 —-B® B? 0 -B., B,
E:= (E',E* E®) = (E,;,Ey,E.) and B*:.=|[ B? 0 -B'|=| B. 0 -B,
-B?> B! 0 -B, B, 0

Note the (confusing) convention that upper numerical indices correspond to lower “Cartesian” indices. Also
note that B/* = Bjp.

1 Covariant components I,

2 Contravariant components "

+ +
v agy - - 0.:-FE
F,U« :gl‘gﬂFaﬁ: B ELV< 77777 L )

I v

3 Mixed components F*,
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